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Chapter 1

Introduction

1.1 Welcome

This is a set of lecture notes developed for the PhD statistics course “STAT 9610: Statistical
Methodology” at the University of Pennsylvania. Much of the content is adapted from Alan
Agresti’s book Foundations of Linear and Generalized Linear Models (2015). These notes may
contain typos and errors; if you find any such issues or have other suggestions for improvement,
please notify the instructor via Ed Discussion.

1.2 Preview: Linear and generalized linear models

See also Agresti 1.1, Dunn and Smyth 1.1-1.2, 1.5-1.6, 1.8-1.12

The overarching statistical goal addressed in this class is to learn about relationships between a
response y and predictors x0, x1, . . . , xp−1. This abstract formulation encompasses an extremely
wide variety of applications. The most widely used set of statistical models to address such problems
are generalized linear models, which are the focus of this class.

Let’s start by recalling the linear model, the most fundamental of the generalized linear models. In
this case, the response is continuous (y ∈ R) and modeled as:

y = β0x0 + · · ·+ βp−1xp−1 + ε, (1.1)

where

ε ∼ (0, σ2), i.e. E[ε] = 0 and Var[ε] = σ2. (1.2)

We view the predictors x0, . . . , xp−1 as fixed, so the only source of randomness in y is ε. Another
way of writing the linear model is:

µ ≡ E[y] = β0x0 + · · ·+ βp−1xp−1 ≡ η.

Not all responses are continuous, however. In some cases, we have binary responses (y ∈ {0, 1}) or
count responses (y ∈ Z). In these cases, there is a mismatch between the:

1
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linear predictor η ≡ β0x0 + · · ·+ βp−1xp−1

and the

mean response µ ≡ E[y].

The linear predictor can take arbitrary real values (η ∈ R), but the mean response can lie in a
restricted range, depending on the response type. For example, µ ∈ [0, 1] for binary y and µ ∈ [0,∞)
for count y.

For these kinds of responses, it makes sense to model a transformation of the mean as linear, rather
than the mean itself:

g(µ) = g(E[y]) = β0x0 + · · ·+ βp−1xp−1 = η.

This transformation g is called the link function. For binary y, a common choice of link function is
the logit link, which transforms a probability into a log-odds:

logit(π) ≡ log π

1− π .

So the predictors contribute linearly on the log-odds scale rather than on the probability scale. For
count y, a common choice of link function is the log link.

Models of the form

g(µ) = η

are called generalized linear models (GLMs). They specialize to linear models for the identity link
function, i.e., g(µ) = µ. The focus of this course is methodologies to learn about the coefficients
β ≡ (β0, . . . , βp−1)T of a GLM based on a sample (X,y) ≡ {(xi,0, . . . , xi,p−1, yi)}ni=1 drawn from
this distribution. Learning about the coefficient vector helps us learn about the relationship between
the response and the predictors.

1.3 Course outline

This course is broken up into six units:

• Unit 1: Linear models: Estimation. The least squares point estimate β̂ of β based on a
dataset (X,y) under the linear model assumptions.

• Unit 2: Linear models: Inference. Under the additional assumption that ε ∼ N(0, σ2),
how to carry out statistical inference (hypothesis testing and confidence intervals) for the
coefficients.

• Unit 3: Linear models: Misspecification. What to do when the linear model assumptions
are not correct: What issues can arise, how to diagnose them, and how to fix them.

• Unit 4: GLMs: General theory. Estimation and inference for GLMs (generalizing
Chapters 1 and 2). GLMs fit neatly into a unified theory based on exponential families.
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• Unit 5: GLMs: Special cases. Looking more closely at the most important special cases
of GLMs, including logistic regression and Poisson regression.

• Unit 6: Multiple testing. How to adjust for multiple hypothesis testing, both in the
context of GLMs and more generally.

1.4 Notation

We will use the following notations in this course. Vector and matrix quantities will be bolded,
whereas scalar quantities will not be. Capital letters will be used for matrices, and lowercase
for vectors and scalars. No notational distinction will be made between random quantities and
their realizations. The letters i = 1, . . . , n and j = 0, . . . , p− 1 will index samples and predictors,
respectively. The predictors {xij}i,j will be gathered into an n × p matrix X. The rows of X
correspond to samples, with the ith row denoted xi∗. The columns of X correspond to predictors,
with the jth column denoted x∗j . The responses {yi}i will be gathered into an n× 1 response vector
y. The notation ≡ will be used for definitions.



Part I

Linear models: Estimation

4
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In this unit, we will focus on estimation of coefficients in the linear regression model (eqs. 1.1 and
1.2). We start by discussing the interpretation of linear models (Chapter 2). Then, we discuss least
squares estimates from the algebraic, geometric, and probabilistic perspectives (Chapter 3). We
then discuss important properties of least squares estimates, including orthogonality relationships
least squares estimation implies (Chapter 4) and the effects of collinearity (Chapter 5). We conclude
with an R demo (Chapter 6).



Chapter 2

Interpreting linear models

2.1 Predictors and coefficients

See also Agresti 1.2, Dunn and Smyth 1.4, 1.7, 2.7

The types of predictors xj (e.g. binary or continuous) has less of an effect on the regression than
the type of response, but it is still important to pay attention to the former.

Intercepts. It is common to include an intercept in a linear regression model, a predictor x0 such
that xi0 = 1 for all i. When an intercept is present, we index it as the 0th predictor. The simplest
kind of linear model is the intercept-only model or the one-sample model:

y = β0 + ε. (2.1)

The parameter β0 is the mean of the response.

Binary predictors. In addition to an intercept, suppose we have a binary predictor x1 ∈ {0, 1}
(e.g. x1 = 1 for patients who took blood pressure medication and x1 = 0 for those who didn’t). This
leads to the following linear model:

y = β0 + β1x1 + ε. (2.2)

Here, β0 is the mean response (say blood pressure) for observations with x1 = 0 and β0 + β1 is the
mean response for observations with x1 = 1. Therefore, the parameter β1 is the difference in mean
response between observations with x1 = 1 and x1 = 0. This parameter is sometimes called the
effect or effect size of x1, though a causal relationship might or might not be present. The model
(2.2) is sometimes called the two-sample model, because the response data can be split into two
“samples”: those corresponding to x1 = 0 and those corresponding to x1 = 1.

Categorical predictors. A binary predictor is a special case of a categorical predictor: A predictor
taking two or more discrete values. Suppose we have a predictor w ∈ {w0, w1, . . . , wC−1}, where
C ≥ 2 is the number of categories and w0, . . . , wC−1 are the levels of w. E.g. suppose {w0, . . . , wC−1}
is the collection of U.S. states, so that C = 50. If we want to regress a response on the categorical
predictor w, we cannot simply set x1 = w in the context of the linear regression (2.2). Indeed, w
does not necessarily take numerical values. Instead, we need to add a predictor xj for each of the
levels of w. In particular, define xj ≡ 1(w = wj) for j = 1, . . . , C − 1 and consider the regression

y = β0 + β1x1 + · · ·+ βC−1xC−1 + ε. (2.3)

6
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Here, category 0 is the base category, and β0 represents the mean response in the base category.
The coefficient βj represents the difference in mean response between the jth category and the base
category.

Quantitative predictors. A quantitative predictor is one that can take on any real value. For
example, suppose that x1 ∈ R, and consider the linear model

y = β0 + β1x1 + ε. (2.4)

Now, the interpretation of β1 is that an increase in x1 by 1 is associated with an increase in y by
β1. We must be careful to avoid saying “an increase in x1 by 1 causes y to increase by β1” unless
we make additional causal assumptions. Note that the units of x1 matter. If x1 is the height of a
person, then the value and the interpretation of β1 changes depending on whether that height is
measured in feet or in meters.

Ordinal predictors. There is an awkward category of predictor in between categorical and
continuous called ordinal. An ordinal predictor is one that takes a discrete number of values, but
these values have an intrinsic ordering, e.g. x1 ∈ {small, medium, large}. It can be treated as
categorical at the cost of losing the ordering information, or as continuous if one is willing to assign
quantitative values to each category.

Multiple predictors. A linear regression need not contain just one predictor (aside from an
intercept). For example, let’s say x1 and x2 are two predictors. Then, a linear model with both
predictors is

y = β0 + β1x1 + β2x2 + ε. (2.5)

When there are multiple predictors, the interpretation of coefficients must be revised somewhat. For
example, β1 in the above regression is the effect of an increase in x1 by 1 while holding x2 constant
or while adjusting for x2 or while controlling for x2. If y is blood pressure, x1 is a binary predictor
indicating blood pressure medication taken and x2 is sex, then β1 is the effect of the medication on
blood pressure while controlling for sex. In general, the coefficient of a predictor depends on what
other predictors are in the model. As an extreme case, suppose the medication has no actual effect,
but that men generally have higher blood pressure and higher rates of taking the medication. Then,
the coefficient β1 in the single regression model (2.2) would be nonzero but the coefficient in the
multiple regression model (2.5) would be equal to zero. In this case, sex acts as a confounder.

Interactions. Note that the multiple regression model (2.5) has the built-in assumption that the
effect of x1 on y is the same for any fixed value of x2 (and vice versa). In some cases, the effect
of one variable on the response may depend on the value of another variable. In this case, it’s
appropriate to add another predictor called an interaction. Suppose x2 is quantitative (e.g. years of
job experience) and x2 is binary (e.g. sex, with x2 = 1 meaning male). Then, we can define a third
predictor x3 as the product of the first two, i.e. x3 = x1x2. This gives the regression model

y = β0 + β1x1 + β2x2 + β3x1x2 + ε. (2.6)

Now, the effect of adding another year of job experience is β1 for females and β1 + β3 for males.
The coefficient β3 is the difference in the effect of job experience between males and females.

2.2 Linear model spaces

See also Agresti 1.3-1.4, Dunn and Smyth 2.1, 2.2, 2.5.1
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The matrix X is called the model matrix or the design matrix. Concatenating the linear model
equations across observations gives us an equivalent formulation:

y = Xβ + ε; E[ε] = 0, Var[ε] = σ2In

or
E[y] = Xβ = µ.

As β varies in Rp, the set of possible vectors µ ∈ Rn is defined

C(X) ≡ {µ = Xβ : β ∈ Rp}.

C(X), called the model vector space, is a subspace of Rn: C(X) ⊆ Rn. Since

Xβ = β0x∗0 + · · ·+ βp−1x∗p−1,

the model vector space is the column space of the matrix X (Figure 2.1).

Figure 2.1: The model vector space.

The dimension of C(X) is the rank of X, i.e. the number of linearly independent columns of X.
If rank(X) < p, this means that there are two different vectors β and β′ such that Xβ = Xβ′.
Therefore, we have two values of the parameter vector that give the same model for y. This makes
β not identifiable, and makes it impossible to reliably determine β based on the data. For this
reason, we will generally assume that β is identifiable, i.e. Xβ 6= Xβ′ if β 6= β′. This is equivalent
to the assumption that rank(X) = p. Note that this cannot hold when p > n, so for the majority of
the course we will assume that p ≤ n. In this case, rank(X) = p if and only if X has full-rank.

As an example when p ≤ n but when β is still not identifiable, consider the case of a categorical
predictor. Suppose the categories of w were {w1, . . . , wC−1}, i.e. the baseline category w0 did not
exist. In this case, the model (2.3) would not be identifiable because x0 = 1 = x1 + · · ·+ xC−1 and
thus x∗0 = 1 = x∗1 + · · ·+ x∗,C−1. Indeed, this means that one of the predictors can be expressed
as a linear combination of the others, so X cannot have full rank. A simpler way of phrasing the
problem is that we are describing C − 1 intrinsic parameters (the means in each of the C − 1 groups)
with C model parameters. There must therefore be some redundancy. For this reason, if we include
an intercept term in the model then we must designate one of our categories as the baseline and
exclude its indicator from the model.



Chapter 3

Least squares estimation

3.1 Algebraic perspective

See also Agresti 2.1.1, Dunn and Smyth 2.4.1, 2.5.2

Now, suppose that we are given a dataset (X,y). How do we go about estimating β based on this
data? The canonical approach is the method of least squares:

β̂ ≡ arg min
β

‖y −Xβ‖2.

The quantity

‖y −Xβ̂‖2 = ‖y − µ̂‖2 =
n∑
i=1

(yi − µ̂i)2

is called the residual sum of squares (RSS), and it measures the lack of fit of the linear regression
model. We therefore want to choose β̂ to minimize this lack of fit. Letting L(β) = 1

2‖y−Xβ‖
2, we

can do some calculus to derive that

∂

∂β
L(β) = −XT (y −Xβ).

Setting this vector of partial derivatives equal to zero, we arrive at the normal equations:

−XT (y −Xβ̂) = 0 ⇐⇒ XTXβ̂ = XTy. (3.1)

If X is full rank, the matrix XTX is invertible and we can therefore conclude that

β̂ = (XTX)−1XTy. (3.2)

3.2 Probabilistic perspective

See also Agresti 2.7.1

9
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3.2.1 Least squares as maximum likelihood estimation

Note that if ε is assumed to be N(0, σ2In), then the least squares solution would also be the
maximum likelihood solution. Indeed, for yi ∼ N(µi, σ2), the log-likelihood is:

log
[
n∏
i=1

1√
2πσ2

exp
(
−(yi − µi)2

2σ2

)]
= constant− 1

2σ2

n∑
i=1

(yi − µi)2.

3.2.2 Gauss-Markov theorem

Now that we have derived the least squares estimator, we can compute its bias and variance. To
obtain the bias, we first calculate that:

E[β̂] = E[(XTX)−1XTy] = (XTX)−1XTE[y] = (XTX)−1XTXβ = β.

Therefore, the least squares estimator is unbiased. To obtain the variance, we compute:

Var[β̂] = Var[(XTX)−1XTy]
= (XTX)−1XTVar[y]X(XTX)−1

= (XTX)−1XT (σ2In)X(XTX)−1

= σ2(XTX)−1.

(3.3)

Theorem 3.1 (Gauss-Markov theorem). For homoskedastic linear models (eqs. (1.1) and (1.2)),
the least squares coefficient estimates have the smallest covariance matrix (in the sense of positive
semidefinite matrices) among all linear unbiased estimates of β.

3.3 Geometric perspective

See also Agresti 2.2.1-2.2.3

The following is the key geometric property of least squares (Figure 3.1).

Proposition 3.1. The mapping y 7→ µ̂ = Xβ̂ ∈ C(X) is an orthogonal projection onto C(X),
with projection matrix

H ≡X(XTX)−1XT (the hat matrix). (3.4)

Geometrically, this makes sense since we define β̂ so that µ̂ ∈ C(X) is as close to y as possible.
The shortest path between a point and a plane is the perpendicular. A simple example of H can be
obtained by considering the intercept-only regression.

Proof. To prove that y 7→ µ̂ is an orthogonal projection onto C(X), it suffices to show that:

vT (y −Xβ̂) = 0 for each v ∈ C(X).
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Since the columns {x∗0, . . . ,x∗p−1} of X form a basis for C(X), it suffices to show that xT∗j(y −
Xβ̂) = 0 for each j = 0, . . . , p− 1. This is a consequence of the normal equations XT (y−Xβ̂) = 0
derived in (3.1).

To show that the projection matrix is H (3.4), it suffices to check that:

µ̂ = Xβ̂ = X(XTX)−1XTy ≡Hy.

Figure 3.1: Least squares as orthogonal projection.

Proposition 3.2. If P is an orthogonal projection onto a subspace W , then:

1. P is idempotent, i.e., P 2 = P .
2. For all v ∈W , we have Pv = v, and for all v ∈W⊥, we have Pv = 0.
3. trace(P ) = dim(W ).

One consequence of the geometric interpretation of least squares is that the fitted values µ̂ depend
on X only through C(X). As we will see in Homework 1, there are many different model matrices
X leading to the same model space. Essentially, this reflects the fact that there are many different
bases for the same vector space. Consider, for example, changing the units on the columns of X. It
can be verified that not just the fitted values µ̂ but also the predictions on a new set of features
remain invariant to reparametrization (this follows from parts (a) and (b) of Homework 1 Problem
1). Therefore, while reparametrization can have a huge impact on the fitted coefficients, it has no
impact on the predictions of linear regression.



Chapter 4

Analysis of variance

See also Agresti 2.4.2, 2.4.3, 2.4.6, Dunn and Smyth 2.9

4.1 Analysis of variance

The orthogonality property of least squares, together with the Pythagorean theorem, leads to a
fundamental relationship called the analysis of variance.

Let’s say that S ⊂ {0, 1, . . . , p− 1} is a subset of the predictors we wish to exclude from the model.
First regress y on X to get β̂ as usual. Then, we consider the partial model matrix X∗,-S obtained
by selecting all predictors except those in S. Regressing y on X∗,-S results in β̂-S (note: β̂-S is not
necessarily obtained from β̂ by extracting the coefficients corresponding to -S).

Theorem 4.1.
‖y −X∗,-Sβ̂-S‖2 = ‖Xβ̂ −X∗,-Sβ̂-S‖2 + ‖y −Xβ̂‖2. (4.1)

Proof. Consider the three points y,Xβ̂,X∗,-Sβ̂-S ∈ Rn. SinceXβ̂ andX∗,-Sβ̂-S are both in C(X),
it follows by the orthogonal projection property that y −Xβ̂ is orthogonal to Xβ̂ −X∗,-Sβ̂-S . In
other words, these three points form a right triangle (Figure 4.1). The relationship (4.1) is then a
consequence of the Pythagorean theorem.

We will rely on this fundamental relationship throughout this course. One important special case
is when S = {1, . . . , p − 1}, i.e., the model without S is the intercept-only model. In this case,
X∗,-S = 1n and β̂-S = ȳ. Therefore, equation (4.1) implies the following.

Proposition 4.1.
‖y − ȳ1n‖2 = ‖Xβ̂ − ȳ1n‖2 + ‖y −Xβ̂‖2.

Equivalently, we can rewrite this equation as follows:

SST ≡
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(µ̂i − ȳ)2 +
n∑
i=1

(yi − µ̂i)2 ≡ SSR + SSE. (4.2)

12
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Figure 4.1: Pythagorean theorem for regression on a subset of predictors.

4.2 R2 and multiple correlation

The ANOVA decomposition (4.2) of the variation in y into that explained by the linear regression
model (SSR) and that left over (SSE) leads naturally to the definition of R2 as the fraction of
variation in y explained by the linear regression model:

R2 ≡ SSR
SST =

∑n
i=1(µ̂i − ȳ)2∑n
i=1(yi − ȳ)2 = ‖Xβ̂ − ȳ1n‖

2

‖y − ȳ1n‖2
.

By the decomposition (4.2), we have R2 ∈ [0, 1]. The closer R2 is to 1, the more closely the data
follow the fitted linear regression model. This intuition is formalized in the following result.

Proposition 4.2. R2 is the squared sample correlation between Xβ̂ and y.

For this reason, the positive square root of R2 is called the multiple correlation coefficient.

Proof. The first step is to observe that the mean ofXβ̂ is ȳ (this follows from the normal equations).
Therefore, the sample correlation between Xβ̂ and y is the inner product of the unit-normalized
vectors Xβ̂ − ȳ1 and y − ȳ1, which is the cosine of the angle between them. From the geometry of
Figure 4.1, we find that the cosine of the angle between Xβ̂− ȳ1 and y− ȳ1 is ‖Xβ̂− ȳ1‖/‖y− ȳ1‖.
Squaring this relation gives the desired conclusion.

4.3 R2 increases as predictors are added

The R2 is an in-sample measure, i.e., it uses the same data to fit the model and to assess the quality
of the fit. Therefore, it is generally an optimistic measure of the (out-of-sample) prediction error.
One manifestation of this is that the R2 increases if any predictors are added to the model (even if
these predictors are “junk”). To see this, it suffices to show that SSE decreases as we add predictors.
Without loss of generality, suppose that we start with a model with all predictors except those in
S ⊂ {0, 1, . . . , p− 1} and compare it to the model including all the predictors {0, 1, . . . , p− 1}. We
can read off from the Pythagorean theorem (4.1) that:
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SSE(X∗,-S ,y) ≡ ‖y −X∗,-Sβ̂-S‖2 ≥ ‖y −Xβ̂‖2 ≡ SSE(X,y).

Adding many junk predictors will have the effect of degrading predictive performance but will
nevertheless increase R2.

4.4 Special cases

4.4.1 The C-groups model

See also Agresti 2.3.2-2.3.3

4.4.1.1 ANOVA decomposition for C groups model

Let’s consider the special case of the ANOVA decomposition (4.2) when the model matrix X
represents a single categorical predictor w. In this case, each observation i is associated with one of
the C classes of w, which we denote c(i) ∈ {1, . . . , C}. Let’s consider the C groups of observations
{i : c(i) = c} for c ∈ {1, . . . , C}. For example, w may be the type of a car (compact, midsize,
minivan, etc.) and y might be its fuel efficiency in miles per gallon.

20

30

40

pickup suv minivan 2seater subcompact compact midsize
Car class

G
as

 m
ile

ag
e 

(m
pg

)

It is easy to check that the least squares fitted values µ̂i are simply the means of the corresponding
groups:

µ̂i = ȳc(i), where ȳc(i) ≡
∑
i:c(i)=c yi

|{i : c(i) = c}|
.

Therefore, we have:

SSR =
n∑
i=1

(µ̂i − ȳ)2 =
n∑
i=1

(ȳc(i) − ȳ)2 ≡ between-groups sum of squares (SSB).

and
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SSE =
n∑
i=1

(yi − µ̂i)2 =
n∑
i=1

(yi − ȳc(i))2 ≡ within-groups sum of squares (SSW).

We therefore obtain the following corollary of the ANOVA decomposition (4.2):

SST = SSB + SSW. (4.3)

4.4.2 Simple linear regression

See also Agresti 2.1.3

Consider a linear regression model with an intercept and one quantitative predictor, x:

y = β0 + β1x+ ε. (4.4)

This is the simple linear regression model. In this case, we can compute that

β̂1 = σy
σx
ρxy, (4.5)

where ρxy is the sample correlation between x and y, σ2
x is the sample variance of x, and σ2

y is the
sample variance of y. Furthermore, we have

β̂0 = ȳ − β̂1x̄. (4.6)

4.4.2.1 ANOVA decomposition for simple linear regression

Figure 4.2 gives an interpretation of the ANOVA decomposition (4.2) in the case of the simple linear
regression model (4.4).

