Linear models: Misspecification

In our discussion of linear model inference in Unit 2, we assumed the normal linear model throughout:

\[ \boldsymbol{y} = \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \text{where} \ \boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n). \]

In this unit, we will discuss what happens when this model is misspecified:

For each type of misspecification, we will discuss its origins, consequences, detection, and fixes (Section 13.1-Section 13.4). We then discuss methodological approaches to address model misspecification, including asymptotic robust inference methods (Chapter 14), the bootstrap (Chapter 15), the permutation test (Chapter 16), and robust estimation (Chapter 17). We conclude with an R demo (Chapter 18).