Figure 4.2: ANOVA decomposition for simple linear regression.
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4.4.2.2 Connection between R2 and correlation

There is a connection between R2 and correlation in simple linear regression.

Proposition 4.3. Let ρxy denote the sample correlation between x and y, and let R2
xy be the R2

from the simple linear regression (4.4). Then, we have:

R2 = ρ2
xy.

Proof. This fact is a consequence of Proposition 4.2.

4.4.2.3 Regression to the mean

Simple linear regression can be used to study the relationship between the same quantity across
time (or generations). For example, let x and y be the height of a parent and child. This example
motivated Sir Francis Galton to study linear regression in the first place. Alternatively, x and y can
be a student’s score on a standardized test in two consecutive years, or the number of games won
by a given sports team in two consecutive seasons. In this situation, it is reasonable to assume that
the sample standard deviations of x and y are the same (or to normalize these variables to achieve
this). In this case, equations (4.5) and (4.6) simplify to:

β̂0 = ȳ − ρxyx̄ and β̂1 = ρxy. (4.7)

It follows that:

|µ̂i − ȳ| = |β̂0 + β̂1xi − ȳ| = |ρxy(xi − x̄)| = |ρxy| · |xi − x̄|.

Since |ρxy| < 1 unless x and y are perfectly correlated (by the Cauchy-Schwarz inequality), this
means that:

|µ̂i − ȳ| < |xi − x̄| for each i. (4.8)

Therefore, we expect yi to be closer to its mean than xi is to its mean. This phenomenon is called
regression to the mean (and is in fact the origin of the term “regression”). Many mistakenly attribute
a causal mechanism to this phenomenon, when in reality it is simply a statistical artifact. For
example, suppose xi is the number of games a sports team won last season and yi is the number of
games it won this season. It is widely observed that teams with exceptional performance in a given
season suffer a “winner’s curse,” performing worse in the next season. The reason for the winner’s
curse is simple: teams perform exceptionally well due to a combination of skill and luck. While skill
stays roughly constant from year to year, the team which performed exceptionally well in a given
season is unlikely to get as lucky as it did the next season.



Chapter 5

Collinearity and adjustment

See also Agresti 2.2.4, 2.5.6, 2.5.7, 4.6.5

An important part of linear regression analysis is the dependence of the least squares coefficient for
a predictor (xj) on what other predictors are in the model (x-j). This relationship is dictated by
the extent to which x∗j is correlated with X∗,-j . To explore this phenomenon, it will be useful to
compare two different regressions:

• Regress y on just x∗j . Let the resulting coefficient for xj be β̂j .
• Regress y on all of X (i.e., on both x∗j and X∗,-j). Let the resulting coefficients for xj and
x-j be β̂j|-j and β̂-j|j , respectively.

5.1 Least squares estimates in the orthogonal case

The simplest case to analyze is when x∗j is orthogonal to X∗,-j in the sense that

xT∗jX∗,-j = 0. (5.1)

In this case, we can derive the least squares coefficient vector β̂ = (β̂j|-j , β̂-j|j) in the regression of y
on X:

(
β̂j|-j
β̂-j|j

)
= (XTX)−1XTy

=
(
xT∗jx∗j 0

0 XT
∗,-jX∗,-j

)−1(
xT∗j
XT
∗,-j

)
y

=
(

(xT∗jx∗j)−1xT∗jy

(XT
∗,-jX∗,-j)−1XT

∗,-jy

)

=
(
β̂j
β̂-j

)
.

(5.2)

Therefore, the least squares coefficient of xj is the same regardless of whether the other predictors
are included in the regression, i.e.

17
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β̂j|-j = β̂j . (5.3)

5.2 Least squares estimates via orthogonalization

The orthogonality assumption (5.1) is almost never satisfied in practice. Usually, x∗j has a nonzero
projection X∗,-jγ̂ onto C(X∗,-j):

x∗j = X∗,-jγ̂ + x⊥∗j ,

where x⊥∗j is the residual from regressing x∗j onto X∗,-j and is therefore orthogonal to C(X∗,-j). In
other words, x⊥∗j is the projection of x∗j onto the orthogonal complement of C(X∗,-j). Another way
of framing this relationship is that x⊥∗j is the result of adjusting x∗j for X∗,-j .

With this decomposition, let us change basis from (x∗j ,X∗,-j) to (x⊥∗j ,X∗,-j) by the process explored
in Homework 1 Question 1. Let us write:

y = x∗jβj|-j +X∗,-jβ-j|j + ε
⇐⇒ y = (X∗,-jγ̂ + x⊥∗j)βj|-j +X∗,-jβ-j|j + ε
⇐⇒ y = x⊥∗jβj|-j +X∗,-jβ′-j|j + ε.

What this means is that β̂j|-j , the least squares coefficient of x∗j in the regression of y on (x∗j ,X∗,-j),
is also the least squares coefficient of x⊥∗j in the regression of y on (x⊥∗j ,X∗,-j). However, since x⊥∗j
is orthogonal to X∗,-j by construction, we can use the result (5.2) to conclude that:

β̂j|-j is the least squares coefficient of x⊥∗j in the univariate regression of y on x⊥∗j .

We can solve this univariate regression explicitly to obtain:

β̂j|-j =
(x⊥∗j)Ty
‖x⊥∗j‖2

. (5.4)

5.3 Adjustment and partial correlation

Equivalently, letting β̂-j be the least squares estimate in the regression of y on X∗,-j (note that this
is not the same as β̂-j|j), we can write:

β̂j|-j =
(x⊥∗j)T (y −X∗,-jβ̂-j)

‖x⊥∗j‖2
≡

(x⊥∗j)Ty⊥

‖x⊥∗j‖2
.

We can interpret this result as follows:

Theorem 5.1. The linear regression coefficient β̂j|-j results from first adjusting y and x∗j for the
effects of all other variables, and then regressing the residuals from y onto the residuals from x∗j.
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In this sense, the least squares coefficient for a predictor in a multiple linear regression reflects the
effect of the predictor on the response after controlling for the effects of all other predictors.

Econometricians calls this the Frisch-Waugh-Lovell (FWL) theorem, to acknowledge economists
Ragnar Frisch and Frederick V. Waugh, who first derived the result in 1933, and Michael C. Lovell,
who later rediscovered and extended it in 1963. In the statistical literature, this fact was known at
least as early as 1907, when Yule documented it in his paper “On the Theory of Correlation for any
Number of Variables, treated by a New System of Notation.”

A related quantity is the partial correlation between x∗j and y after controlling for X∗,-j , defined as
the empirical correlation between x⊥∗j and y⊥:

ρ(x∗j ,y|X∗,-j) ≡
(x⊥∗j)T (y⊥)
‖x⊥∗j‖‖y⊥‖

.

We can then connect the least squares coefficient β̂j|-j to this partial correlation:

β̂j|-j =
(x⊥∗j)Ty⊥

‖x⊥∗j‖2
= ‖y

⊥‖
‖x⊥∗j‖

ρ(x∗j ,y|X∗,-j),

in a similar spirit to equation (4.5).

5.4 Effects of collinearity

Collinearity between a predictor xj and the other predictors tends to make the estimate β̂j|-j
unstable. Intuitively, this makes sense because it becomes harder to distinguish between the effects
of predictor xj and those of the other predictors on the response. To find the variance of β̂j|-j for a
model matrix X, we could in principle use the formula (3.3). However, this formula involves the
inverse of the matrix XTX, which is hard to reason about. Instead, we can employ the formula
(5.4) to calculate directly that:

Var[β̂j|-j ] = σ2

‖x⊥∗j‖2
. (5.5)

We see that the variance of β̂j|-j is inversely proportional to ‖x⊥∗j‖2. This means that the greater
the collinearity, the less of x∗j is left over after adjusting for X∗,-j , and the greater the variance of
β̂j|-j . To quantify the effect of this adjustment, suppose there were no other predictors other than
the intercept term. Then, we would have:

Var[β̂j|1] = σ2

‖x∗j − x̄j1n‖2
.

Therefore, we can rewrite the variance (5.5) as:

Var[β̂j|-j ] = ‖x∗j − x̄j1n‖2

‖x∗j −X∗,-jγ̂‖2
·Var[β̂j|1]

= 1
1−R2

j

·Var[β̂j|1] ≡ VIFj ·Var[β̂j|1],
(5.6)
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where R2
j is the R2 value when regressing x∗j on X∗,-j and VIF stands for variance inflation factor.

The higher R2
j , the more of the variance in x∗j is explained by other predictors, the higher the

variance in β̂j|-j .

5.5 Application: Average treatment effect estimation in causal
inference

Suppose we’d like to study the effect of an exposure or treatment (e.g. taking a blood pressure
medication) on a response y (e.g. blood pressure). In the Neyman-Rubin causal model, for a given
individual i we denote by yi(1) and yi(0) the outcomes that would have occurred had the individual
received the treatment and the control, respectively. These are called potential outcomes. Let
ti ∈ {0, 1} indicate whether the ith individual actually received treatment or control. Therefore, the
observed outcome is1

yobs
i = yi(ti). (5.7)

Based on the data {(ti, yobs
i )}i=1,...,n, the most basic goal is to estimate the

average treatment effect τ ≡ E[y(1)− y(0)],

where averaging is done over the population of individuals (often called units in causal inference). Of
course, we do not observe both yi(1) and yi(0) for any unit i. Additionally, usually in observational
studies we have confounding variables w2, . . . , wp−1: variables that influence both the treatment
assignment and the response (e.g. degree of health-seeking activity). It is important to control
for these confounders in order to get an unbiased estimate of the treatment effect. Suppose the
following linear model holds:

y(t) = β0 + β1t+ β2w2 + · · ·+ βp−1wp−1 + ε for t ∈ {0, 1}, where ε ⊥⊥ t.

This assumption can be broken down into the following statements:

• the treatment effect is constant across units;
• the response is a linear function of the treatment and observed confounders;
• there is no unmeasured confounding.

Under these assumptions, we find that

τ ≡ E[y(1)− y(0)] = β1.

Using the relationship (5.7), we find that

yobs = β0 + β1t+ β2w2 + · · ·+ βp−1wp−1 + ε for t ∈ {0, 1}.

In this case, the average treatment effect τ is identified as the coefficient β1 in the above regression,
i.e. τ = β1. In other words, the causal parameter coincides with a parameter of the statistical

1The Fisher information is the expectation of the Hessian, but for canonical links, the Hessian is non-random, so
the two coincide.
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model for the observed data. Therefore, the least squares estimate β̂1 is an unbiased estimate of the
average treatment effect.

In this context, we can interpret Theorem 5.1 as follows: To get an estimate of the causal effect of
an exposure on an outcome in the presence of confounders, first adjust both exposure and outcome
for the confounders, and then estimate the effect of the adjusted exposure on the adjusted outcome
via a univariate linear model. This is the essence of covariate adjustment in causal inference.

ï Note

Causal inference is a vast field, which lies mostly beyond the scope of STAT 9610; see STAT
9210 instead.



Chapter 6

R demo

See also Agresti 2.6, Dunn and Smyth 2.6

The R demo will be based on the ScotsRaces data from the Agresti textbook. Data description
(quoted from the textbook):

“Each year the Scottish Hill Runners Association publishes a list of hill races in Scotland
for the year. The table below shows data on the record time for some of the races (in
minutes). Explanatory variables listed are the distance of the race (in miles) and the
cumulative climb (in thousands of feet).”

We will also familiarize ourselves with several important functions from the tidyverse packages,
including the ggplot2 package for data visualization and dplyr package for data manipulation.

library(tidyverse) # for data import, manipulation, and plotting
library(GGally) # for ggpairs() function
library(ggrepel) # for geom_text_repel() function
library(car) # for vif() function
library(conflicted)
conflicts_prefer(dplyr::filter)

# read the data into R
scots_races <- read_tsv("data/ScotsRaces.dat") # read_tsv from readr for data import
scots_races

# A tibble: 35 x 4
race distance climb time
<chr> <dbl> <dbl> <dbl>

1 GreenmantleNewYearDash 2.5 0.65 16.1
2 Carnethy5HillRace 6 2.5 48.4
3 CraigDunainHillRace 6 0.9 33.6
4 BenRhaHillRace 7.5 0.8 45.6
5 BenLomondHillRace 8 3.07 62.3
6 GoatfellHillRace 8 2.87 73.2
7 BensofJuraFellRace 16 7.5 205.

22
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8 CairnpappleHillRace 6 0.8 36.4
9 ScoltyHillRace 5 0.8 29.8
10 TraprainLawRace 6 0.65 39.8
# i 25 more rows

6.1 Exploration

Before modeling our data, let’s first explore it.

# pairs plot

# Q: What are the typical ranges of the variables?
# Q: What are the relationships among the variables?

scots_races |>
select(-race) |> # select() from dplyr for selecting columns
ggpairs() # ggpairs() from GGally to create pairs plot

Corr:

0.652***

Corr:

0.943***

Corr:

0.833***
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# mile time versus distance

# Q: How does mile time vary with distance?
# Q: What races deviate from this trend?
# Q: How does climb play into it?
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# add mile time variable to scots_races
scots_races <- scots_races |>

mutate(mile_time = time / distance) # mutate() from dplyr to add column

# plot mile time versus distance
scots_races |>

ggplot(aes(x = distance, y = mile_time)) +
geom_point()
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# add climb information as point color
scots_races |>

ggplot(aes(x = distance, y = mile_time, colour = climb)) +
geom_point()
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# highlight extreme points
scots_races_extreme <- scots_races |>

filter(distance > 15 | mile_time > 9) # filter() from dplyr to subset rows

# plot mile time versus distance
scots_races |>

ggplot(aes(x = distance, y = mile_time, label = race, colour = climb)) +
geom_point() +
geom_text_repel(aes(label = race), data = scots_races_extreme)
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# clean up plot
scots_races |>

ggplot(aes(x = distance, y = mile_time, label = race, color = climb)) +
geom_point() +
geom_text_repel(aes(label = race), data = scots_races_extreme) +
labs(
x = "Distance (miles)",
y = "Mile Time (minutes per mile)",
color = "Climb\n(thousands of ft)"

)
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6.2 Linear model coefficient interpretation

Let’s fit some linear models and interpret the coefficients.

# Q: What is the effect of an extra mile of distance on time?

lm_fit <- lm(time ~ distance + climb, data = scots_races)
coef(lm_fit)

(Intercept) distance climb
-13.108551 6.350955 11.780133

# Linear model with interaction

# Q: What is the effect of an extra mile of distance on time
# for a run with low climb?

# Q: What is the effect of an extra mile of distance on time
# for a run with high climb?

lm_fit_int <- lm(time ~ distance * climb, data = scots_races)
coef(lm_fit_int)

(Intercept) distance climb distance:climb
-0.7671925 4.9622542 3.7132519 0.6598256
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scots_races |>
summarise(min_climb = min(climb), max_climb = max(climb))

# A tibble: 1 x 2
min_climb max_climb

<dbl> <dbl>
1 0.3 7.5

Let’s take a look at the regression summary for lm_fit:

lm_fit <- lm(time ~ distance + climb, data = scots_races)
summary(lm_fit)

Call:
lm(formula = time ~ distance + climb, data = scots_races)

Residuals:
Min 1Q Median 3Q Max

-16.654 -4.842 1.110 4.667 27.762

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -13.1086 2.5608 -5.119 1.41e-05 ***
distance 6.3510 0.3578 17.751 < 2e-16 ***
climb 11.7801 1.2206 9.651 5.37e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.734 on 32 degrees of freedom
Multiple R-squared: 0.9717, Adjusted R-squared: 0.97
F-statistic: 549.9 on 2 and 32 DF, p-value: < 2.2e-16

We get a coefficient of 6.35 with standard error 0.36 for distance, where the standard error is an
estimate of the quantity (5.5).

6.3 R2 and sum-of-squared decompositions.

We can extract the R2 from this fit by reading it off from the bottom of the summary, or by typing

summary(lm_fit)$r.squared

[1] 0.971725

We can construct sum-of-squares decompositions (4.1) using the anova function. This function
takes as arguments the partial model and the full model. For example, consider the partial model
time ~ distance.
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lm_fit_partial <- lm(time ~ distance, data = scots_races)
anova(lm_fit_partial, lm_fit)

Analysis of Variance Table

Model 1: time ~ distance
Model 2: time ~ distance + climb

Res.Df RSS Df Sum of Sq F Pr(>F)
1 33 9546.9
2 32 2441.3 1 7105.6 93.14 5.369e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We find that adding the predictor climb reduces the RSS by 7106, from 9547 to 2441. As another
example, we can compute the R2 by comparing the full model with the null model:

lm_fit_null <- lm(time ~ 1, data = scots_races)
anova(lm_fit_null, lm_fit)

Analysis of Variance Table

Model 1: time ~ 1
Model 2: time ~ distance + climb

Res.Df RSS Df Sum of Sq F Pr(>F)
1 34 86340
2 32 2441 2 83899 549.87 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Therefore, the R2 is 83899/86340 = 0.972, consistent with the above regression summary.

6.4 Adjustment and collinearity.

We can also test the adjustment formula (5.4) numerically. Let’s consider the coefficient of distance
in the regression time ~ distance + climb. We can obtain this coefficient by first regressing
climb out of distance and time:

lm_dist_on_climb <- lm(distance ~ climb, data = scots_races)
lm_time_on_climb <- lm(time ~ climb, data = scots_races)

scots_races_resid <- tibble(
dist_residuals = residuals(lm_dist_on_climb),
time_residuals = residuals(lm_time_on_climb)

)

lm_adjusted <- lm(time_residuals ~ dist_residuals - 1,
data = scots_races_resid
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)
summary(lm_adjusted)

Call:
lm(formula = time_residuals ~ dist_residuals - 1, data = scots_races_resid)

Residuals:
Min 1Q Median 3Q Max

-16.654 -4.842 1.110 4.667 27.762

Coefficients:
Estimate Std. Error t value Pr(>|t|)

dist_residuals 6.3510 0.3471 18.3 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.474 on 34 degrees of freedom
Multiple R-squared: 0.9078, Adjusted R-squared: 0.9051
F-statistic: 334.8 on 1 and 34 DF, p-value: < 2.2e-16

We find a coefficient of 6.35 with standard error 0.35, which matches that obtained in the original
regression.

We can get the partial correlation between distance and time by taking the empirical correlation
between the residuals. We can compare this quantity to the usual correlation.

scots_races_resid |>
summarise(cor(dist_residuals, time_residuals)) |>
pull()

[1] 0.9527881

scots_races |>
summarise(cor(distance, time)) |>
pull()

[1] 0.9430944

In this case, the two correlation quantities are similar.

To obtain the variance inflation factors defined in equation (5.6), we can use the vif function from
the car package:

vif(lm_fit)

distance climb
1.740812 1.740812

Why are these two VIF values the same?



Part II

Linear models: Inference
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We now understand the least squares estimator β̂ from geometric and algebraic points of view. In
Unit 2, we switch to a probabilistic perspective to derive inferential statements for linear models, in
the form of hypothesis tests and confidence intervals. In order to facilitate this, we will assume that
the error terms are normally distributed:

y = Xβ + ε, where ε ∼ N(0, σ2In).

We first establish some building blocks necessary for linear models inference, primarily related to
manipulating the normal distribution (Chapter 7). Then, we discuss univariate and multivariate
hypothesis testing in linear models (Chapter 8), as well as the power of these hypothesis tests
(Chapter 9). We then move on to the construction of confidence intervals and confidence regions
(Chapter 10). We conclude with a discussion of practical considerations (Chapter 11) and an R
demo (Chapter 12).



Chapter 7

Building blocks

See also Agresti 3.1.1, 3.1.2, 3.1.4

First we put in place some building blocks: The multivariate normal distribution (Section 7.1), the
distributions of linear regression estimates and residuals (Section 7.2), and estimation of the noise
variance σ2 (Section 7.3).

7.1 The multivariate normal distribution

Recall that a random vector w ∈ Rd has a multivariate normal distribution with mean µ and
covariance matrix Σ if it has probability density

p(w) = 1√
(2π)ddet(Σ)

exp
(
−1

2(w − µ)>Σ−1(w − µ)
)
.

It is also possible to define normal distributions in the case det(Σ) = 0. These distributions are
supported on subspaces of Rd, and do not have densities with respect to the Lebesgue measure.

These random vectors have lots of special properties, including:

• Linear transformation: If w ∼ N(µ,Σ), then Aw + b ∼ N(Aµ+ b,AΣA>).
• Independence: If (

w1
w2

)
∼ N

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ>12 Σ22

))
,

then w1 ⊥⊥ w2 if and only if Σ12 = 0.

An important distribution related to the multivariate normal is the χ2
d (chi-squared with d degrees

of freedom) distribution, defined as

χ2
d ≡

d∑
j=1

w2
j for w1, . . . , wd

i.i.d.∼ N(0, 1).

33
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7.2 The distributions of linear regression estimates and residuals

See also Dunn and Smyth 2.8.2

The most important distributional result in linear regression is that

β̂ ∼ N(β, σ2(X>X)−1). (7.1)

Indeed, by the linear transformation property of the multivariate normal distribution,y ∼
N(Xβ, σ2In) implies that

β̂ = (X>X)−1X>y

∼ N((X>X)−1X>Xβ, (X>X)−1X>σ2InX(X>X)−1)
= N(β, σ2(X>X)−1).

Next, let’s consider the joint distribution of µ̂ = Xβ̂ and ε̂ = y −Xβ̂. We have

(
µ̂
ε̂

)
=
(

Hy
(I −H)y

)

=
(

H
I −H

)
y

∼ N
((

H
I −H

)
Xβ,

(
H

I −H

)
· σ2I

(
H I −H

))

= N

((
Xβ
0

)
,

(
σ2H 0

0 σ2(I −H)

))
.

In other words,

µ̂ ∼ N(Xβ, σ2H) and ε̂ ∼ N(0, σ2(I −H)), with µ̂ ⊥⊥ ε̂. (7.2)

The statistical independence between µ̂ and ε̂ is a result of the fact that these two quantities are
projections of y onto two orthogonal subspaces: C(X) and C(X)⊥ (Figure 7.1).

Since β̂ is a deterministic function of µ̂ (in particular, β̂ = (X>X)−1X>µ̂), it also follows that

β̂ ⊥⊥ ε̂. (7.3)

7.3 Estimation of the noise variance σ2

See also Dunn and Smyth 2.4.2, 2.5.3

We can’t quite do inference for β based on the distributional result (7.1) because the noise variance
σ2 is unknown to us. Intuitively, since σ2 = E[ε2i ], we can get an estimate of σ2 by looking at the
quantity ‖ε̂‖2. To get the distribution of this quantity, we need the following lemma:
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Figure 7.1: The fitted vector µ̂ and the residual vector ε̂ are projections of y onto orthogonal
subspaces.

Lemma 7.1. Let w ∼ N(0,P ) for some projection matrix P . Then, ‖w‖2 ∼ χ2
d, where d =

trace(P ) is the dimension of the subspace onto which P projects.

Proof. Let P = UDU> be an eigenvalue decomposition of P , where U is orthogonal and D is a
diagonal matrix with Dii ∈ {0, 1}. We have w d= UDz for z ∼ N(0, In). Therefore,

‖w‖2 = ‖Dz‖2 =
∑

i:Dii=1
z2
i ∼ χ2

d, where d = |{i : Dii = 1}| = trace(D) = trace(P ).

Recall that I −H is a projection onto the (n− p)-dimensional space C(X)⊥, so by Lemma 7.1 and
equation (7.2), we have

‖ε̂‖2 ∼ σ2χ2
n−p. (7.4)

From this result, it follows that E[‖ε̂‖2] = σ2(n− p), so

σ̂2 ≡ 1
n− p

‖ε̂‖2 (7.5)

is an unbiased estimate for σ2. Why does the denominator need to be n− p rather than n for the
estimator above to be unbiased? The reason for this is that the residuals ε̂ are the projection of the
true noise vector ε ∈ Rn onto the (n− p)-dimensional subspace C(X)⊥ (Figure 7.2). To see this,
note that

ε̂ = (I −H)y = (I −H)(Xβ + ε) = (I −H)ε.

Therefore, the norm of the residual vector will be smaller than that of the noise vector, especially to
the extent that p is close to n.
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Figure 7.2: The residual vector ε̂ is the projection of the noise vector ε onto C(X)⊥.



Chapter 8

Hypothesis testing

See also Agresti 3.2.1, 3.2.2, 3.2.4, 3.2.8

Typically, two types of null hypotheses are tested in a regression setting: those involving one-
dimensional parameters and those involving multi-dimensional parameters. For example, consider
the null hypotheses H0 : βj = 0 and H0 : βS = 0 for S ⊆ {0, 1, . . . , p− 1}, respectively. We discuss
tests of these two kinds of hypotheses in Sections 8.1 and 8.2, and then discuss the power of these
tests in Chapter 9.

8.1 Testing a one-dimensional parameter

See also Dunn and Smyth 2.8.3

8.1.1 t-test for a single coefficient

The most common question to ask in a linear regression context is: Is the jth predictor associated
with the response when controlling for the other predictors? In the language of hypothesis testing,
this corresponds to the null hypothesis:

H0 : βj = 0 (8.1)

According to equation (7.1), we have β̂j ∼ N(0, σ2/s2
j ), where, as we learned in Chapter 1:

s2
j ≡ [(XTX)−1

jj ]−1 = ‖x⊥∗j‖2.

Therefore,

β̂j
σ/sj

∼ N(0, 1), (8.2)

and we are tempted to define a level α test of the null hypothesis (8.1) based on this normal
distribution. While this is infeasible since we don’t know σ2, we can substitute in the unbiased
estimate (7.5) derived in Section 7.3. Then,

37
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SE(β̂j) ≡
σ̂

sj

is the standard error of β̂j , which is an approximation to the standard deviation of β̂j . Dividing β̂j
by its standard error gives us the t-statistic:

tj ≡
β̂j

SE(β̂j)
= β̂j√

1
n−p‖ε̂‖2/sj

.

This statistic is pivotal, in the sense that it has the same distribution for any β such that βj = 0.
Indeed, we can rewrite it as:

tj =
β̂j
σ/sj√
σ−2‖ε̂‖2

n−p

.

Recalling the independence of β̂ and ε̂ (7.3), the scaled chi-square distribution of ‖ε̂‖2 (7.4), and
the standard normal distribution of β̂j

σ/sj
(8.2), we find that, under H0 : βj = 0,

tj ∼
N(0, 1)√

1
n−pχ

2
n−p

, with numerator and denominator independent.

This distribution is called the t distribution with n− p degrees of freedom and is denoted tn−p. This
paves the way for the two-sided t-test:

φt(X,y) = 1(|tj | > tn−p(1− α/2)),

where tn−p(1− α/2) denotes the 1− α/2 quantile of tn−p. Note that, by the law of large numbers,

1
n− p

χ2
n−p

P→ 1 as n− p→∞,

so for large n − p we have tj ∼ tn−p ≈ N(0, 1). Hence, the t-test is approximately equal to the
following z-test:

φt(X,y) ≈ φz(X,y) ≡ 1(|tj | > z(1− α/2)),

where z(1− α/2) is the 1− α/2 quantile of N(0, 1). The t-test can also be defined in a one-sided
fashion if power against one-sided alternatives is desired.
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8.1.2 Example: One-sample model

Consider the intercept-only linear regression model y = β0 + ε, and let usapply the t-test derived
above to test the null hypothesis H0 : β0 = 0. We have β̂0 = ȳ. Furthermore, we have

SE2(β̂0) = σ̂2

n
, where σ̂2 = 1

n− 1‖y − ȳ1n‖
2.

Hence, we obtain the t statistic:

t = β̂0

SE(β̂0)
=

√
nȳ√

1
n−1‖y − ȳ1n‖2

.

According to the theory above, this test statistic has a null distribution of tn−1.

8.1.3 Example: Two-sample model

Suppose we have x1 ∈ {0, 1}, in which case the linear regression y = β0 + β1x1 + ε becomes a
two-sample model. We can rewrite this model as:

yi ∼
{
N(β0, σ

2) for xi = 0;
N(β0 + β1, σ

2) for xi = 1.

It is often of interest to test the null hypothesis H0 : β1 = 0, i.e., that the two groups have equal
means. Let usdefine:

ȳ0 ≡
1
n0

∑
i:xi=0

yi, ȳ1 ≡
1
n1

∑
i:xi=1

yi, where n0 = |{i : xi = 0}| and n1 = |{i : xi = 1}|.

Then, we have seen before that β̂0 = ȳ0 and β̂1 = ȳ1 − ȳ0. We can compute that:

s2
1 ≡ ‖x⊥∗1‖2 = ‖x∗1 −

n1
n

1‖2 = n1
n2

0
n2 + n0

n2
1
n2 = n0n1

n
= 1

1
n0

+ 1
n1

and

σ̂2 = 1
n− 2

 ∑
i:xi=0

(yi − ȳ0)2 +
∑
i:xi=1

(yi − ȳ1)2

 .
Therefore, we arrive at a t-statistic of:

t =

√
1

1
n0

+ 1
n1

(ȳ1 − ȳ0)√
1

n−2

(∑
i:xi=0(yi − ȳ0)2 +∑

i:xi=1(yi − ȳ1)2
) .

Under the null hypothesis, this statistic has a distribution of tn−2.
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8.1.4 t-test for a contrast among coefficients

Given a vector c ∈ Rp, the quantity cTβ is sometimes called a contrast. For example, suppose
c = (1,−1, 0, . . . , 0). Then, cTβ = β1 − β2 is the difference in effects of the first and second
predictors. We are sometimes interested in testing whether such a contrast is equal to zero, i.e.,
H0 : cTβ = 0. While this hypothesis can involve two or more of the predictors, the parameter cTβ
is still one-dimensional, and therefore we can still apply a t-test. Going back to the distribution
β̂ ∼ N(β, σ2(XTX)−1), we find that:

cT β̂ ∼ N(cTβ, σ2cT (XTX)−1c). (8.3)

Therefore, under the null hypothesis that cTβ = 0, we can derive that:

cT β̂

σ̂
√
cT (XTX)−1c

∼ tn−p, (8.4)

giving us another t-test. Note that the t-tests described above can be recovered from this more
general formulation by setting c = ej , the indicator vector with the jth coordinate equal to 1 and
all others equal to zero.

8.2 Testing a multi-dimensional parameter

See also Dunn and Smyth 2.10.1

8.2.1 F -test for a group of coefficients

Now we move on to the case of testing a multi-dimensional parameter: H0 : βS = 0 for some
S ⊆ {0, 1, . . . , p− 1}. In other words, we would like to test

H0 : y = X∗,-Sβ-S + ε versus H1 : Xβ + ε.

To test this hypothesis, let us fit least squares coefficients β̂-S and β̂ for the partial model as well as
the full model. If the partial model fits well, then the residuals y −X∗,-Sβ̂-S from this model will
not be much larger than the residuals y −Xβ̂ from the full model. To quantify this intuition, let
us recall our analysis of variance decomposition from Chapter 1:

‖y −X∗,-Sβ̂-S‖2 = ‖Xβ̂ −X∗,-Sβ̂-S‖2 + ‖y −Xβ̂‖2.

Let us consider the ratio

‖y −X∗,-Sβ̂-S‖2 − ‖y −Xβ̂‖2

‖y −Xβ̂‖2
= ‖Xβ̂ −X∗,-Sβ̂-S‖2

‖y −Xβ̂‖2
, (8.5)

which is the relative increase in the residual sum of squares when going from the full model to the
partial model. To interpret this ratio geometrically, let us first examine the quantity Xβ̂−X∗,-Sβ̂-S
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from the numerator. Letting H and H-S be the projection matrices for the full and partial models,
we have

Xβ̂ −X∗,-Sβ̂-S = (H −H-S)y.

It turns out the the matrix H −H-S is a projection matrix:

Proposition 8.1. The matrix H −H-S is a projection matrix onto the space C(X⊥∗S) spanned by
the columns of X∗S adjusted for X∗,-S.

Figure 8.1 illustrates this relationship.

Figure 8.1: Geometry of the F -test. Orthogonality relationships stem from C(X∗,-S) ⊥ C(X⊥∗S) ⊥
C(X)⊥.

Proof. Let v ∈ C(X⊥∗S). Because v is orthogonal to C(X∗,-S) by construction, we have (H −
H-S)v = Hv − H-Sv = v − 0 = v. On the other hand, let v ∈ C(X∗,-S). Then, we have
(H −H-S)v = Hv −H-Sv = v − v = 0. Finally, let v ∈ C(X)⊥. Then, we have (H −H-S)v =
Hv −H-Sv = 0− 0 = 0. From these three observations, it follows that H −H-S is a projection
matrix onto C(X⊥∗S).

With this additional intuition, let us rewrite the ratio (8.5) as

‖Xβ̂ −X∗,-Sβ̂-S‖2

‖y −Xβ̂‖2
= ‖(H −H-S)y‖2
‖(I −H)y‖2 ,

revealing that the numerator and denominator are the squared norms of the projections of y onto
C(X⊥∗S) and C(X)⊥, respectively (Figure 8.1). The numerator is expected to be large if βS 6= 0, so
y will have a large projection onto C(X⊥∗S). We can view the denominator as a normalization term.

Now, let us derive the distribution of this test statistic under the null hypothesis. If βS = 0, then
we have y = X∗,-Sβ-S + ε, and

(H −H-S)X∗,-Sβ-S = (I −H)X∗,-Sβ-S = 0
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because X∗,-Sβ-S ∈ C(X∗,-S), and the latter space is orthogonal to both C(X⊥∗,S) and C(X)⊥. It
follows that

‖(H −H-S)y‖2
‖(I −H)y‖2 = ‖(H −H-S)ε‖2

‖(I −H)ε‖2 .

Since the projection matrices in the numerator and denominator project onto orthogonal subspaces,
we have (H −H-S)ε ⊥⊥ (I −H)ε, with ‖(H −H-S)ε‖2 ∼ σ2χ2

|S| and ‖(I −H)ε‖2 ∼ σ2χ2
n−p.

Renormalizing numerator and denominator to have expectation 1 under the null, we arrive at the
F -statistic

F ≡ (‖y −X∗,-Sβ̂-S‖2 − ‖y −Xβ̂‖2)/|S|
‖y −Xβ̂‖2/(n− p)

.

We have derived that under the null hypothesis,

F ∼
χ2
|S|/|S|

χ2
n−p/(n− p)

, with numerator and denominator independent.

This distribution is called the F -distribution with |S| and n− p degrees of freedom, and is denoted
F|S|,n−p. Denoting by F|S|,n−p(1− α) the 1− α quantile of this distribution, we arrive at the F -test

φF (X,y) ≡ 1(F > F|S|,n−p(1− α)).

Note that the F -test searches for deviations of βS from zero in all directions, and does not have
one-sided variants like the t-test.

8.2.2 Example: Testing for any significant coefficients except the intercept

Suppose x∗,0 = 1n is an intercept term. Then, consider the null hypothesis H0 : β1 = · · · = βp−1 = 0.
In other words, the null hypothesis is the intercept-only model, and the alternative hypothesis is the
regression model with an intercept and p− 1 additional predictors. In this case, S = {1, . . . , p− 1}
and -S = {0}. The corresponding F statistic is

F ≡ (‖y − ȳ1‖2 − ‖y −Xβ̂‖2)/(p− 1)
‖y −Xβ̂‖2/(n− p)

= ‖Xβ̂ − ȳ1‖
2/(p− 1)

‖y −Xβ̂‖2/(n− p)

with null distribution Fp−1,n−p.

8.2.3 Example: Testing for equality of group means in C-groups model

As a further special case, consider the C-groups model from Chapter 1. Recall the ANOVA
decomposition

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ȳc(i) − ȳ)2 +
n∑
i=1

(yi − ȳc(i))2 = SSB + SSW.
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The F -statistic in this case becomes

F =
∑n
i=1(ȳc(i) − ȳ)2/(C − 1)∑n
i=1(yi − ȳc(i))2/(n− C) = SSB/(C − 1)

SSW/(n− C) ,

with null distribution FC−1,n−C .



Chapter 9

Power

See also Agresti 3.2.5

So far we’ve been focused on finding the null distributions of various test statistics in order to
construct tests with Type-I error control. Now let’s shift our attention to examining the power of
these tests.

9.1 The power of a t-test

9.1.1 Power formula

Consider the t-test of the null hypothesis H0 : βj = 0. Suppose that, in reality, βj 6= 0. What
is the probability the t-test will reject the null hypothesis? To answer this question, recall that
β̂j ∼ N(βj , σ2/s2

j ). Therefore,

t = β̂j

SE(β̂j)
= βj

SE(β̂j)
+ β̂j − βj

SE(β̂j)
·∼ N

(
βjsj
σ

, 1
)

(9.1)

Here we have made the approximation SE(β̂j) ≈ σ
sj
, which is pretty good when n − p is large.

Therefore, the power of the two-sided t-test is

E[φt] = P[φt = 1] ≈ P[|t| > z1−α/2] ≈ P
[∣∣∣∣N (

βjsj
σ

, 1
)∣∣∣∣ > z1−α/2

]

Therefore, the quantity βjsj
σ determines the power of the t-test. To understand sj a little better, let’s

assume that the rows xi∗ of the model matrix are drawn i.i.d. from some distribution (x0, . . . , xp−1).
Then we have roughly

x⊥∗j ≈ x∗j − E[x∗j |X∗,-j ],

so x⊥ij ≈ xij − E[xij |xi,-j ]. Hence,

s2
j ≡ ‖x⊥∗j‖2 ≈ nE[(xj − E[xj |x-j ])2] = nE[Var[xj |x-j ]].
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Hence, we can rewrite the alternative distribution (9.1) as

t
·∼ N

βj · √n ·
√
E[Var[xj |x-j ]]
σ

, 1

 (9.2)

We can see clearly now how the power of the t-test varies with the effect size βj , the sample size n,
the degree of collinearity E[Var[xj |x-j ]], and the noise standard deviation σ.

9.1.2 Power of the t-test when predictors are added to the model

As we know, the outcome of a regression is a function of the predictors that are used. What happens
to the t-test p-value for H0 : βj = 0 when a predictor is added to the model? To keep things simple,
let’s consider the

true underlying model: y = β0x0 + β1x1 + ε.

Let’s consider the power of testing H0 : β0 = 0 in the regression models

model 0: y = β0x0 + ε versus model 1: y = β0x0 + β1x1 + ε.

There are four cases based on cor[x∗0,x∗1] and the value of β1 in the true model:

1. cor[x∗0,x∗1] 6= 0 and β1 6= 0. In this case, in model 0 we have omitted an important variable
that is correlated with x∗0. Therefore, the meaning of β0 differs between model 0 and model
1, so it may not be meaningful to compare the p-values arising from these two models.

2. cor[x∗0,x∗1] 6= 0 and β1 = 0. In this case, we are adding a null predictor that is correlated with
x∗0. Recall that the power of the t-test hinges on the quantity βj ·

√
n·
√

E[Var[xj |x-j ]]
σ . Adding

the predictor x1 has the effect of reducing the conditional predictor variance E[Var[xj |x-j ]],
therefore reducing the power. This is a case of predictor competition.

3. cor[x∗0,x∗1] = 0 and β1 6= 0. In this case, we are adding a non-null predictor that is
orthogonal to x∗0. While the conditional predictor variance E[Var[xj |x-j ]] remains the same
due to orthogonality, the residual variance σ2 is reduced when going from model 0 to model
1.1 Therefore, in this case adding x1 to the model increases the power for testing H0 : β0 = 0.
This is a case of predictor collaboration.

4. cor[x∗0,x∗1] = 0 and β1 = 0. In this case, we are adding an orthogonal null variable, which
does not change the conditional predictor variance or the residual variance, and therefore
keeps the power of the test the same.

In conclusion, adding a predictor can either increase or decrease the power of a t-test.

9.1.3 Application: Adjusting for covariates in randomized experiments.

Case 3 above, i.e., cor[x∗0,x∗1] = 0 and β1 6= 0, arises in the context of randomized experiments
in causal inference. In this case, y represents the outcome, x0 represents the treatment, and x1
represents a covariate. Because the treatment is randomized, there is no correlation between x0

1If β1 is small enough, then the unbiased estimate of the residual variance may actually increase due to a reduction
in the residual degrees of freedom in the denominator.
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and x1. Therefore, it is not necessary to adjust for x1 in order to get an unbiased estimate of the
average treatment effect. However, it is known that adjusting for covariates can lead to more precise
estimates of the treatment effect due to the phenomenon discussed in case 3 above. This point is
also related to the discussion in Chapter 1 about the fact that if x0 and x1 are orthogonal, then the
least squares coefficient β̂0 is the same regardless of whether x1 is included in the model. As we see
here, either including x1 in the model or adjusting y for x1 is necessary to get better power.

9.2 The power of an F -test

Now let’s turn our attention to computing the power of the F -test. We have

F = ‖Xβ̂ −X∗,-Sβ̂−S‖
2/|S|

‖y −Xβ̂‖2/|n− p|

= ‖(H −H-S)y‖2/|S|
‖(I −H)y‖2/|n− p|

≈ ‖(H −H-S)y‖2/|S|
σ2 .

To calculate the distribution of the numerator, we need to introduce the notion of a non-central
chi-squared random variable.

Definition 9.1. For some vector µ ∈ Rd, suppose z ∼ N(µ, Id). Then, we define the distribution
of ‖z‖2 as the noncentral chi-square random variable with d degrees of freedom and noncentrality
parameter ‖µ‖2 and denote this distribution by χ2

d(‖µ‖2).

The following proposition states two useful facts about noncentral chi-square distributions.

Proposition 9.1. The following two relations hold:

1. The mean of a χ2
d(‖µ‖2) random variable is d+ ‖µ‖2.

2. If P is a projection matrix and y = µ+ ε, then 1
σ2 ‖Py‖2 ∼ χ2

tr(P )

(
1
σ2 ‖Pµ‖2

)
.

It therefore follows that

F ≈ ‖(H −H-S)y‖2/|S|
σ2

∼ 1
|S|

χ2
|S|

(
‖(H −H-S)Xβ‖2

)
= 1
|S|

χ2
|S|

( 1
σ2 ‖X

⊥
∗,SβS‖2

)
.

Assuming as before that the rows of X are samples from a joint distribution, we can write

‖X⊥∗,SβS‖2 ≈ nβTSE[Var[xS |x-S ]]βS .

Therefore,
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F
·∼ 1
|S|

χ2
|S|

(
nβTSE[Var[xS |x-S ]]βS

σ2

)

which is similar in spirit to equation (9.2). To get a better sense of what this relationship implies for
the power of the F -test, we find from the first part of Proposition 9.1 that, under the alternative,

E[F ] ≈ E
[

1
|S|

χ2
|S|

(
nβTSE[Var[xS |x-S ]]βS

σ2

)]

= 1 + nβTSE[Var[xS |x-S ]]βS
|S| · σ2 .

By contrast, under the null, the mean of the F -statistic is 1. The |S| term in the denominator above
suggests that testing larger sets of variables explaining the same amount of variation in y will hurt
power. The test must accommodate for the fact that larger sets of variables will explain more of the
variability in y even under the null hypothesis.
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Confidence intervals

See also Agresti 3.3, Dunn and Smyth 2.8.4-2.8.5

In addition to hypothesis testing, we often want to construct confidence intervals for various
quantities. As with hypotheses testing, we will split the target quantities into two categories:
univariate and multivariate.

10.1 Confidence intervals for univariate quantities

10.1.1 Confidence interval for a coefficient

Under H0 : βj = 0, we showed that β̂j
σ̂/sj
∼ tn−p. The same argument shows that for arbitrary βj ,

we have

β̂j − βj
σ̂/sj

∼ tn−p.

We can use this relationship to construct a confidence interval for βj as follows:

1− α
= P[|tn−p| ≤ tn−p(1− α/2)]

= P

[∣∣∣∣∣ β̂j − βj

σ̂/sj

∣∣∣∣∣ ≤ tn−p(1− α/2)
]

= P
[
βj ∈

[
β̂j −

σ̂

sj
tn−p(1− α/2), β̂j + σ̂

sj
tn−p(1− α/2)

]]
≡ P

[
βj ∈

[
β̂j − SE(β̂j)tn−p(1− α/2), β̂j + SE(β̂j)tn−p(1− α/2)

]]
≡ P[βj ∈ CI(βj)].

(10.1)

The confidence interval CI(βj) defined above therefore has 1− α coverage. Because of the duality
between confidence intervals and hypothesis tests, the factors contributing to powerful tests
(Chapter 9) also lead to shorter confidence intervals.
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10.1.2 Confidence interval for E[y|x̃]
Suppose now that we have a new predictor vector x̃ ∈ Rp. The mean of the response for this
predictor vector is E[y|x̃] = x̃Tβ. Plugging in x̃ for c in the relation (8.3), we obtain

x̃T β̂ − x̃Tβ

σ̂
√
x̃T (XTX)−1x̃

∼ tn−p.

From this, we can derive that

CI(x̃Tβ) ≡ x̃T β̂ ± SE(x̃T β̂) · tn−p(1− α/2)

≡ x̃T β̂ ± σ̂
√
x̃T (XTX)−1x̃ · tn−p(1− α/2)

(10.2)

is a 1 − α confidence interval for x̃Tβ. Consider the special case of the simple linear regression
y = β0 + β1x+ ε. Then, confidence intervals for β0 + β1x̃ for each x̃ ∈ R sweep out confidence bands
for the regression line.
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We see that the width of the confidence band appears to be the smallest around the center of the
data. To verify this, let x̄ be the mean of the observed x values. Centering x leads to the following
reparameterized regression:

y = β′0 + β1(x− x̄) + ε.

The width of the confidence interval (10.2) is proportional to the square root of x̃T (XTX)−1x̃.
Applying this to the centered vector x̃ = (1, x̃− x̄)T and the centered matrix X = (1,x− x̄1), we
get

x̃T (XTX)−1x̃ = (1, x̃− x̄)
(
n 0
0 ∑

i(xi − x̄)2

)−1( 1
x̃− x̄

)

= 1
n

+ (x̃− x̄)2∑
i(xi − x̄)2 .

We see that this quantity is minimized at x̃ = x̄, as expected.
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10.1.3 Prediction interval for y|x̃

Instead of creating a confidence interval for a point on the regression line, we may want to create a
confidence interval for a new draw ỹ of y for x = x̃, i.e., a prediction interval. Note that

ỹ − x̃T β̂ = x̃Tβ + ε̃− x̃T β̂
= ε̃+ x̃T (β − β̂)
∼ N(0, σ2 + σ2x̃T (XTX)−1x̃).

Therefore, we have

ỹ − x̃T β̂

σ̂
√

1 + x̃T (XTX)−1x̃
∼ tn−p,

which leads to the 1− α prediction interval

x̃T β̂ ± σ̂
√

1 + x̃T (XTX)−1x̃ · tn−p(1− α/2)

≡ x̃T β̂ ± SE(x̃T β̂) · tn−p(1− α/2).
(10.3)

Remark: Prediction with confidence in machine learning.

The entire field of supervised machine learning is focused on accurately predicting ỹ from x̃, usually
using nonlinear functions f̂(x̃). In addition to providing a guess for ỹ, it is often useful to quantify
the uncertainty in this guess. In other words, it is useful to come up with a prediction interval (or
prediction region) PI(ỹ) such that

P[ỹ ∈ PI(ỹ) | x̃] ≥ 1− α. (10.4)

For example, in safety-critical applications of machine learning like self-driving cars, it is essential
to have confidence in predictions. Unfortunately, beyond the realm of linear regression, it is hard to
come up with intervals satisfying (10.4) for each point x̃. However, the emerging field of conformal
inference provides guarantees on average over possible values of x:

P[y ∈ PI(y)] = E[P[y ∈ PI(y) | x]] ≥ 1− α. (10.5)

Remarkably, these guarantees place no assumption on the machine learning method used and require
only that the data points on which f̂ is trained are exchangeable (an even weaker condition than
i.i.d.). While the unconditional guarantee (10.5) is weaker than the conditional one (10.4), it can be
obtained for modern machine learning and deep learning models.
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10.2 Confidence regions and simultaneous intervals

10.2.1 Confidence regions

A multivariate generalization of a confidence interval is a confidence region. We will discuss the
construction of a confidence region for β in the linear regression model. A 1− α confidence region
for β is a set CR(β) ⊆ Rp such that

P[β ∈ CR(β)] ≥ 1− α.

To construct such a region, note first that

1
p‖Xβ̂ −Xβ‖

2

σ̂2 ∼ Fp,n−p.

Hence, we have

P[‖Xβ̂ −Xβ‖2 ≤ pσ̂2Fp,n−p(1− α)] ≥ 1− α.

Hence, the region

CR(β) ≡ {β : (β̂ − β)TXTX(β̂ − β) ≤ pσ̂2Fp,n−p(1− α)} ⊆ Rp

is a 1− α confidence region for the vector β. It’s easy to see that CR(β) is an ellipse centered at β̂.

Figure 10.1: Confidence region for β.

10.2.2 Simultaneous intervals

As a byproduct of confidence regions for the multivariate β, we can construct simultaneous intervals
for univariate quantities. To motivate the definition of simultaneous intervals, note that the intervals
in Section 10.1 have pointwise coverage. For example, we have

P[βj ∈ CI(βj)] ≥ 1− α for each j.



Page 52

or

P[x̃Tβ ∈ CI(x̃Tβ)] ≥ 1− α for each x̃.

Sometimes a stronger simultaneous coverage guarantee is desired, e.g.,

P[βj ∈ CIsim(βj) for each j] ≥ 1− α (10.6)

or

P[x̃Tβ ∈ CIsim(x̃Tβ) for each x̃] ≥ 1− α. (10.7)

To obtain such simultaneous confidence intervals, we can leverage the fact that the confidence region
CR(β) is for the entire vector β. We can therefore define

CIsim(βj) ≡ {βj : β ∈ CR(β)}.

Then, these confidence intervals will satisfy the simultaneous coverage property (10.6). We will
obtain a more explicit expression for CIsim(βj) shortly.

Figure 10.2: Confidence region and simultaneous and pointwise confidence intervals.

Similarly, we may define the simultaneous confidence regions

CIsim(x̃Tβ) ≡ {x̃Tβ : β ∈ CR(β)}.

Let us find a more explicit expression for the latter interval. For notational ease, let us define
Σ ≡XTX. Then, note that if β ∈ CR(β), then by the Cauchy-Schwarz inequality we have
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(x̃T β̂ − x̃Tβ)2 = ‖x̃T (β̂ − β)‖2

= ‖(Σ−1/2x̃)TΣ1/2(β̂ − β)‖2

≤ ‖(Σ−1/2x̃)‖2‖Σ1/2(β̂ − β)‖2

≤ x̃TΣ−1x̃pσ̂2Fp,n−p(1− α),

i.e.,

x̃Tβ ∈ x̃T β̂ ± σ̂
√
x̃T (XTX)−1x̃

√
pFp,n−p(1− α)

≡ x̃T β̂ ± SE(x̃T β̂) ·
√
pFp,n−p(1− α).

(10.8)

Defining the above interval as CIsim(x̃Tβ) gives us the simultaneous coverage property (10.7).
These simultaneous intervals are called Working-Hotelling intervals. Comparing to equation
(10.3), we see that the simultaneous interval is the pointwise interval expanded by a factor of√
pFp,n−p(1− α)/tn−p(1− α/2). In the case of simple linear regression, we can obtain simultaneous

confidence bands (Working-Hotelling bands) for the regression line.
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Pointwise Simultaneous

Specializing to the case x̃ ≡ ej , we get an expression for the simultaneous intervals for each
coordinate:

CIsim(βj) ≡ β̂j ± σ̂
√

(XTX)−1
jj

√
pFp,n−p(1− α)

≡ SE(β̂j)
√
pFp,n−p(1− α),

(10.9)

which again is the pointwise interval (10.1) expanded by a factor of
√
pFp,n−p(1− α)/tn−p(1−α/2).
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Practical considerations

11.1 Practical versus statistical significance

You can have a statistically significant effect that is not practically significant. The hypothesis testing
framework is most useful in the case when the signal-to-noise ratio is relatively small. Otherwise,
constructing a confidence interval for the effect size is a more meaningful approach.

11.2 Correlation versus causation, and Simpson’s paradox

Causation can be elusive for several reasons. One is reverse causation, where it is not clear whether
X causes Y or Y causes X. Another is confounding, where there is a third variable Z that causes
both X and Y . For the latter reason, linear regression coefficients can be sensitive to the choice of
other predictors to include and can be misleading if you omit important variables from the regression.
A special and sometimes overlooked case of this is Simpson’s paradox, where an important discrete
variable is omitted. Consider the example in Figure 11.1. Sometimes this discrete variable may
seem benign, such as the year in which the data was collected. Such variables might or might not
be measured.

11.3 Dealing with correlated predictors

It depends on the goal. If we’re trying to tease apart effects of correlated predictors, then we have
no choice but to proceed as usual despite lower power. Otherwise, we can test predictors in groups
via the F -test to get higher power at the cost of lower “resolution.” Sometimes, it is recommended
to simply remove predictors that are correlated with other predictors. This practice, however, is
somewhat arbitrary and not recommended.

11.4 Model selection

We need to ask ourselves: Why do we want to do model selection? It can either be for prediction
purposes or for inferential purposes. If it is for prediction purposes, then we can apply cross-
validation to select a model and we don’t need to think very hard about statistical significance.
If it is for inference, then we need to be more careful. There are various classical model selection
criteria (e.g., AIC, BIC), but it is not entirely clear what statistical guarantee we are getting for the
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Figure 11.1: An example of Simpson’s paradox (source: Wikipedia).
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resulting models. A simpler approach is to apply a t-test for each variable in the model, apply a
multiple testing correction to the resulting p-values, and report the set of significant variables and
the associated guarantee. Re-fitting the linear regression after model selection leads us into some
dicey inferential territory due to selection bias. This is the subject of ongoing research, and the jury
is still out on the best way of doing this.
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R demo

See also Agresti 3.4.1, 3.4.3, Dunn and Smyth 2.6, 2.14

Let’s put into practice what we’ve learned in this chapter by analyzing data about house prices.

library(tidyverse)
library(GGally)

houses_data <- read_tsv("data/Houses.dat")
houses_data

# A tibble: 100 x 7
case taxes beds baths new price size
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 3104 4 2 0 280. 2048
2 2 1173 2 1 0 146. 912
3 3 3076 4 2 0 238. 1654
4 4 1608 3 2 0 200 2068
5 5 1454 3 3 0 160. 1477
6 6 2997 3 2 1 500. 3153
7 7 4054 3 2 0 266. 1355
8 8 3002 3 2 1 290. 2075
9 9 6627 5 4 0 587 3990
10 10 320 3 2 0 70 1160
# i 90 more rows

12.1 Exploration

Let’s first do a bit of exploration:

# visualize distribution of housing prices, superimposing the mean
houses_data |>

ggplot(aes(x = price)) +
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geom_histogram(color = "black", bins = 30) +
geom_vline(aes(xintercept = mean(price)),
colour = "red",
linetype = "dashed"

)
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# compare median and mean price
houses_data |>

summarise(
mean_price = mean(price),
median_price = median(price)

)

# A tibble: 1 x 2
mean_price median_price

<dbl> <dbl>
1 155. 133.

# create a pairs plot of continuous variables
houses_data |>

select(price, size, taxes) |>
ggpairs()
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Corr:
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# see how price relates to beds
houses_data |>

ggplot(aes(x = factor(beds), y = price)) +
geom_boxplot(fill = "dodgerblue")
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# see how price relates to baths
houses_data |>
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ggplot(aes(x = factor(baths), y = price)) +
geom_boxplot(fill = "dodgerblue")
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# see how price relates to new
houses_data |>

ggplot(aes(x = factor(new), y = price)) +
geom_boxplot(fill = "dodgerblue")
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12.2 Hypothesis testing

Let’s run a linear regression and interpret the summary. But first, we must decide whether to model
beds/baths as categorical or continuous? We should probably model these as categorical, given the
potentially nonlinear trend observed in the box plots.
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lm_fit <- lm(price ~ factor(beds) + factor(baths) + new + size,
data = houses_data

)
summary(lm_fit)

Call:
lm(formula = price ~ factor(beds) + factor(baths) + new + size,

data = houses_data)

Residuals:
Min 1Q Median 3Q Max

-179.306 -32.037 -2.899 19.115 152.718

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -19.26307 18.01344 -1.069 0.287730
factor(beds)3 -16.46430 15.04669 -1.094 0.276749
factor(beds)4 -12.48561 21.12357 -0.591 0.555936
factor(beds)5 -101.14581 55.83607 -1.811 0.073366 .
factor(baths)2 2.39872 15.44014 0.155 0.876885
factor(baths)3 -0.70410 26.45512 -0.027 0.978825
factor(baths)4 273.20079 83.65764 3.266 0.001540 **
new 66.94940 18.50445 3.618 0.000487 ***
size 0.10882 0.01234 8.822 7.46e-14 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 51.17 on 91 degrees of freedom
Multiple R-squared: 0.7653, Adjusted R-squared: 0.7446
F-statistic: 37.08 on 8 and 91 DF, p-value: < 2.2e-16

We can read off the test statistics and p-values for each variable from the regression summary, as
well as for the F -test against the constant model from the bottom of the summary.

Let’s use an F -test to assess whether the categorical baths variable is important.

lm_fit_partial <- lm(price ~ factor(beds) + new + size,
data = houses_data

)
anova(lm_fit_partial, lm_fit)

Analysis of Variance Table

Model 1: price ~ factor(beds) + new + size
Model 2: price ~ factor(beds) + factor(baths) + new + size

Res.Df RSS Df Sum of Sq F Pr(>F)
1 94 273722
2 91 238289 3 35433 4.5104 0.005374 **
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What if we had not coded baths as a factor?

lm_fit_not_factor <- lm(price ~ factor(beds) + baths + new + size,
data = houses_data

)
anova(lm_fit_partial, lm_fit_not_factor)

Analysis of Variance Table

Model 1: price ~ factor(beds) + new + size
Model 2: price ~ factor(beds) + baths + new + size

Res.Df RSS Df Sum of Sq F Pr(>F)
1 94 273722
2 93 273628 1 94.33 0.0321 0.8583

If we want to test for the equality of means across groups of a categorical predictor, without adjusting
for other variables, we can use the ANOVA F -test. There are several equivalent ways of doing so:

# just use the summary function
lm_fit_baths <- lm(price ~ factor(baths), data = houses_data)
summary(lm_fit_baths)

Call:
lm(formula = price ~ factor(baths), data = houses_data)

Residuals:
Min 1Q Median 3Q Max

-146.44 -45.88 -7.89 22.22 352.01

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.21 19.51 4.624 1.17e-05 ***
factor(baths)2 57.68 21.72 2.656 0.00927 **
factor(baths)3 174.52 31.13 5.607 1.97e-07 ***
factor(baths)4 496.79 82.77 6.002 3.45e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 80.44 on 96 degrees of freedom
Multiple R-squared: 0.3881, Adjusted R-squared: 0.369
F-statistic: 20.3 on 3 and 96 DF, p-value: 2.865e-10

# use the anova function as before
lm_fit_const <- lm(price ~ 1, data = houses_data)
anova(lm_fit_const, lm_fit_baths)
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Analysis of Variance Table

Model 1: price ~ 1
Model 2: price ~ factor(baths)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 99 1015150
2 96 621130 3 394020 20.299 2.865e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# use the aov function
aov_fit <- aov(price ~ factor(baths), data = houses_data)
summary(aov_fit)

Df Sum Sq Mean Sq F value Pr(>F)
factor(baths) 3 394020 131340 20.3 2.86e-10 ***
Residuals 96 621130 6470
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also use an F -test to test for the presence of an interaction with a multi-class categorical
predictor.

lm_fit_interaction <- lm(price ~ size * factor(beds), data = houses_data)
summary(lm_fit_interaction)

Call:
lm(formula = price ~ size * factor(beds), data = houses_data)

Residuals:
Min 1Q Median 3Q Max

-232.643 -25.938 -0.942 19.172 155.517

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.12619 48.22282 1.039 0.301310
size 0.05037 0.04210 1.197 0.234565
factor(beds)3 -103.85734 52.20373 -1.989 0.049620 *
factor(beds)4 -143.90213 67.31359 -2.138 0.035185 *
factor(beds)5 -507.88205 144.10191 -3.524 0.000663 ***
size:factor(beds)3 0.07589 0.04368 1.738 0.085633 .
size:factor(beds)4 0.09234 0.04704 1.963 0.052638 .
size:factor(beds)5 0.21147 0.05957 3.550 0.000609 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 53.35 on 92 degrees of freedom
Multiple R-squared: 0.7421, Adjusted R-squared: 0.7225
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F-statistic: 37.81 on 7 and 92 DF, p-value: < 2.2e-16

lm_fit_size <- lm(price ~ size + factor(beds), data = houses_data)
anova(lm_fit_size, lm_fit_interaction)

Analysis of Variance Table

Model 1: price ~ size + factor(beds)
Model 2: price ~ size * factor(beds)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 95 300953
2 92 261832 3 39121 4.5819 0.004905 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrasts of regression coefficients can be tested using the glht() function from the multcomp
package.

12.3 Confidence intervals

We can construct pointwise confidence intervals for each coefficient using confint():

confint(lm_fit)

2.5 % 97.5 %
(Intercept) -55.04455734 16.5184161
factor(beds)3 -46.35270691 13.4241025
factor(beds)4 -54.44498235 29.4737689
factor(beds)5 -212.05730801 9.7656895
factor(baths)2 -28.27123130 33.0686620
factor(baths)3 -53.25394742 51.8457394
factor(baths)4 107.02516067 439.3764122
new 30.19258305 103.7062177
size 0.08431972 0.1333284

To create simultaneous confidence intervals, we need a somewhat more manual approach. We start
with the coefficients and standard errors:

coef(summary(lm_fit))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.2630706 18.01344052 -1.06937209 2.877304e-01
factor(beds)3 -16.4643022 15.04669172 -1.09421410 2.767490e-01
factor(beds)4 -12.4856067 21.12356937 -0.59107467 5.559357e-01
factor(beds)5 -101.1458092 55.83607248 -1.81147786 7.336590e-02
factor(baths)2 2.3987153 15.44014266 0.15535578 8.768849e-01
factor(baths)3 -0.7041040 26.45511871 -0.02661504 9.788251e-01
factor(baths)4 273.2007864 83.65764044 3.26570036 1.540093e-03
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new 66.9494004 18.50445029 3.61801617 4.872475e-04
size 0.1088241 0.01233621 8.82151661 7.460814e-14

Then we add lower and upper confidence interval endpoints based on the formula (10.9):

alpha <- 0.05
n <- nrow(houses_data)
p <- length(coef(lm_fit))
f_quantile <- qf(1 - alpha, df1 = p, df2 = n - p)
coef(summary(lm_fit)) |>

as.data.frame() |>
rownames_to_column(var = "Variable") |>
select(Variable, Estimate, `Std. Error`) |>
mutate(
CI_lower = Estimate - `Std. Error` * sqrt(p * f_quantile),
CI_upper = Estimate + `Std. Error` * sqrt(p * f_quantile)

)

Variable Estimate Std. Error CI_lower CI_upper
1 (Intercept) -19.2630706 18.01344052 -95.38917389 56.8630327
2 factor(beds)3 -16.4643022 15.04669172 -80.05271036 47.1241059
3 factor(beds)4 -12.4856067 21.12356937 -101.75533960 76.7841262
4 factor(beds)5 -101.1458092 55.83607248 -337.11309238 134.8214739
5 factor(baths)2 2.3987153 15.44014266 -62.85244495 67.6498756
6 factor(baths)3 -0.7041040 26.45511871 -112.50535022 111.0971422
7 factor(baths)4 273.2007864 83.65764044 -80.34245635 626.7440292
8 new 66.9494004 18.50445029 -11.25174573 145.1505465
9 size 0.1088241 0.01233621 0.05669037 0.1609578

Note that the simultaneous intervals are substantially larger.

To construct pointwise confidence intervals for the fit, we can use the predict() function:

predict(lm_fit, newdata = houses_data, interval = "confidence") |> head()

fit lwr upr
1 193.52176 165.22213 221.8214
2 79.98449 51.91430 108.0547
3 150.64507 122.28397 179.0062
4 191.71955 172.27396 211.1651
5 124.30169 81.34488 167.2585
6 376.74308 333.44559 420.0406

To get pointwise prediction intervals, we switch "confidence" to "prediction":

predict(lm_fit, newdata = houses_data, interval = "prediction") |> head()

fit lwr upr
1 193.52176 88.00908 299.0344
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2 79.98449 -25.46688 185.4359
3 150.64507 45.11589 256.1743
4 191.71955 88.22951 295.2096
5 124.30169 13.95069 234.6527
6 376.74308 266.25901 487.2271

To construct simultaneous confidence intervals for the fit or predictions, we again need a slightly
more manual approach. We call predict() again, but this time asking it for the standard errors
rather than the confidence intervals:

predictions <- predict(lm_fit, newdata = houses_data, se.fit = TRUE)
head(predictions$fit)

1 2 3 4 5 6
193.52176 79.98449 150.64507 191.71955 124.30169 376.74308

head(predictions$se.fit)

1 2 3 4 5 6
14.246855 14.131352 14.277804 9.789472 21.625709 21.797212

Now we can construct the simultaneous confidence intervals via the formula (10.8):

f_quantile <- qf(1 - alpha, df1 = p, df2 = n - p)
tibble(

lower = predictions$fit - predictions$se.fit * sqrt(p * f_quantile),
upper = predictions$fit + predictions$se.fit * sqrt(p * f_quantile)

)

# A tibble: 100 x 2
lower upper
<dbl> <dbl>

1 133. 254.
2 20.3 140.
3 90.3 211.
4 150. 233.
5 32.9 216.
6 285. 469.
7 82.8 145.
8 188. 331.
9 371. 803.
10 57.3 128.
# i 90 more rows

In the case of simple linear regression, we can plot these pointwise and simultaneous confidence
intervals as bands:
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# to produce confidence intervals for fits in general, use the predict() function
n <- nrow(houses_data)
p <- 2
alpha <- 0.05
lm_fit <- lm(price ~ size, data = houses_data)
predictions <- predict(lm_fit, se.fit = TRUE)
t_quantile <- qt(1 - alpha / 2, df = n - p)
f_quantile <- qf(1 - alpha, df1 = p, df2 = n - p)
houses_data |>

mutate(
fit = predictions$fit,
se = predictions$se.fit,
ptwise_width = t_quantile * se,
simultaneous_width = sqrt(p * f_quantile) * se

) |>
ggplot(aes(x = size)) +
geom_point(aes(y = price)) +
geom_line(aes(y = fit), color = "blue") +
geom_line(aes(y = fit + ptwise_width, color = "Pointwise")) +
geom_line(aes(y = fit - ptwise_width, color = "Pointwise")) +
geom_line(aes(y = fit + simultaneous_width, color = "Simultaneous")) +
geom_line(aes(y = fit - simultaneous_width, color = "Simultaneous")) +
theme(legend.title = element_blank(), legend.position = "bottom")
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12.4 Predictor competition and collaboration

Let’s look at the power of detecting the association between price and beds. We can imagine that
beds and baths are correlated:
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houses_data |>
ggplot(aes(x = beds, y = baths)) +
geom_count()

1

2

3

4

2 3 4 5
beds

ba
th

s
n

10

20

30

40

50

So let’s see how significant beds is, with and without baths in the model:

lm_fit_only_beds <- lm(price ~ factor(beds), data = houses_data)
summary(lm_fit_only_beds)

Call:
lm(formula = price ~ factor(beds), data = houses_data)

Residuals:
Min 1Q Median 3Q Max

-234.35 -50.63 -15.69 24.56 365.86

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 105.94 21.48 4.931 3.43e-06 ***
factor(beds)3 44.69 24.47 1.827 0.070849 .
factor(beds)4 105.70 32.35 3.268 0.001504 **
factor(beds)5 246.71 69.62 3.544 0.000611 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 93.65 on 96 degrees of freedom
Multiple R-squared: 0.1706, Adjusted R-squared: 0.1447
F-statistic: 6.583 on 3 and 96 DF, p-value: 0.0004294
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lm_fit_only_baths <- lm(price ~ factor(baths), data = houses_data)
lm_fit_beds_baths <- lm(price ~ factor(beds) + factor(baths), data = houses_data)
anova(lm_fit_only_baths, lm_fit_beds_baths)

Analysis of Variance Table

Model 1: price ~ factor(baths)
Model 2: price ~ factor(beds) + factor(baths)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 96 621130
2 93 572436 3 48693 2.637 0.05424 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that the significance of beds dropped by two orders of magnitude. This is an example of
predictor competition.

On the other hand, note that the variable new is not very correlated with beds:

lm_fit <- lm(new ~ beds, data = houses_data)
summary(lm_fit)

Call:
lm(formula = new ~ beds, data = houses_data)

Residuals:
Min 1Q Median 3Q Max

-0.15762 -0.11000 -0.11000 -0.08619 0.91381

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03857 0.14950 0.258 0.797
beds 0.02381 0.04871 0.489 0.626

Residual standard error: 0.3157 on 98 degrees of freedom
Multiple R-squared: 0.002432, Adjusted R-squared: -0.007747
F-statistic: 0.2389 on 1 and 98 DF, p-value: 0.6261

but we know it has a substantial impact on price. Let’s look at the significance of the test that
beds is not important when we add new to the model.

lm_fit_only_new <- lm(price ~ new, data = houses_data)
lm_fit_beds_new <- lm(price ~ new + factor(beds), data = houses_data)
anova(lm_fit_only_new, lm_fit_beds_new)

Analysis of Variance Table

Model 1: price ~ new
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Model 2: price ~ new + factor(beds)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 98 787781
2 95 619845 3 167936 8.5795 4.251e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Adding new to the model made the p-value more significant by a factor of 10. This is an example of
predictor collaboration.



Part III

Linear models: Misspecification
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In our discussion of linear model inference in Unit 2, we assumed the normal linear model throughout:

y = Xβ + ε, where ε ∼ N(0, σ2In).

In this unit, we will discuss what happens when this model is misspecified:

• Non-normality (Section 13.1): ε ∼ (0, σ2In) but not N(0, σ2In).
• Heteroskedastic and/or correlated errors (Section 13.2): ε ∼ (0,Σ), where Σ 6= σ2I.

This includes the case of heteroskedastic errors (Σ is diagonal but not a constant multiple of
the identity) and correlated errors (Σ is not diagonal).

• Model bias (Section 13.3): It is not the case that E[y] = Xβ for some β ∈ Rp.
• Outliers (Section 13.4): For one or more i, it is not the case that yi ∼ N(xTi∗β, σ2).

For each type of misspecification, we will discuss its origins, consequences, detection, and
fixes (Section 13.1-Section 13.4). We then discuss methodological approaches to address model
misspecification, including asymptotic robust inference methods (Chapter 14), the bootstrap
(Chapter 15), the permutation test (Chapter 16), and robust estimation (Chapter 17). We conclude
with an R demo (Chapter 18).



Chapter 13

Overview

13.1 Non-normality

13.1.1 Origin

Non-normality occurs when the distribution of y|x is either skewed or has heavier tails than the
normal distribution. This may happen, for example, if there is some discreteness in y.

13.1.2 Consequences

Non-normality is the most benign of linear model misspecifications. While we derived linear model
inferences under the normality assumption, all the corresponding statements hold asymptotically
without this assumption. Recall Homework 2 Question 1, or take for example the simpler problem
of estimating the mean µ of a distribution based on n samples from it: We can test H0 : µ = 0
and build a confidence interval for µ even if the underlying distribution is not normal. So if n is
relatively large and p is relatively small, you need not worry too much. If n is small and the errors
are highly skewed or heavy-tailed, we may have issues with incorrect standard errors.

13.1.3 Detection

Non-normality is a property of the error terms εi. We do not observe these directly, but we can
approximate them using the residuals:

ε̂i = yi − xTi∗β̂.

Recall from equation (7.2) that Var[ε̂] = σ2(I −H). Letting hi be the ith diagonal entry of H, it
follows that ε̂i ∼ (0, σ2(1− hi)). The standardized residuals are defined as:

ri = ε̂i

σ̂
√

1− hi
. (13.1)

Under normality, we would expect ri ·∼ N(0, 1). We can therefore assess normality by producing a
histogram or normal QQ-plot of these residuals.
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13.1.4 Fixes

As mentioned above, non-normality is not necessarily a problem that needs to be fixed, except in
small samples. In small samples (but not too small!), we can apply the residual bootstrap for robust
standard error computation and/or robust hypothesis testing.

13.2 Heteroskedastic and correlated errors

13.2.1 Origin

Heteroskedasticity can arise as follows. Suppose each observation yi is actually the average of ni
underlying observations, each with variance σ2. Then, the variance of yi is σ2/ni, which will differ
across i if ni differ. It is also common to see the variance of a distribution increase as the mean
increases (as in Figure 13.1), whereas for a linear model the variance of y stays constant as the
mean of y varies.

Correlated errors can arise when observations have group, spatial, or temporal structure. Below
are examples:

• Group/clustered structure: We have 10 samples (xi∗, yi) each from 100 schools.
• Spatial structure: We have 100 soil samples from a 10× 10 grid on a 1km × 1km field.
• Temporal structure: We have 366 COVID positivity rate measurements, one from each

day of the year 2020.

The issue arises because there are common sources of variation among samples that are in the same
group or spatially/temporally close to one another.

13.2.2 Consequences

All normal linear model inference from Unit 2 hinges on the assumption that ε ∼ N(0, σ2I). If
instead of σ2I we have Var[ε] = Σ for some matrix Σ, then we may suffer two consequences:
wrong inference (in terms of confidence interval coverage and hypothesis test levels) and inefficient
inference (in terms of confidence interval width and hypothesis test power). One way of seeing
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the consequence of heteroskedasticity for confidence interval coverage is the width of prediction
intervals; see Figure 13.1 for intuition.

Figure 13.1: Heteroskedasticity in a simple bivariate linear model (image source: source).

Like with heteroskedastic errors, correlated errors can cause invalid standard errors. In particular,
positively correlated errors typically cause standard errors to be smaller than they should be, leading
to inflated Type-I error rates. For intuition, consider estimating the mean of a distribution based
on n samples. Consider the cases when these samples are independent, compared to when they are
perfectly correlated. The effective sample size in the former case is n and in the latter case is 1.

13.2.3 Detection

Heteroskedasticity is usually assessed via the residual plot (Figure 13.2). In this plot, the standardized
residuals ri (13.1) are plotted against the fitted values µ̂i. In the absence of heteroskedasticity, the
spread of the points around the origin should be roughly constant as a function of µ̂ (Figure 13.2(a)).
A common sign of heteroskedasticity is the fan shape where variance increases as a function of µ̂
(Figure 13.2(c)).

Residual plots once again come in handy to detect correlated errors. Instead of plotting the
standardized residuals against the fitted values, we should plot the residuals against whatever
variables we think might explain variation in the response that the regression does not account
for. In the presence of group structures, we can plot residuals versus group (via a boxplot); in the
presence of spatial or temporal structure, we can plot residuals as a function of space or time. If the
residuals show a dependency on these variables, this suggests they are correlated. This dependency
can be checked via formal means as well, e.g., via an ANOVA test in the case of groups or by
estimating the autocorrelation function in the case of temporal structure.

13.3 Model bias

13.3.1 Origin

Model bias arises when predictors are left out of the regression model:

http://www3.wabash.edu/econometrics/EconometricsBook/chap19.htm
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Figure 13.2: Residuals plotted against linear-model fitted values that reflect (a) model adequacy,
(b) quadratic rather than linear relationship, and (c) nonconstant variance (image source: Agresti
Figure 2.8).

assumed model: y = Xβ + ε; actual model: y = Xβ +Zγ + ε. (13.2)

We may not always know about or measure all the variables that impact a response y.

Model bias can also arise when the predictors do not impact the response on the linear scale. For
example:

assumed model: E[y] = Xβ; actual model: g(E[y]) = Xβ. (13.3)

13.3.2 Consequences

In cases of model bias, the parameters β in the assumed linear model lose their meanings. The
least squares estimate β̂ will be a biased estimate for the parameter we probably actually want to
estimate. In the case (13.2) when predictors are left out of the regression model, these additional
predictors Z will act as confounders and create bias in β̂ as an estimate of the β parameters in the
true model, unless XTZ = 0. As discussed in Unit 2, this can lead to misleading conclusions.

13.3.3 Detection

Similarly to the detection of correlated errors, we can try to identify model bias by plotting the
standardized residuals against predictors that may have been left out of the model. A good place
to start is to plot standardized residuals against the predictors X (one at a time) that are in the
model, since nonlinear transformations of these might have been left out. In this case, you would
see something like Figure 13.2(b).

It is possible to formally test for model bias in cases when we have repeated observations of the
response for each value of the predictor vector. In particular, suppose that xi∗ = xc for c = c(i)
and predictor vectors x1, . . . ,xC ∈ Rp. Then, consider testing the following hypothesis:

H0 : yi = xTi∗β + εi versus H1 : yi = βc(i) + εi.
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The model under H0 (the linear model) is nested in the model for H1 (the saturated model), and
we can test this hypothesis using an F -test called the lack of fit F -test.

13.3.4 Overview of fixes

To fix model bias in the case (13.2), ideally we would identify the missing predictors Z and add
them to the regression model. This may not always be feasible or possible. To fix model bias in the
case (13.3), it is sometimes advocated to find a transformation g (e.g., a square root or a logarithm)
of y such that E[g(y)] = Xβ. However, a better solution is to use a generalized linear model, which
we will discuss starting in Unit 4.

13.4 Outliers

13.4.1 Origin

Outliers often arise due to measurement or data entry errors. An observation can be an outlier in x,
in y, or both.

13.4.2 Consequences

An outlier can have the effect of biasing the estimate β̂. This occurs when an observation has
outlying x as well as outlying y.

13.4.3 Detection

There are a few measures associated with an observation that can be used to detect outliers, though
none are perfect. The first quantity is called the leverage, defined as:

leverage of observation i ≡ corr2(yi, µ̂i).

This quantity measures the extent to which the fitted value µ̂i is sensitive to the (noise in the)
observation yi. It can be derived that:

leverage of observation i = hi,

which is the ith diagonal element of the hat matrix H. This is related to the fact that Var[ε̂i] =
σ2(1− hi). The larger the leverage, the smaller the variance of the residual, so the closer the line
passes to the ith observation. The leverage of an observation is larger to the extent that xi∗ is far
from x̄. For example, in the bivariate linear model yi = β0 + β1xi + εi,

hi = 1
n

+ (xi − x̄)2∑n
i′=1(xi′ − x̄)2 .

Note that the average of the leverages is:

1
n

n∑
i=1

hi = 1
n
trace(H) = p

n
.
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An observation’s leverage is considered large if it is significantly larger than this, e.g., three times
larger.

Note that the leverage is not a function of yi, so a high-leverage point might or might not be an
outlier in yi and therefore might or might not have a strong impact on the regression. To assess
more directly whether an observation is influential, we can compare the least squares fits with and
without that observation. To this end, we define the Cook’s distance:

Di =
∑n
i′=1(µ̂i′ − µ̂-i

i′)2

pσ̂2 ,

where µ̂-i
i′ = xTi∗β̂

-i and β̂-i is the least squares estimate based on (X-i,∗,y-i). An observation is
considered influential if it has Cook’s distance greater than one.

There is a connection between Cook’s distance and leverage:

Di =
(

yi − µ̂i
σ̂
√

1− hii

)2
· hii
p(1− hii)

.

We recognize the first term as the standardized residual; therefore a point is influential if its residual
and leverage are large.

Note that Cook’s distance may not successfully identify outliers. For example, if there are groups of
outliers, then they will mask each other in the calculation of Cook’s distance.

13.4.4 Overview of fixes

If outliers can be detected, then the fix is to remove them from the regression. But, we need to be
careful. Definitively determining whether observations are outliers can be tricky. Outlier detection
can even be used as a way to commit fraud with data, as now-defunct blood testing start-up
Theranos is alleged to have done. As an alternative to removing outliers, we can fit estimators β̂
that are less sensitive to outliers; see Chapter 17.

https://arstechnica.com/tech-policy/2021/09/cherry-picking-data-was-routine-practice-at-theranos-former-lab-worker-says/


Chapter 14

Asymptotic methods

In this section, we present a set of asymptotic methods for fixing heteroskedastic or correlated errors,
in the setting that

y ∼ N(Xβ,Σ). (14.1)

These methods are based on estimating Σ; they use this estimate to either (i) build a better estimate
β̂ (Section 14.1) or (ii) build better standard errors for the least squares estimate (Section 14.2). We
discuss these two approaches in turn, followed by how to carry out inference based on the resulting
estimates (Section 14.3).

14.1 Methods that build a better estimate of β

14.1.1 Generalized least squares

Let us premultiply y by Σ−1/2 to obtain

Σ−1/2y ∼ N(Σ−1/2Xβ, I).

Viewing Σ−1/2y as the new response and Σ−1/2X as the new model matrix, we can apply the usual
least squares estimator to obtain

β̃GLS = (XTΣ−1X)−1XTΣ−1y. (14.2)

This is the generalized least squares estimate for the model (14.1), and has the following distribution:

β̃GLS ∼ N(β, (XTΣ−1X)−1).

By the Gauss-Markov theorem, this is the best linear unbiased estimate of β, recovering efficiency.
We would like to carry out inference based on the latter distributional result analogously to how we
did so in Chapter 2, as long as we can estimate Σ accurately enough.

14.1.2 Models for Σ

This class of methods typically postulates a parametric form for Σ, denoted by Σ(ν), where ν
is a vector of parameters, and then proceed by estimating ν. Below are a few examples of such
parametric models:
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• Heteroskedastic errors. In this case, we can assume that Σ = diag(σ2
1, . . . , σ

2
n), where

log σ2
i = xTi ν.

• Clustered errors. Suppose that each observation i falls into a cluster c(i). Then, we can
postulate a random effects model

yi = xTi β + δc(i) + τi, where δc
i.i.d.∼ N(0, σ2

δ ), τi
i.i.d.∼ N(0, σ2

τ ).
This imposes a block-diagonal structure on Σ, where each block corresponds to a cluster.

• Temporal errors. If the observations have a temporal structure, we might impose an AR(1)
model on the residuals:

ε1 = τ1; εi = ρεi−1 + τi for i > 1, where τi
i.i.d.∼ N(0, σ2).

This imposes an approximately banded structure on Σ, with Σi1i2 = σ2ρ|i1−i2|.

ï Random versus fixed effects models

Random effects models deal address correlated errors but not with model bias. The difference
is that, in the case of correlated errors, the errors may be correlated with themselves but not
with the regressors. In the case of model bias, the errors may be correlated with the regressors.
To address model bias in the presence of clustering structure, fixed effects are necessary. Fixed
effects models decrease model bias at the cost of increased variance, because more parameters
must be estimated. Random effects models are more susceptible to model bias but have lower
variance.

14.1.3 Estimating Σ

Given a parametric model for Σ, we can estimate ν by one of two approaches. The first approach,
typical in statistics, is to maximize the likelihood as a function of (β,ν). The second approach,
typical in econometrics, is to estimate β using OLS, and then to fit ν based on the residuals. This
gives us the estimate Σ̂ = Σ̂(ν̂).

14.1.4 Inferring about β based on the estimate Σ̂

With an estimate Σ̂ in hand, we can use it to build a (hopefully) better estimate of β, using the
following plug-in version of the GLS estimate (14.2):

β̂FGLS ≡ (XT Σ̂−1X)−1XT Σ̂−1y. (14.3)

This is called the feasible generalized least squares estimate (FGLS) in econometrics, to contrast it
with the infeasible estimate that assumes Σ is known exactly. Then, we can carry out inference
based on the approximation distribution

β̂FGLS ·∼ N(β, (XT Σ̂−1X)−1). (14.4)

14.2 Methods that build better standard errors for OLS estimate

Sometimes we don’t feel comfortable enough with our estimate of Σ to actually modify the least
squares estimator. So we want to keep using our least squares estimator, but still get standard
errors robust to heteroskedastic or correlated errors. There are several strategies to computing valid
standard errors in such situations.
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14.2.1 Sandwich standard errors

Let’s say that y = Xβ + ε, where ε ∼ N(0,Σ). Then, we can compute that the covariance matrix
of the least squares estimate β̂ is

Var[β̂] = (XTX)−1(XTΣX)(XTX)−1. (14.5)

Note that this expression reduces to the usual σ2(XTX)−1 when Σ = σ2I. It is called the sandwich
variance because we have the (XTΣX) term sandwiched between two (XTX)−1 terms. If we have
some estimate Σ̂ of the covariance matrix, we can construct

V̂ar[β̂] ≡ (XTX)−1(XT Σ̂X)(XTX)−1. (14.6)

Different estimates Σ̂ are appropriate in different situations. Below we consider three of the most
common choices: one for heteroskedasticity (due to Huber-White), one for group-correlated errors
(due to Liang-Zeger), and one for temporally-correlated errors (due to Newey-West).

14.2.2 Specific instances of sandwich standard errors

Huber-White standard errors

Suppose Σ = diag(σ2
1, . . . , σ

2
n) for some variances σ2

1, . . . , σ
2
n > 0. The Huber-White sandwich

estimator is defined by (14.5), with

Σ̂ ≡ diag(σ̂2
1, . . . , σ̂

2
n), where σ̂2

i = (yi − xTi∗β̂)2.

While each estimator σ̂2
i is very poor, Huber and White’s insight was that the resulting estimate of

the (averaged) quantity XT Σ̂X is not bad. To see why, assume that (xi∗, yi) i.i.d.∼ F for some joint
distribution F . Then, we have that

1
n

(XT Σ̂X −XTΣX) = 1
n

n∑
i=1

(σ̂2
i − σ2

i )xi∗xTi∗

= 1
n

n∑
i=1

((εi + xTi∗(β − β̂))2 − σ2
i )xi∗xTi∗

= 1
n

n∑
i=1

ε2ixi∗x
T
i∗ + op(1)

p→ 0.

The last step holds by the law of large numbers, since E[ε2ixi∗xTi∗] = 0 for each i.

Liang-Zeger standard errors

Next, let’s consider the case of group-correlated errors. Suppose that the observations are clustered,
with correlated errors among clusters but not between clusters. Suppose there are C clusters of
observations, with the ith observation belonging to cluster c(i) ∈ {1, . . . , C}. Suppose for the
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sake of simplicity that the observations are ordered so that clusters are contiguous. Let ε̂c be
the vector of residuals in cluster c, so that ε̂ = (ε̂1, . . . , ε̂C). Then, the true covariance matrix is
Σ = block-diag(Σ1, . . . ,ΣC) for some positive definite Σ1, . . . ,ΣC . The Liang-Zeger estimator is
then defined by (14.5), with

Σ̂ ≡ block-diag(Σ̂1, . . . , Σ̂C), where Σ̂c ≡ ε̂cε̂Tc .

Note that the Liang-Zeger estimator is a generalization of the Huber-White estimator. Its justification
is similar as well: while each Σ̂c is a poor estimator, the resulting estimate of the (averaged) quantity
XT Σ̂X is not bad as long as the number of clusters is large. Liang-Zeger standard errors are
referred to as “clustered standard errors” in the econometrics community. It is recommended to
employ clustered standard errors even when using cluster-level fixed effects, in order to capture
remaining within-cluster correlations.

Newey-West standard errors

Finally, consider the case when our observations i have a temporal structure, and we believe there
to be nontrivial correlations between εi1 and εi2 for |i1 − i2| ≤ L. Then, a natural extension of
the Huber-White estimate of Σ is Σ̂i1,i2 = ε̂i1ε̂i2 for each pair (i1, i2) such that |i1 − i2| ≤ L.
Unfortunately, this is not guaranteed to give a positive semidefinite matrix Σ̂. Therefore, Newey
and West proposed a slightly modified estimator:

Σ̂i1,i2 = max
(

0, 1− |i1− i2|
L+ 1

)
ε̂i1ε̂i2.

This estimator shrinks the off-diagonal estimates ε̂i1ε̂i2 based on their distance to the diagonal. It
can be shown that this modification restores positive semidefiniteness of Σ̂.

14.3 Inference based on an approximate covariance matrix

Whether based on the relations (14.4) or (14.6), we end up with an estimator β̂ and an approximate
covariance matrix Ω̂, so that

β̂
·∼ N(β, Ω̂).

This allows us to construct confidence intervals and hypothesis tests for each βj , by simply replacing
SE(βj) with

√
Ω̂jj . For contrasts and prediction intervals, we can use the fact that cTβ ·∼

N(cTβ, cT Ω̂c), so that CE(cTβ) =
√
cT Ω̂c. It is less obvious how to use the matrix Ω̂ to test the

hypothesis H0 : βS = 0. To this end, we can use a Wald test (we will discuss Wald tests in more
detail in Unit 4). The Wald test statistic is

W = β̂TS (Ω̂S,S)−1β̂S ,

which is asymptotically distributed as χ2
|S| under the null hypothesis. This is based on the following

result.

Lemma 14.1. Let Z ∼ N(0,Σ) be a d-dimensional random vector, with Σ invertible. Then,

ZTΣ−1Z ∼ χ2
d.
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This gives us the test

φWald(X,y) = I
{
β̂TS (Ω̂S,S)−1β̂S > χ2

|S|(1− α)
}
. (14.7)

As it turns out, under the usual linear model assumptions, this test is asymptotically equivalent to
the usual F -test for the hypothesis H0 : βS = 0.

Proposition 14.1. The homoskedasticity-based F -statistic for the null hypothesis H0 : βS = 0 can
be expressed as

F = β̂TS (Ω̂S,S)−1β̂S/|S|,
allowing us to rewrite the Wald test as

φWald(X,y) = I
{
F > 1

|S|χ
2
|S|(1− α)

}
.

Since F|S|,n−p
d→ 1
|S|χ

2
|S| as n→∞, it follows that the F -test and the Wald test are asymptotically

equivalent.

Proof. Recall from Chapter 8 that the F -test statistic can be expressed as

F = ‖(H −H-S)y‖2/|S|
‖(I −H)y‖2/(n− p) = ‖(H −H-S)y‖2/|S|

σ̂2 ,

where H −H-S is the projection matrix onto C(X⊥∗,S). Now, let β̂ be the least squares estimate in
the regression of y on X. Then, we have

(H −H-S)y = (H −H-S)(X∗,Sβ̂S +X∗,-Sβ̂-S + ε̂)
= (H −H-S)X∗,Sβ̂S
= X⊥∗,Sβ̂S .

Therefore, we have
‖(H −H-S)y‖2 = β̂TS (X⊥∗,S)TX⊥∗,Sβ̂S .

Next, we claim that
(X⊥∗,S)TX⊥∗,S = {[(XTX)−1]S,S ]}−1. (14.8)

To see this, note that
β̂S ∼ N(βS , σ2[(XTX)−1]S,S). (14.9)

On the other hand, since β̂S can be obtained by regressing y onto X⊥∗,S , we also have that

β̂S ∼ N(βS , σ2[(X⊥∗,S)TX⊥∗,S ]−1). (14.10)

Combining statements (14.9) and (14.10), we verify the claimed relationship (14.8). Therefore, we
have

F = β̂TS {[(XTX)−1]S,S}−1β̂S/|S|
σ̂2 .

Recalling that Ω̂ = σ̂2(XTX)−1, we find that

F = β̂TS

(
Ω̂S,S

)−1
β̂S/|S|,

as desired.



Chapter 15

The bootstrap

15.1 Introduction to the bootstrap

The bootstrap can be used for either confidence interval construction or hypothesis testing, with
confidence interval construction being a much more common application. For this reason, we will
focus on confidence interval construction in remainder of this section as well as in Section 15.2 and
Section 15.3. We will discuss bootstrap hypothesis testing in Section 15.4.

15.1.1 Usual inference paradigm

We typically carry out linear model inference for βj by approximating the sampling distribution of
β̂j , or a derivative thereof, such as the t-statistic. Under the standard linear model assumptions, we
have

g(β̂,β) ≡ β̂j − βj ∼ N(0, σ2[(XTX)−1]jj) (15.1)

and
g(β̂,β) ≡ β̂j − βj

s.e.(β̂j)
∼ tn−p. (15.2)

Here, g(β̂,β) denotes a derivative quantity, whose distribution is the basis for inference. If the lower
and upper quantiles Qα/2[g(β̂,β)] and Q1−α/2[g(β̂,β)] are known, then we can construct a (1− α)
confidence interval for βj as

CI(βj) ≡ {βj : g(β̂,β) ∈ [Qα/2[g(β̂,β)],Q1−α/2[g(β̂,β)]]}. (15.3)

Under model misspecification, the distributions on the right-hand sides of equations (15.1) and
(15.2) may no longer be valid.

15.1.2 Bootstrap inference paradigm

The bootstrap is an approach to more robust inference that obtains such sampling distributions by a
technique known as resampling. The core idea of the bootstrap is to use the data to construct an
approximation to the data-generating distribution and then to approximate the sampling distribution
of any statistic by simulating from this approximate data-generating distribution. In more detail,
the bootstrap paradigm is as follows:
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Bootstrap paradigm to build confidence intervals for βj
1. Use the data (X,y) to get an approximation F̂ for the data distribution F .
2. For each b = 1, . . . , B,

i) Sample a bootstrap dataset (X(b),y(b)) ∼ F̂ ;
ii) Fit the least squares estimate β̂(b) based on (X(b),y(b));
iii) Construct a derivative quantity g(β̂(b), β̂), such as β̂(b)

j − β̂j .
3. Extract the empirical α/2 and 1 − α/2 quantiles of the derivative quantity g(β̂(b), β̂),

denoted Qα/2[g(β̂(b), β̂)] and Q1−α/2[g(β̂(b), β̂)].
4. Construct a (1− α) confidence interval for βj by analogy with (15.3):

CIboot(βj)
≡ {βj : g(β̂,β) ∈ [Qα/2[g(β̂(b), β̂)],Q1−α/2[g(β̂(b), β̂)]]}.

(15.4)

This approach, pioneered by Brad Efron in 1979, obviates the need for stringent assumptions and
mathematical derivations to obtain limiting distributions, replacing these with added computation.
The bootstrap is extremely flexible and can be adapted to apply in a variety of settings. Furthermore,
bootstrap methods are typically more accurate than their asymptotic counterparts in finite samples.
While the justification of the bootstrap is still asymptotic (requiring F̂ to approach F ), the rate of
convergence is often “second-order” O(1/n) rather than the usual “first-order” O(1/

√
n) of standard

asymptotic inference. This faster second-order convergence gives the bootstrap an advantage in
finite samples.

15.1.3 Overview of bootstrap flavors

The bootstrap comes in a variety of flavors, dictated by the mechanism by which the data distribution
F is learned (e.g. the parametric, residual, or pairs bootstraps), and the derivative quantity g(·, ·)
on which inference is based (e.g. the empirical bootstrap and the bootstrap-t). These two sets of
flavors can be mixed and matched.

15.2 Derivative quantities on which to base inference

15.2.1 The empirical bootstrap

The empirical bootstrap, the most common choice, is based on the quantity

g(β̂,β) = β̂j − βj ,

We can derive that if

P
[
β̂j − βj ∈

[
Qα/2[β̂(b)

j − β̂j ],Q1−α/2[β̂(b)
j − β̂j ]

]] ·
≥ 1− α,

then
P
[
βj ∈

[
β̂j −Q1−α/2[β̂(b)

j − β̂j ], β̂j −Qα/2[β̂(b)
j − β̂j ]

]] ·
≥ 1− α.

For this reason, we define

CIboot(βj) ≡
[
β̂j −Q1−α/2[β̂(b)

j − β̂j ], β̂j −Qα/2[β̂(b)
j − β̂j ]

]
.
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* The percentile bootstrap

A commonly used alternative to the empirical bootstrap is the percentile bootstrap, defined by

CIboot(βj) ≡
[
Qα/2[β̂(b)

j ],Q1−α/2[β̂(b)
j ]
]
. (15.5)

Here, the resampling distribution of β̂j is used directly to construct the confidence interval.
However, this approach does not fall within the bootstrap paradigm described above, and in
particular, the formula (15.5) is not a special case of (15.4). The formula (15.5) can be viewed
as seeking an interval within which β̂j (rather than βj itself) falls with 95% probability. The
percentile bootstrap is only justified when the distribution of β̂(b)

j is symmetric about β̂j , in
which case it coincides with the empirical bootstrap.

15.2.2 The bootstrap-t method

A weakness of the empirical bootstrap is that the quantity g(β̂,β) = β̂j − βj has distribution
N(0, σ2[(XTX)−1]jj) (recalling equation (15.1)), which depends on the nuisance parameter σ2.
When we approximate this distribution by bootstrapping, we implicitly are substituting in an
estimate of σ2, which is itself subject to sampling variability. The empirical bootstrap does not
account for this variability, because the distribution F̂ on which the estimate of σ2 is based is held
fixed throughout. To see this more clearly, consider the following example.

Example 15.1 (Non-pivotality in the normal mean problem). Suppose that y ∼ N(1β0, σ
2I), and

the goal is to construct a confidence interval for β0. Defining β̂0 ≡ ȳ and σ̂2 ≡ 1
n−1

∑n
i=1(yi − ȳ)2,

consider the empirical bootstrap based on resampling y(b) ∼ N(1β̂0, σ̂
2I). In this case, we will find

that
β̂

(b)
0 − β̂0 = ȳ(b) − ȳ ∼ N(0, σ̂2/n),

which will give rise to the bootstrap confidence interval

CIboot(β0) = β̂0 ± z1−α/2
1√
n
σ̂.

The uncertainty in the estimate σ̂2 is not accounted for. We know from Unit 2 that, if the usual
linear model assumptions are satisfied, we could account for this uncertainty by using a t-distribution
instead of a normal distribution.

This issue can be addressed by bootstrapping a pivotal quantity g(β̂,β), i.e., a quantity whose
distribution does not depend on unknown parameters (at least under standard assumptions). In the
context of the linear model, the t-statistic (15.2) is pivotal. Bootstrapping the t-statistic, called
the bootstrap-t method, is therefore a way to account for the uncertainty in the estimate of σ2. To
derive the bootstrap-t method, we approximate

P

 β̂j − βj
s.e.(β̂j)

∈

Qα/2

 β̂(b)
j − β̂j

s.e.(β̂(b)
j )

 ,Q1−α/2

 β̂(b)
j − β̂j

s.e.(β̂(b)
j )

 ·
≥ 1− α,

which justifies the bootstrap-t confidence interval
CIboot(βj)

≡

β̂j − s.e.(β̂j)Q1−α/2

 β̂(b)
j − β̂j

s.e.(β̂(b)
j )

 , β̂j − s.e.(β̂j)Qα/2

 β̂(b)
j − β̂j

s.e.(β̂(b)
j )

 .
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15.3 Techniques for learning the data distribution

The methods for learning the data distribution lie on a spectrum based on how flexibly they model
this distribution. Methods with less flexibility are more stable (i.e. less variable) but less robust. On
the other hand, methods with more flexibility are more robust but less stable. The following table
shows the methods in increasing order of flexibility, including which types of model misspecification
they are robust to.

Method
Non-
normality

Hetero-
skedasticity

Group
correlation

Temporal
correlation

Parametric No No No No
Residual Yes No No No
Pairs Yes Yes No No
Clustered Yes Yes Yes No
Moving Blocks Yes Yes No Yes

We will present these methods in the same order, starting from the parametric bootstrap.

15.3.1 The parametric bootstrap

The parametric bootstrap proceeds by specifying a parametric model for the data (X,y), such as
the one from Unit 2:

y = Xβ + ε, ε ∼ N(0, σ2I). (15.6)

The model matrix X is kept fixed and only the distribution of y (conditionally on X) is modeled.
These parameters can be fit by maximum likelihood, as usual. Then, the bootstrapped datasets can
be generated as follows:

X(b) = X; y(b) ∼ N(Xβ̂, σ̂2I).

In the context of the linear model, the parametric bootstrap is rarely used, particularly in the
context of the standard parametric form (15.6) and the least squares estimator β̂. Indeed, it offers
no robustness to model misspecification and the distribution of the least squares estimator is known
exactly, so there is no need to approximate it using resampling. In contexts beyond linear models
or when estimators beyond the least squares estimator are of interest, the parametric bootstrap is
useful because it can be used the approximate the distributions of analytically intractable estimators,
substituting computation for math.

15.3.2 The residual bootstrap

The residual bootstrap is based on a parametric model for E[y |X] and a nonparametric model for
the noise terms. In particular, suppose that

yi = xTi∗β + εi, εi
i.i.d.∼ G for i = 1, . . . , n, (15.7)

where G is an unknown distribution without a parametric form. Then, the data-generating
distribution F is specified by the pair (β, G). As with the parametric bootstrap, the model matrix
X is kept fixed and only the distribution of y (conditionally on X) is modeled. The parameter
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vector β can be fit by least squares, as usual. Then, the distribution of the noise terms εi can be
estimated by the empirical distribution of the residuals ε̂i:

Ĝ = 1
n

n∑
i=1

δε̂i ,

where δε̂i is the Dirac delta function at ε̂i. The bootstrapped datasets can then be generated as
follows:

x
(b)
i∗ = xi∗; y

(b)
i = xTi∗β̂ + ε

(b)
i , ε

(b)
i

i.i.d.∼ Ĝ for i = 1, . . . , n.

Note that the sampling of ε(b)i
i.i.d.∼ Ĝ is equivalent to sampling with replacement from the residuals

ε̂i. By avoiding modeling εi as normal, the residual bootstrap is robust to non-normality. However,
it is not robust to heteroskedasticity or correlated errors, because it models the εi as i.i.d. from
some distribution.

15.3.3 Pairs bootstrap

Weakening the assumptions further, let us assume simply that

(xi∗, yi) i.i.d.∼ F

for some joint distribution F . Unlike the parametric and residual bootstraps, the pairs bootstrap
treats the predictors X as random rather than fixed. We can then fit F̂ as the empirical distribution
of the data:

F̂ = 1
n

n∑
i=1

δ(xi∗,yi).

The bootstrapped datasets can then be generated as follows:

(x(b)
i∗ , y

(b)
i ) i.i.d.∼ F̂ for i = 1, . . . , n.

Note that sampling the pairs (x(b)
i∗ , y

(b)
i ) from F̂ is equivalent to sampling with replacement from

the rows of the original data. The benefit of the pairs bootstrap is that it does not assume
homoskedasticity since the error variance is allowed to depend on xi∗. Therefore, the pairs bootstrap
addresses both non-normality and heteroskedasticity, though it does not address correlated errors
(though variants of the pairs bootstrap do; see below). Note that the pairs bootstrap does not even
assume that E[yi] = xTi∗β for some β. However, in the presence of model bias, it is unclear for what
parameters we are even doing inference. While the pairs bootstrap assumes less than the residual
bootstrap, it may be somewhat less efficient in the case when the assumptions of the latter are met.
However, the pairs bootstrap is the most commonly applied flavor of the bootstrap.

15.3.4 Clustered bootstrap

In the presence of clustered errors, the pairs bootstrap can be modified to the clustered bootstrap.
The distributional assumption underlying the clustered bootstrap is the following:

{(xi∗, yi) : c(i) = c} i.i.d.∼ F for c = 1, . . . , C, (15.8)

where c(i) is the cluster to which observation i belongs. Therefore, entire clusters are modeled as
coming i.i.d. from some distribution across clusters. As with the pairs bootstrap, this distribution is
estimated by the empirical distribution of the data, and resampling from this distribution amounts
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to sampling entire clusters (rather than individual observations) from the original data, with
replacement. This kind of resampling preserves the joint correlation structure within clusters. Note
that the clustered bootstrap is a special case of the pairs bootstrap, where each pair forms its own
cluster.

15.3.5 Moving blocks bootstrap

In the case of temporally (or spatially) correlated errors, the pairs bootstrap can be modified to the
moving blocks bootstrap. The distributional assumption underlying the moving blocks bootstrap is
the same as that of the clustered bootstrap (15.8), except the clusters are defined as contiguous
blocks of observations. The distribution across blocks is fit as the empirical distribution of all blocks
of a given size, and resampling from this distribution amounts to sampling entire blocks (rather than
individual observations) from the original data, with replacement. This kind of resampling preserves
the joint correlation structure within temporal or spatial blocks, though it ignores correlations
across boundaries of these blocks. Like the clustered bootstrap, the moving blocks bootstrap is a
special case of the pairs bootstrap.

15.4 Bootstrap hypothesis testing

The bootstrap inference paradigm described in Section 15.1.2 is primarily for constructing confidence
intervals. For one-dimensional quantities like βj , confidence intervals can be used to perform
hypothesis tests via duality. However, it is more challenging to use the bootstrap to create confidence
regions for multi-dimensional quantities like βS . Nevertheless, in some cases the bootstrap paradigm
can be adapted to perform hypothesis tests directly.

15.4.1 Bootstrap testing paradigm

Bootstrap paradigm to test H0 : βS = 0
1. Compute a test statistic T (X,y) measuring the evidence against H0.
2. Use the data (X,y) to get an approximation F̂ for the data distribution F .
3. Find a null data distribution F̂0 by “projecting” F̂ onto H0.
4. For each b = 1, . . . , B,

i) Sample a null bootstrap dataset (X(b),y(b)) ∼ F̂0;
ii) Evaluate the test statistic on the resampled data to get T (X(b),y(b)).

5. Evaluate the empirical quantile Q1−α({T (X(b),y(b))}Bb=1).
6. Reject if T (X,y) > Q1−α({T (X(b),y(b))}Bb=1).

Here, the key new step is the third, in which a null data distribution F̂0 is derived from the
approximate data distribution F̂ . The challenge is that, depending on the form of F̂ , this may
or may not be possible. In fact, obtaining F̂0 from F̂ is easily done whenever the model for the
data involves a parameter vector β, as is the case for the parametric and residual bootstraps (see
the next section for more detail on the latter). In this case, F̂0 can be obtained from F̂ by setting
the coefficients βS to zero. On the other hand, for the pairs bootstrap and its variants, it is not
clear how to obtain F̂0 from F̂ . Finally, note that the bootstrap testing paradigm is in principle
compatible with any test statistic T . A popular choice for T is the F -statistic for H0 : βS = 0 from
Unit 2.
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15.4.2 Testing with the residual bootstrap

A commonly used bootstrap flavor for hypothesis testing is the residual bootstrap. Recalling
the data-generating model (15.7), suppose F̂ = (β̂, Ĝ) is the fitted model. Then, we can define
F̂0 = ((0, β̂-S), Ĝ). Therefore, the bootstrapped null data are drawn from the following distribution:

x
(b)
i∗ = xi∗; y

(b)
i = xTi,-Sβ̂-S + ε

(b)
i , ε

(b)
i

i.i.d.∼ Ĝ.

As before, the bootstrapped residuals ε(b)i are sampled with replacement from the set of original
residuals.



Chapter 16

The permutation test

Consider a linear regression model with intercept:

yi = β0 + xTi,-0β-0 + εi, εi
i.i.d.∼ F, i = 1, . . . , n, (16.1)

where F is an unknown distribution. Suppose we wish to test the null hypothesis that none of the
variables in x-0 are associated with y:

H0 : β-0 = 0. (16.2)
Furthermore, suppose the sample size n is small enough that neither asymptotic inference nor the
bootstrap are reliable. In this case, we can use the permutation test, which controls Type-I error for
any sample size n.

16.1 General formulation of the permutation test

Note that the null hypothesis can be formulated as follows:

H0 : yi i.i.d.∼ G for some distribution G.

If we view the model matrix X as random, then we can also formulate H0 as an independence null
hypothesis:

H0 : x-0 ⊥⊥ y.
Both of these reformulations suggest that, under the null hypothesis, the null distribution of the
data (X,y) is invariant to permutations of y, while keeping X fixed. In other words,

(X, πy) d= (X,y), for all π ∈ Sn, (16.3)

where Sn is the group of all permutations of {1, . . . , n} and πy is the permuted response vector.
Therefore, we can use permuted instances of the data to approximate the null distribution of any
test statistic under H0. There are two instances of the permutation test: one based on the entire
group Sn and the other based on a random sample of Sn.

16.1.1 Permutation test based on the entire permutation group

Consider any test statistic T : (X,y) 7→ R. For example, this may be the usual F -statistic for
testing the hypothesis (16.2) in the model (16.1). Then, the permutation test based on the entire
permutation group is as follows:
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Permutation test based on the entire permutation group

1. Compute the observed value of the test statistic T (X,y).
2. For each π ∈ Sn, compute the test statistic on the permuted data, T (X, πy).
3. Compute the quantile Q1−α[{T (X, πy) : π ∈ Sn}].
4. Reject if T (X,y) > Q1−α[{T (X, πy) : π ∈ Sn}].

As claimed at the outset of this chapter, this test has non-asymptotic Type-I error control.

Theorem 16.1. For any n, the permutation test based on the entire permutation group has Type-I
error at most α for testing the null hypothesis H0 : β-0 = 0.

Proof. Suppose H0 holds. Let τ ∈ Sn. Then, by the permutation invariance property (16.3), we
have

P[T (X,y) > Q1−α[{T (X, πy) : π ∈ Sn}]]
= P[T (X, τy) > Q1−α[{T (X, πτy) : π ∈ Sn}]]
= P[T (X, τy) > Q1−α[{T (X, πy) : π ∈ Sn}]].

Therefore, the probability that T (X,y) exceeds the (1−α)-quantile of the permutation distribution
is the same as the probability that any other permuted test statistic exceeds the (1− α)-quantile.
Therefore, we have

P[T (X,y) > Q1−α[{T (X, πy) : π ∈ Sn}]]

= 1
|Sn|

∑
τ∈Sn

P[T (X, τy) > Q1−α[{T (X, πy) : π ∈ Sn}]]

= E
[ |{τ ∈ Sn : T (X, τy) > Q1−α[{T (X, πy) : π ∈ Sn}}|

|Sn|

]
≤ α.

(16.4)

16.1.2 Permutation test based on a sample of the permutation group

The permutation test based on the entire permutation group is computationally infeasible for large n.
Instead, we can use a random sample of the permutation group to approximate the null distribution
of the test statistic.

Permutation test based on a sample of the permutation group

1. Compute the observed value of the test statistic T (X,y).
2. Draw a random sample (π1, . . . , πB) from Sn.
3. For each b = 1, . . . , B, compute the test statistic on the permuted data, T (X, πby).
4. Compute the quantile Q1−α[{T (X,y)} ∪ {T (X, πby) : b = 1, . . . , B}].
5. Reject if T (X,y) > Q1−α[{T (X,y)} ∪ {T (X, πby) : b = 1, . . . , B}].

This gives us not just an approximation to the permutation test based on the entire permutation
group, but a finite-sample valid test in its own right. The inclusion of the original test statistic
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T (X,y) in the quantile computation ensures that the test has finite-sample Type-I error control;
see the exchangeability-based argument in the proof.

Theorem 16.2. For any n, the permutation test based on a sample of the permutation group has
Type-I error at most α for testing the null hypothesis H0 : β-0 = 0.

Proof. Suppose H0 holds. We claim that the B + 1 test statistics

{T (X,y)} ∪ {T (X, πby) : b = 1, . . . , B}

are exchangeable, i.e., their joint distribution is independent of their ordering. To see that, let τ be
a randomly sampled permutation from Sn. Then, by the permutation invariance property (16.3),
we have

{T (X,y)} ∪ {T (X, πby) : b = 1, . . . , B}
d= {T (X, τy)} ∪ {T (X, πbτy) : b = 1, . . . , B}.

It is not hard to see that {τ, π1τ, . . . , πBτ} is an i.i.d. sample from Sn, from which the claimed
exchangeability follows. From this exchangeability, we get that

P[T (X,y) > Q1−α[{T (X,y)} ∪ {T (X, πby) : b = 1, . . . , B}]]
= P[T (X, πby) > Q1−α[{T (X,y)} ∪ {T (X, πby) : b = 1, . . . , B}]]

for each b = 1, . . . , B, from which Type-I error control follows by the same argument as in the
derivation (16.4).

16.1.3 Obtaining p-values from permutation tests

In some cases, it is desirable to extract p-values from permutation tests, rather than just the decision
to accept or reject at a fixed level α. The p-value is the smallest level at which the null hypothesis
can be rejected, i.e., the probability under the permutation distribution of observing a test statistic
at least as extreme as the observed test statistic. For permutation tests based on the full permutation
group, the p-value can be computed as follows:

p = 1
|Sn|

∑
τ∈Sn

I{T (X, τy) ≥ T (X,y)}.

For permutation tests based on a sample of the permutation group, the p-value can be computed as

p = 1
B + 1

(
1 +

B∑
b=1

I{T (X, πby) ≥ T (X,y)}
)
. (16.5)

, Warning

A common mistake is to omit the “1+” term from the numerator and denominator of equation
(16.5). These terms are essential for constructing a valid p-value. In particular, these terms
prevent the p-value from being exactly zero.
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16.2 Special case: Two-groups model

The most common application of the permutation test is to the two-groups model:

yi = β0 + β1xi,1 + εi, where xi,1 ∈ {0, 1}.

The goal here is to test whether the binary “treatment” variable has any effect on the response
variable:

H0 : β1 = 0.

To make the two groups more explicit, we can write

{yi : xi,1 = 0} i.i.d.∼ G0, {yi : xi,1 = 1} i.i.d.∼ G1,

and the null hypothesis can be reformulated as

H0 : G0 = G1.

In this case, the permutation mechanism randomly reassigns observations to the two groups. A
commonly used test statistic T used in conjunction with this test is the difference in means between
the two groups. While the permutation test controls Type-I error exactly under the hypothesis that
the two groups come from exactly the same distribution, we might want to test a weaker hypothesis
that the two groups have the same mean. It turns out that, at least asymptotically, the permutation
test controls Type-I error under this weaker null hypothesis if it is based on a studentized statistic,
such as

T (X,y) = ȳ1 − ȳ0√
σ̂2

0
n0

+ σ̂2
1
n1

,

where ȳ0 and ȳ1 are the sample means of the two groups, σ̂2
0 and σ̂2

1 are the sample variances of the
two groups, and n0 and n1 are the sample sizes of the two groups.

16.3 Permutation test versus bootstrap

The bootstrap and permutation are both resampling-based tests that use computation as a substitute
for mathematical derivations of sampling distributions. Both methods have better finite-sample
performance than their asymptotic counterparts. The bootstrap and the permutation test are
typically considered primarily in the context of confidence interval construction and hypothesis
testing, respectively, although the bootstrap can also be used for hypothesis testing in certain cases.
The key difference is that the permutation test has valid Type-I error control in finite samples,
while the bootstrap requires an asymptotic justification (even if the asymptotic convergence is faster
than typical CLT-based asymptotics). Furthermore, the bootstrap is somewhat more versatile than
the permutation test, as the latter is restricted to testing null hypotheses about all non-intercept
coefficients.
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Robust estimation and inference

17.1 Drawback of squared error loss

Suppose that
yi = xTi∗β + εi, εi

i.i.d.∼ G, i = 1, . . . , n, (17.1)

for some distribution G. If the distribution G has heavy tails, then the residuals will contain outliers.
Recall that the least squares estimate is defined as

β̂ ≡ arg min
β

n∑
i=1

L(yi − xTi∗β), where L(d) ≡ 1
2d

2.

The squared error loss L(d) is sensitive to outliers in the sense that a large value of di ≡ yi − xTi∗β
can have a significant impact on the loss function L(di). The least squares estimate, as the minimizer
of this loss function, is therefore sensitive to outliers.

17.2 The Huber loss

One way of addressing this challenge is to replace the squared error loss with a different loss that
does not grow so quickly in yi − xTi∗β. A popular choice for such a loss function is the Huber loss:

Lδ(d) =
{1

2d
2, if |d| ≤ δ;

δ(|d| − 1
2δ), if |d| > δ.

This function is differentiable at the origin, like the squared error loss, but grows linearly as opposed
to quadratically.
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17.3 Scale estimation

The choice of δ > 0 depends on the scale of the noise terms εi. Supposing that Var[εi] = σ2, a
large residual is one where |εi/σ| is large. In this sense, δ should be on the same scale as σ. Of
course, σ is unknown, so a first step towards obtaining a robust estimate is to estimate σ. While we
would usually estimate σ based on the residuals from the least squares estimate, this approach is
not robust to outliers. Instead, we can obtain a pilot estimate of the coefficients using the least
absolute deviation (LAD) estimator, a scale-free and outlier-robust estimate:

β̂LAD ≡ arg min
β

n∑
i=1
|yi − xTi∗β|.

Then, we can estimate σ from the residuals based on the LAD estimate. Since some of these
residuals are outliers, it is better to avoid simply taking a sample variance. Instead, we can use the
median absolute deviation (MAD) of the residuals, which is a robust estimate of the scale of the
noise terms.

σ̂ ≡ 1
0.675median

{
|yi − xTi∗β̂LAD|

}
.

The purpose of the scaling factor of 0.675 is to connect the MAD to the standard deviation of the
distribution of εi; it is derived based on the normal distribution.

ï Note

In principle, β̂LAD could be used not just for estimation of σ but also for inference for β itself.
However, the LAD estimator may be less efficient than the Huber estimator, so the latter
estimator is usually preferred.
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17.4 Huber estimation

With an estimate of σ in hand, we can use the Huber loss function to estimate β:

β̂Huber ≡ arg min
β

n∑
i=1

Lδ

(
yi − xTi∗β

σ̂

)
.

A common choice for δ is δ = 1.345, which makes the Huber estimator 95% efficient relative to the
least squares estimator under normality. The resulting β̂Huber is an M-estimator. We can compute
this estimator by taking a derivative of the objective and setting it to zero:

n∑
i=1

L′δ

(
yi − xTi∗β

σ̂

)
xi∗ = 0.

Unlike least squares, this equation does not have a closed-form solution. However, it can be solved
using an iterative algorithm. Under certain assumptions, the resulting estimator can be shown to
be consistent.

17.5 Inference based on Huber estimates

We can construct hypothesis tests and confidence intervals using β̂Huber based on the following
result.

Theorem 17.1 (Asymptotic normality of Huber estimator (informal)). Suppose the data (X,y)
follow the model (17.1), with fixed design matrix X. Then, if σ̂ is a consistent estimator of σ and
if the noise distribution G is symmetric, then

β̂Huber ·∼ N(β, v(XTX)−1), where v ≡ σ2 E[L′δ(εi/σ)2]
E[L′′δ (εi/σ)]2 .

Letting ε̂i ≡ yi − xTi∗β̂Huber, we can estimate v via

v̂ ≡ σ̂2
1
n

∑n
i=1 L

′
δ(ε̂i/σ̂)2(

1
n

∑n
i=1 L

′′
δ (ε̂i/σ̂)

)2 .

Under appropriate regularity conditions, v̂ is a consistent estimator of v, so that

β̂Huber ·∼ N(β, v̂(XTX)−1).
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R demo

We illustrate how to deal with heteroskedasticity, group-correlated errors, autocorrelated errors,
and outliers in the following sections.

18.1 Heteroskedasticity

Next, let’s look at another dataset, from the Current Population Survey (CPS).

library(readr)
library(ggplot2)
library(dplyr)
library(tibble)
library(tidyr)

cps_data <- read_tsv("data/cps2.tsv")
cps_data

# A tibble: 1,000 x 10
wage educ exper female black married union south fulltime metro
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 2.03 13 2 1 0 0 0 1 0 0
2 2.07 12 7 0 0 0 0 0 0 1
3 2.12 12 35 0 0 0 0 1 1 1
4 2.54 16 20 1 0 0 0 1 1 1
5 2.68 12 24 1 0 1 0 1 0 1
6 3.09 13 4 0 0 0 0 1 0 1
7 3.16 13 1 0 0 0 0 0 0 0
8 3.17 12 22 1 0 1 0 1 0 1
9 3.2 12 23 0 0 1 0 1 1 1
10 3.27 12 4 1 0 0 0 0 1 1
# i 990 more rows

Suppose we want to regress wage on educ, exper, and metro.
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lm_fit <- lm(wage ~ educ + exper + metro, data = cps_data)

18.1.1 Diagnostics

Let’s take a look at the standard linear model diagnostic plots built into R.

# residuals versus fitted
plot(lm_fit, which = 1)
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# residual QQ plot
plot(lm_fit, which = 2)
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# residuals versus leverage (with Cook's distance)
plot(lm_fit, which = 5)
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The residuals versus fitted plot suggests significant heteroskedasticity, with variance growing as a
function of the fitted value.

18.1.2 Sandwich standard errors

To get standard errors robust to this heteroskedasticity, we can use one of the robust estimators
discussed in Section 13.2. Most of the robust standard error constructions discussed in that section
are implemented in the R package sandwich.

library(sandwich)

For example, Huber-White’s heteroskedasticity-consistent estimate V̂ar[β̂] can be obtained via
vcovHC:

HW_cov <- vcovHC(lm_fit)
HW_cov

(Intercept) educ exper metro
(Intercept) 1.484328645 -0.0967891868 -0.0096871141 -0.1218518012
educ -0.096789187 0.0070467982 0.0004037764 0.0018334348
exper -0.009687114 0.0004037764 0.0002517826 0.0008369831
metro -0.121851801 0.0018334348 0.0008369831 0.1197713348

Compare this to the traditional estimate:

usual_cov <- vcovHC(lm_fit, type = "const")
usual_cov



Page 101

(Intercept) educ exper metro
(Intercept) 1.157049852 -0.0671656102 -0.0070323974 -0.1287058354
educ -0.067165610 0.0048945781 0.0001924359 -0.0018227782
exper -0.007032397 0.0001924359 0.0002320022 0.0001471354
metro -0.128705835 -0.0018227782 0.0001471354 0.1858394060

# extract the variance estimates from the diagonal
tibble(

variable = rownames(usual_cov),
usual_variance = sqrt(diag(usual_cov)),
HW_variance = sqrt(diag(HW_cov))

)

# A tibble: 4 x 3
variable usual_variance HW_variance
<chr> <dbl> <dbl>

1 (Intercept) 1.08 1.22
2 educ 0.0700 0.0839
3 exper 0.0152 0.0159
4 metro 0.431 0.346

Bootstrap standard errors are also implemented in sandwich:

# pairs bootstrap
bootstrap_cov <- vcovBS(lm_fit, type = "xy")
tibble(

variable = rownames(usual_cov),
usual_variance = diag(usual_cov),
HW_variance = diag(HW_cov),
bootstrap_variance = diag(bootstrap_cov)

)

# A tibble: 4 x 4
variable usual_variance HW_variance bootstrap_variance
<chr> <dbl> <dbl> <dbl>

1 (Intercept) 1.16 1.48 1.56
2 educ 0.00489 0.00705 0.00736
3 exper 0.000232 0.000252 0.000266
4 metro 0.186 0.120 0.111

The covariance estimate produced by sandwich can be easily integrated into linear model inference
using the package lmtest.

library(lmtest)

Loading required package: zoo

Attaching package: 'zoo'
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The following objects are masked from 'package:base':

as.Date, as.Date.numeric

# fit linear model as usual
lm_fit <- lm(wage ~ educ + exper + metro, data = cps_data)

# robust t-tests for coefficients
coeftest(lm_fit, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -9.913984 1.218330 -8.1374 1.197e-15 ***
educ 1.233964 0.083945 14.6996 < 2.2e-16 ***
exper 0.133244 0.015868 8.3972 < 2.2e-16 ***
metro 1.524104 0.346080 4.4039 1.178e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# robust confidence intervals for coefficients
coefci(lm_fit, vcov. = vcovHC)

2.5 % 97.5 %
(Intercept) -12.3047729 -7.5231954
educ 1.0692342 1.3986938
exper 0.1021058 0.1643816
metro 0.8449747 2.2032337

# robust F-test
lm_fit_partial <- lm(wage ~ educ, data = cps_data) # a partial model
waldtest(lm_fit_partial, lm_fit, vcov = vcovHC)

Wald test

Model 1: wage ~ educ
Model 2: wage ~ educ + exper + metro

Res.Df Df F Pr(>F)
1 998
2 996 2 40.252 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

18.1.3 Bootstrap confidence intervals

One R package for performing bootstrap inference is simpleboot. Let’s see how to get pairs
bootstrap distributions for the coefficient estimates.
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library(simpleboot)

Simple Bootstrap Routines (1.1-8)

boot_out <- lm.boot(
lm.object = lm_fit, # input the fit object from lm()
R = 1000

) # R is the number of bootstrap replicates
perc(boot_out) # get the percentile 95% confidence intervals

(Intercept) educ exper metro
2.5% -12.365466 1.075378 0.1034755 0.8985245
97.5% -7.532934 1.407756 0.1642828 2.1715691

We can extract the resampling distributions for the coefficient estimates using the samples function:

samples(boot_out, name = "coef")[, 1:5]

1 2 3 4 5
(Intercept) -8.5183938 -10.1137042 -9.6244521 -9.6637688 -9.7635183
educ 1.1589410 1.2808242 1.2344501 1.2127978 1.2161110
exper 0.1090993 0.1097745 0.1196861 0.1243353 0.1467017
metro 1.5474578 1.9319631 1.6930226 1.8578930 1.3720004

We can plot these as follows:

boot_pctiles <- boot_out |>
perc() |>
t() |>
as.data.frame() |>
rownames_to_column(var = "var") |>
filter(var != "(Intercept)")

samples(boot_out, name = "coef") |>
as.data.frame() |>
rownames_to_column(var = "var") |>
filter(var != "(Intercept)") |>
pivot_longer(-var, names_to = "resample", values_to = "coefficient") |>
group_by(var) |>
ggplot(aes(x = coefficient)) +
geom_histogram(bins = 30, colour = "black") +
geom_vline(aes(xintercept = `2.5%`), data = boot_pctiles, linetype = "dashed") +
geom_vline(aes(xintercept = `97.5%`), data = boot_pctiles, linetype = "dashed") +
facet_wrap(~var, scales = "free")
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In this case, the bootstrap sampling distributions look roughly normal.

18.2 Group-correlated errors

Credit for this data example: https://www.r-bloggers.com/2021/05/clustered-standard-errors-with-
r/.

Let’s consider the nslwork data from the webuse package:

library(webuse)
nlswork_orig <- webuse("nlswork")
nlswork <- nlswork_orig |>

filter(idcode <= 100) |>
select(idcode, year, ln_wage, age, tenure, union) |>
na.omit() |>
mutate(
union = as.integer(union),
idcode = as.factor(idcode)

)
nlswork

# A tibble: 386 x 6
idcode year ln_wage age tenure union
<fct> <dbl> <dbl> <dbl> <dbl> <int>

1 1 72 1.59 20 0.917 1
2 1 77 1.78 25 1.5 0
3 1 80 2.55 28 1.83 1
4 1 83 2.42 31 0.667 1
5 1 85 2.61 33 1.92 1

https://www.r-bloggers.com/2021/05/clustered-standard-errors-with-r/
https://www.r-bloggers.com/2021/05/clustered-standard-errors-with-r/
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6 1 87 2.54 35 3.92 1
7 1 88 2.46 37 5.33 1
8 2 71 1.36 19 0.25 0
9 2 77 1.73 25 2.67 1
10 2 78 1.69 26 3.67 1
# i 376 more rows

The data comes from the US National Longitudinal Survey (NLS) and contains information about
more than 4,000 young working women. We’re interested in the relationship between wage (here as
log-scaled GNP-adjusted wage) ln_wage and survey participant’s current age, job tenure in years,
and union membership as independent variables. It’s a longitudinal survey, so subjects were asked
repeatedly between 1968 and 1988, and each subject is identified by a unique idcode idcode. Here
we restrict attention to the first 100 subjects and remove any rows with missing data.

Let’s start by fitting a linear regression of the log wage on age, tenure, union, and the interaction
between tenure and union:

lm_fit <- lm(ln_wage ~ age + tenure + union + tenure:union, data = nlswork)
summary(lm_fit)

Call:
lm(formula = ln_wage ~ age + tenure + union + tenure:union, data = nlswork)

Residuals:
Min 1Q Median 3Q Max

-1.42570 -0.28330 0.01694 0.27303 1.65052

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.379103 0.099658 13.838 < 2e-16 ***
age 0.013553 0.003388 4.000 7.60e-05 ***
tenure 0.022175 0.008051 2.754 0.00617 **
union 0.309936 0.070344 4.406 1.37e-05 ***
tenure:union -0.009629 0.012049 -0.799 0.42473
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4099 on 381 degrees of freedom
Multiple R-squared: 0.1811, Adjusted R-squared: 0.1725
F-statistic: 21.07 on 4 and 381 DF, p-value: 1.047e-15

Let’s plot the residuals against the individuals:

nlswork |>
mutate(resid = lm_fit$residuals) |>
ggplot(aes(x = idcode, y = resid)) +
geom_boxplot() +
labs(
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x = "Subject",
y = "Residual"

) +
theme(axis.text.x = element_blank())

−1

0

1

Subject

R
es

id
ua

l

Clearly, there is dependency among the residuals within subjects. Therefore, we have either model
bias, or correlated errors, or both. To help assess whether we have model bias or not, we must check
whether the variables of interest are correlated with the grouping variable idcode. We can check
this with a plot, e.g., for the tenure variable:

nlswork |>
ggplot(aes(x = idcode, y = tenure)) +
geom_boxplot() +
labs(
x = "Subject",
y = "Tenure"

) +
theme(axis.text.x = element_blank())
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Again, there seems to be nontrivial association between tenure and idcode. We can check this
more formally with an ANOVA test:

summary(aov(tenure ~ idcode, data = nlswork))

Df Sum Sq Mean Sq F value Pr(>F)
idcode 81 2529 31.220 3.558 8.83e-16 ***
Residuals 304 2668 8.775
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So, in this case, we do have model bias on our hands. We can address this using fixed effects for
each subject.

lm_fit_FE <- lm(ln_wage ~ age + tenure + union + tenure:union + idcode, data = nlswork)
lm_fit_FE |>

summary() |>
coef() |>
as.data.frame() |>
rownames_to_column(var = "var") |>
filter(!grepl("idcode", var)) |> # remove coefficients for fixed effects
column_to_rownames(var = "var")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.882478232 0.131411504 14.325064 8.022367e-36
age 0.005630809 0.003109803 1.810664 7.119315e-02
tenure 0.020756426 0.006964417 2.980353 3.114742e-03
union 0.174619394 0.060646038 2.879321 4.272027e-03
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tenure:union 0.014974113 0.009548509 1.568215 1.178851e-01

Note the changes in the standard errors and p-values. Sometimes, we may have remaining correlation
among residuals even after adding cluster fixed effects. Therefore, it is common practice to compute
clustered (i.e., Liang-Zeger) standard errors in conjunction with cluster fixed effects. We can get
clustered standard errors via the vcovCL function from sandwich:

LZ_cov <- vcovCL(lm_fit_FE, cluster = nlswork$idcode)
coeftest(lm_fit_FE, vcov. = LZ_cov)[, ] |>

as.data.frame() |>
rownames_to_column(var = "var") |>
filter(!grepl("idcode", var)) |> # remove coefficients for fixed effects
column_to_rownames(var = "var")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.882478232 0.157611390 11.9437956 3.667970e-27
age 0.005630809 0.006339777 0.8881715 3.751601e-01
tenure 0.020756426 0.011149190 1.8616981 6.362342e-02
union 0.174619394 0.101970509 1.7124500 8.784708e-02
tenure:union 0.014974113 0.009646023 1.5523613 1.216301e-01

Again, note the changes in the standard errors and p-values.

18.3 Autocorrelated errors

Let’s take a look at the EuStockMarkets data built into R, containing the daily closing prices of
major European stock indices: Germany DAX (Ibis), Switzerland SMI, France CAC, and UK FTSE.
Let’s regress DAX on FTSE and take a look at the residuals:

lm_fit <- lm(DAX ~ FTSE, data = EuStockMarkets)
summary(lm_fit)

Call:
lm(formula = DAX ~ FTSE, data = EuStockMarkets)

Residuals:
Min 1Q Median 3Q Max

-408.43 -172.53 -45.71 137.68 989.96

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.331e+03 2.109e+01 -63.12 <2e-16 ***
FTSE 1.083e+00 5.705e-03 189.84 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 240.3 on 1858 degrees of freedom
Multiple R-squared: 0.951, Adjusted R-squared: 0.9509
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F-statistic: 3.604e+04 on 1 and 1858 DF, p-value: < 2.2e-16

We find an extremely significant association between the two stock indices. But let’s examine the
residuals for autocorrelation:

EuStockMarkets |>
as.data.frame() |>
mutate(
date = row_number(),
resid = lm_fit$residuals

) |>
ggplot(aes(x = date, y = resid)) +
geom_line() +
labs(
x = "Day",
y = "Residual"

)
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There is clearly some autocorrelation in the residuals. Let’s quantify it using the autocorrelation
function (acf() in R):

acf(lm_fit$residuals, lag.max = 1000)
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We see that the autocorrelation gets into a reasonably low range around lag 200. We can then
construct Newey-West standard errors based on this lag:

NW_cov <- NeweyWest(lm_fit)
coeftest(lm_fit, vcov. = NW_cov)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1331.2374 4398.3722 -0.3027 0.7622
FTSE 1.0831 1.4645 0.7396 0.4597

We see that the p-value for the association goes from 2e-16 to 0.46, after accounting for
autocorrelation.

18.4 Outliers

Let’s take a look at the crime data from HW2:

# read crime data
crime_data <- read_tsv("data/Statewide_crime.dat")

Rows: 51 Columns: 6
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (1): STATE
dbl (5): Violent, Murder, Metro, HighSchool, Poverty

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
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# read and transform population data
population_data <- read_csv("data/state-populations.csv")

Rows: 52 Columns: 9
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): State
dbl (8): rank, Pop, Growth, Pop2018, Pop2010, growthSince2010, Percent, density

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

population_data <- population_data |>
filter(State != "Puerto Rico") |>
select(State, Pop) |>
rename(state_name = State, state_pop = Pop)

# collate state abbreviations
state_abbreviations <- tibble(

state_name = state.name,
state_abbrev = state.abb

) |>
add_row(state_name = "District of Columbia", state_abbrev = "DC")

# add CrimeRate to crime_data
crime_data <- crime_data |>

mutate(STATE = ifelse(STATE == "IO", "IA", STATE)) |>
rename(state_abbrev = STATE) |>
left_join(state_abbreviations, by = "state_abbrev") |>
left_join(population_data, by = "state_name") |>
mutate(CrimeRate = Violent / state_pop) |>
select(state_abbrev, CrimeRate, Metro, HighSchool, Poverty)

crime_data

# A tibble: 51 x 5
state_abbrev CrimeRate Metro HighSchool Poverty
<chr> <dbl> <dbl> <dbl> <dbl>

1 AK 0.000819 65.6 90.2 8
2 AL 0.0000871 55.4 82.4 13.7
3 AR 0.000150 52.5 79.2 12.1
4 AZ 0.0000682 88.2 84.4 11.9
5 CA 0.0000146 94.4 81.3 10.5
6 CO 0.0000585 84.5 88.3 7.3
7 CT 0.0000867 87.7 88.8 6.4
8 DE 0.000664 80.1 86.5 5.8
9 FL 0.0000333 89.3 85.9 9.7
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10 GA 0.0000419 71.6 85.2 10.8
# i 41 more rows

Let’s fit the linear regression:

# note: we make the state abbreviations row names for better diagnostic plots
lm_fit <- lm(CrimeRate ~ Metro + HighSchool + Poverty, data = crime_data |> column_to_rownames(var = "state_abbrev"))

We can get the standard linear regression diagnostic plots as follows:

# residuals versus fitted
plot(lm_fit, which = 1)
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# residual QQ plot
plot(lm_fit, which = 2)
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# residuals versus leverage (with Cook's distance)
plot(lm_fit, which = 5)
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The information underlying these diagnostic plots can be extracted as follows:

tibble(
state = crime_data$state_abbrev,
std_residual = rstandard(lm_fit),
fitted_value = fitted.values(lm_fit),
leverage = hatvalues(lm_fit),
cooks_dist = cooks.distance(lm_fit)

)
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# A tibble: 51 x 5
state std_residual fitted_value leverage cooks_dist
<chr> <dbl> <dbl> <dbl> <dbl>

1 AK 2.17 0.000227 0.0463 0.0574
2 AL -0.422 0.000200 0.0769 0.00371
3 AR 1.10 -0.000132 0.153 0.0547
4 AZ -1.02 0.000344 0.0568 0.0156
5 CA -0.264 0.0000839 0.114 0.00224
6 CO -0.383 0.000163 0.0405 0.00155
7 CT -0.175 0.000134 0.0561 0.000456
8 DE 2.81 -0.0000888 0.0754 0.161
9 FL -0.804 0.000252 0.0452 0.00764
10 GA -0.599 0.000207 0.0232 0.00213
# i 41 more rows

Clearly, DC is an outlier. We can either run a robust estimation procedure or redo the analysis
without DC. Let’s try both. First, we try robust regression using rlm() from the MASS package:

rlm_fit <- MASS::rlm(CrimeRate ~ Metro + HighSchool + Poverty, data = crime_data)
summary(rlm_fit)

Call: rlm(formula = CrimeRate ~ Metro + HighSchool + Poverty, data = crime_data)
Residuals:

Min 1Q Median 3Q Max
-8.297e-05 -3.787e-05 -2.249e-05 4.407e-05 2.063e-03

Coefficients:
Value Std. Error t value

(Intercept) -0.0009 0.0004 -2.2562
Metro 0.0000 0.0000 -1.2963
HighSchool 0.0000 0.0000 2.6506
Poverty 0.0000 0.0000 2.7546

Residual standard error: 6.048e-05 on 47 degrees of freedom

For some reason, the p-values are not computed automatically. We can compute them ourselves
instead:

summary(rlm_fit)$coef |>
as.data.frame() |>
rename(Estimate = Value) |>
mutate(`p value` = 2 * dnorm(-abs(`t value`)))

Estimate Std. Error t value p value
(Intercept) -8.538466e-04 3.784466e-04 -2.256188 0.06260042
Metro -8.639252e-07 6.664623e-07 -1.296285 0.34439400
HighSchool 1.037849e-05 3.915573e-06 2.650568 0.02378865
Poverty 1.252839e-05 4.548172e-06 2.754600 0.01795833
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To see the robust estimation action visually, let’s consider a univariate example:

lm_fit <- lm(CrimeRate ~ Metro, data = crime_data)
rlm_fit <- MASS::rlm(CrimeRate ~ Metro, data = crime_data)

# collate the fits into a tibble
line_fits <- tibble(

method = c("Usual", "Robust"),
intercept = c(
coef(lm_fit)["(Intercept)"],
coef(rlm_fit)["(Intercept)"]

),
slope = c(
coef(lm_fit)["Metro"],
coef(rlm_fit)["Metro"]

)
)

# usual and robust univariate fits
# plot the fits
crime_data |>

ggplot() +
geom_point(aes(x = Metro, y = CrimeRate)) +
geom_abline(aes(intercept = intercept, slope = slope, colour = method), data = line_fits)
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Next, let’s try removing DC and running a usual linear regression.
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lm_fit_no_dc <- lm(CrimeRate ~ Metro + HighSchool + Poverty,
data = crime_data |>
filter(state_abbrev != "DC") |>
column_to_rownames(var = "state_abbrev")

)

# residuals versus fitted
plot(lm_fit_no_dc, which = 1)
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# residual QQ plot
plot(lm_fit_no_dc, which = 2)
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# residuals versus leverage (with Cook's distance)
plot(lm_fit_no_dc, which = 5)
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Part IV

Generalized linear models: General
theory
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Chapters 1-3 focused on the most common class of models used in applications: linear models.
Despite their versatility, linear models do not apply in all situations. In particular, they are not
designed to deal with binary or count responses. In Chapter 4, we introduce generalized linear
models (GLMs), a generalization of linear models that encompasses a wide variety of incredibly
useful models, including logistic regression and Poisson regression.

We’ll start Chapter 4 by introducing exponential dispersion models (Section Chapter 19), a
generalization of the Gaussian distribution that serves as the backbone of GLMs. Then we
formally define a GLM, demonstrating logistic regression and Poisson regression as special cases
(Section Chapter 20). Next, we discuss maximum likelihood inference in GLMs (Section Chapter 21).
Finally, we discuss how to carry out statistical inference in GLMs (Section Chapter 22).



Chapter 19

Exponential dispersion model (EDM)
distributions

19.1 Definition

Let’s start with the Gaussian distribution. If y ∼ N(µ, σ2), then it has the following density with
respect to the Lebesgue measure ν on R:

fµ,σ2(y) = 1√
2πσ2

exp
(
− 1

2σ2 (y − µ)2
)

= exp
(
µy − 1

2µ
2

σ2

)
· 1√

2πσ2
exp

(
− 1

2σ2 y
2
)
.

We can consider a more general class of densities with respect to any measure ν:

fθ,φ(y) ≡ exp
(
θy − ψ(θ)

φ

)
h(y, φ), θ ∈ Θ ⊆ R, φ > 0. (19.1)

Here θ is called the natural parameter, ψ is called the log-partition function, Θ ≡ {θ : ψ(θ) <∞}
is called the natural parameter space,1 φ > 0 is called the dispersion parameter, and h is called
the base density. The distribution with density fθ,φ with respect to a measure ν on R is called an
exponential dispersion model (EDM).2 Sometimes, we parameterize this distribution using its mean
and dispersion, writing

y ∼ EDM(µ, φ).

When φ = 1, the distribution becomes a one-parameter natural exponential family (see Figure 19.1).
1The Fisher information is the expectation of the Hessian, but for canonical links, the Hessian is non-random, so

the two coincide.
2If you are not familiar with measure theory, you can view ν as specifying the support of a distribution (the set of

values it can take). For example, for binary y, ν would indicate that y is supported on {0, 1}, and the “density” fθ,φ
would be a probability mass function.
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Figure 19.1: Relationship between exponential dispersion models and one-parameter exponential
families.

The following proposition presents a useful property of EDMs, which facilitates inference by ruling
out pathological cases.

Proposition 19.1. The support of y ∼ EDM(µ, φ) remains fixed as (µ, φ) vary.

19.2 Examples

19.2.1 Normal distribution

As derived above, y ∼ N(µ, σ2) is an EDM with

θ = µ, ψ(θ) = 1
2θ

2, φ = σ2, h(y, φ) = 1√
2πσ2

exp
(
− 1

2σ2 y
2
)
.

19.2.2 Bernoulli distribution

Suppose y ∼ Ber(µ). Then, we have

f(y) = µy(1− µ)1−y = exp
(
y log µ

1− µ + log(1− µ)
)
.

Therefore, we have θ = log µ
1−µ , so that log(1− µ) = − log(1 + eθ). It follows that

θ = log µ

1− µ, ψ(θ) = log(1 + eθ), φ = 1, h(y) = 1.
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Hence, the Bernoulli distribution is an EDM, as well as a one-parameter exponential family. Note
that Ber(0) and Ber(1) are not included in this class of EDMs, because there is no θ ∈ Θ = R that
gives rise to µ = 0 or µ = 1. Hence, µ ∈ (0, 1), and the support of any Bernoulli EDM is {0, 1}.

19.2.3 Binomial distribution

Consider the binomial proportion y: my ∼ Bin(m,µ). We have

f(y) =
(
m

my

)
µmy(1− µ)m(1−y)

= exp
(
m

(
y log µ

1− µ + log(1− µ)
))(

m

my

)
,

so

θ = log µ

1− µ, ψ(θ) = log(1 + eθ), φ = 1/m, h(y, φ) =
(
m

my

)
.

Note that Bin(m, 0) and Bin(m, 1) are not included in this class of EDMs, for the same reason as
above. Hence, µ ∈ (0, 1), and the support of any binomial EDM is {0, 1

m ,
2
m , . . . , 1}.

19.2.4 Poisson distribution

Suppose y ∼ Poi(µ). We have

f(y) = e−µ
µy

y! = exp(y logµ− µ) 1
y! .

Therefore, we have θ = logµ, so that µ = eθ. It follows that

θ = logµ, ψ(θ) = eθ, φ = 1, h(y) = 1
y! .

Hence, the Poisson distribution is an EDM, as well as a one-parameter exponential family. Note
that Poi(0) is not included in this class of EDMs, because there is no θ ∈ Θ = R that gives rise to
µ = 0. Hence, µ ∈ (0,∞), and the support of any Poisson EDM is N.

Many other examples fall into this class, including the negative binomial, gamma, and inverse-
Gaussian distributions. We will see at least some of these in the next chapter.

19.3 Moments of exponential dispersion model distributions

It turns out that the derivatives of the log-partition function ψ give the moments of y. Indeed, let’s
start with the relationship

∫
fθ,φ(y)dν(y) =

∫
exp

(
θy − ψ(θ)

φ

)
h(y, φ)dν(y) = 1.
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Differentiating in θ and interchanging the derivative and the integral, we obtain

0 = d

dθ

∫
fθ,φ(y)dy =

∫
y − ψ̇(θ)

φ
fθ,φ(y)dy,

from which it follows that

ψ̇(θ) =
∫
ψ̇(θ)fθ,φ(y)dy =

∫
yfθ,φ(y)dy = E[y] ≡ µ. (19.2)

Thus, the first derivative of the log partition function is the mean of y. Differentiating again, we get

φ · ψ̈(θ) = φ

∫
ψ̈(θ)fθ,φ(y)dν(y)

=
∫

(y − ψ̇(θ))2fθ,φ(y)dy =
∫

(y − µ)2fθ,φ(y)dν(y)

= Var[y].

Thus, the second derivative of the log-partition function multiplied by the dispersion parameter is
the variance of y. The following proposition summarizes these results.

Proposition 19.2 (EDM moments). If y ∼ EDM(µ, φ), then

E[y] = ψ̇(θ), Var[y] = φ · ψ̈(θ).

19.4 Relationships among the mean, variance, and natural
parameter

19.4.1 Relationship between the mean and the natural parameter

The log-partition function ψ induces a connection (19.2) between the natural parameter θ and the
mean µ. Because

dµ

dθ
= d

dθ
ψ̇(θ) = ψ̈(θ) = 1

φ
Var[y] > 0, (19.3)

it follows that µ is a strictly increasing function of θ, so in particular the mapping between µ and θ
is bijective. Therefore, we can think of equivalently parameterizing the distribution via µ or θ.

19.4.2 Relationship between the mean and variance

Note that the mean of an EDM, together with the dispersion parameter, determines its variance
(since it determines the natural parameter θ). Define

V (µ) ≡ dµ

dθ
,
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so that Var[y] = φV (µ). For example, a Poisson random variable with mean µ has variance µ and
a Bernoulli random variable with mean µ has V (µ) = µ(1− µ). The mean-variance relationship
turns out to characterize the EDM, i.e. an EDM with mean equal to its variance is the Poisson
distribution. For all EDMs except the normal distribution, the variance depends nontrivially on the
mean. Therefore, heteroskedasticity is a natural feature of EDMs (rather than a pathology that
needs to be corrected for).

19.5 The unit deviance

A key quantity in the analysis of normal linear regression models is (y, µ) 7→ (y − µ)2, which
is a notion of distance between the parameter µ and the observation y. The unit deviance is a
generalization of this quantity to EDMs. As a starting point, consider the log-likelihood of an EDM:

`(y, µ) = θy − ψ(θ)
φ

+ log h(y, φ) = θ(µ)y − ψ(θ(µ))
φ

+ log h(y, φ),

where θ(µ) = ψ̇−1(µ), recalling the relationship (19.2). The quantity `(y, µ) is larger to the extent
that µ is a better fit for y. Furthermore, it is easy to verify that µ 7→ `(y, µ) is maximized by µ = y.
Motivated by this observation, we calculate that twice the log-likelihood ratio between µ = µ and
µ = y is

2(`(y, y)− `(y, µ))

= 2{[θ(y)y − ψ(θ(y))]− [θ(µ)y − ψ(θ(µ))]}
φ

≡ d(y, µ)
φ

.

(19.4)

The quantity in the numerator is the unit deviance d(y, µ), defined as the dispersion φ times twice
the log-likelihood ratio between y and µ. As we will see in Section 19.5.1, d(y, µ) generalizes the
quantity (y − µ)2 for the normal distribution. The following proposition summarizes a few key
properties of the unit deviance.

Proposition 19.3 (Unit deviance properties). When viewed as a function of µ, the unit deviance
d(y, µ) is nonnegative function that achieves a unique global minimum of zero for µ = y and increases
as µ moves away from y.

Proof. Differentiating d(y, µ) in µ, we have
∂d(y, µ)
∂µ

= ∂d(y, µ)
∂θ

∂θ

∂µ
= µ− y
V (µ) .

Since V (µ) > 0, this establishes that d(y, µ) decreases on µ ∈ (∞, y) and then increases on (y,∞),
Therefore, d(y, µ) ≥ d(y, y) = 0 for all µ.

19.5.1 Example: Normal distribution

For the normal distribution, we have θ = µ and ψ(θ) = 1
2θ

2. Therefore,

d(y, µ) = 2{[θ(y)y − ψ(θ(y))]− [θ(µ)y − ψ(θ(µ))]}
= 2{[y2 − 1

2y
2]− [µy − 1

2µ
2]}

= (y − µ)2.
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Figure 19.2 displays an example of the normal unit deviance.
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Figure 19.2: The normal unit deviance for y = 4.

19.5.2 Example: Poisson distribution

For the Poisson distribution, we have θ = logµ and ψ(θ) = eθ, so

d(y, µ) = 2{[θ(y)y − ψ(θ(y))]− [θ(µ)y − ψ(θ(µ))]}
= 2{[y log y − y]− [y logµ− µ]}

= 2
(
y log y

µ
− (y − µ)

)
.

See Figure 19.3 for an example of the shape of this function.
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Figure 19.3: The Poisson unit deviance for y = 4.

Note that the Poisson deviance is asymmetric about µ = y. This is a consequence of the nontrivial
mean-variance relationship for the Poisson distribution. In particular, the Poisson distribution’s
variance grows with its mean. Therefore, an observation of y = 4 is less likely to have come from a
Poisson distribution with mean µ = 2 than from a Poisson distribution with mean µ = 6.

19.6 Small-dispersion approximations to an EDM

If the dispersion φ is small, then that means that y is a fairly precise estimate of µ, similar to an
average of multiple independent samples from a mean-µ distribution. Consider, for example, that
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1
mBin(m,µ) is the mean of m i.i.d. draws from Ber(µ). In this case, we can use either the normal
approximation or the saddlepoint approximation to approximate the EDM density. For the sake of
this section, we will abuse notation by denoting by fµ,φ the EDM with mean µ and dispersion φ.

19.6.1 The normal approximation

19.6.1.1 The approximation

For small values of φ, we can hope to approximate fµ,φ with a normal distribution. Recall that the
mean and variance of this distribution are µ and φ · V (µ), respectively. The central limit theorem
gives

y − µ√
φ · V (µ)

→d N(0, 1) as φ→ 0,

so

y
·∼ N(µ, φ · V (µ)) ≡ f̃normal

µ,φ .

For example, we have

Poi(µ) ≈ N(µ, µ).

For the normal EDM, note that the normal approximation is exact. One consequence of the normal
approximation is

(y − µ)2

φ · V (µ)
·∼ χ2

1. (19.5)

This fact will be useful to us as we carry out inference for GLMs.

19.6.1.2 Normal approximation accuracy

We have

f̃normal
µ,φ (y) = fµ,φ(y) +O(

√
φ).

In practice, the rule of thumb for the applicability of this approximation to get statements like
(19.5) is that

τ ≡ φ · V (µ)
(µ− boundary)2 ≤

1
5 .

Here, “boundary” represents the nearest boundary of the parameter space to µ. For example, if
y ∼ 1

mBin(m,µ), then we have
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τ =
1
m · µ · (1− µ)
min(µ, 1− µ)2

= 1
m
·max

(
µ

1− µ,
1− µ
µ

)
≈ 1
m
·max

( 1
µ
,

1
1− µ

)
,

so τ ≤ 1/5 roughly if mµ ≤ 5 and m(1− µ) ≤ 5. For Poisson distributions, we always have τ = 1,
but for some reason small-dispersion asymptotics still applies as µ→∞ as opposed to τ → 0. The
criterion τ ≤ 1/5 is satisfied when µ ≤ 5.

19.6.2 The saddlepoint approximation

19.6.2.1 The approximation

Another approximation to the EDM density is the saddlepoint approximation, which tends to be
more accurate than the normal approximation. The reason the normal approximation may be
inaccurate is that the quality of the central limit approximation degrades as one enters the tails of
the distribution. In particular, the normal approximation to fµ,φ(y) may be poor if µ is far from y.
The saddlepoint approximation is built on the observation that the EDM density for fµ,φ(y) can
be written in terms of the density fy,φ(y); the latter density is by definition evaluated at its mean.
Indeed,

fµ,φ(y) ≡ exp
(
θy − ψ(θ)

φ

)
h(y, φ)

= exp
(
−d(y, µ)

2φ

)
exp

(
θ(y)y − ψ(θ(y))

φ

)
h(y, φ)

= exp
(
−d(y, µ)

2φ

)
fy,φ(y).

(19.6)

Now, we apply the central limit theorem to approximate fy,φ(y):

fy,φ(y) ≈ 1√
2πφV (y)

.

Substituting this approximation into (19.6), we obtain the saddlepoint approximation:

fµ,φ(y) ≈ 1√
2πφV (y)

exp
(
−d(y, µ)

2φ

)
≡ f̃ saddle

µ,φ (y).

For the normal EDM, note that the normal approximation is exact. For the Poisson distribution,
we get

f̃ saddle
µ,φ (y) = 1√

2πy exp
(
−y log y

µ
+ (y − µ)

)
.
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The approximation can be shown to lead to the following consequence:

d(y, µ)
φ

·∼ χ2
1. (19.7)

Here, we are using the unit deviance rather than the squared distance to measure the deviation of µ
from y. This fact will be useful to us as we carry out inference for GLMs.

19.6.2.2 Saddlepoint approximation accuracy

We have still used a normal approximation, but this time we have used it to approximate fy,φ(y)
instead of fµ,φ(y). Since the normal approximation is applied to a distribution (fy,φ) at its mean,
we expect it to be more accurate than a normal approximation applied to a distribution (fµ,φ) at a
point potentially far from its mean. The saddlepoint approximation yields an approximation to the
density that is multiplicative rather than additive, and of order O(φ) rather than O(

√
φ):

f̃ saddle
µ,φ (y) = fµ,φ(y) · (1 +O(φ)).

In practice, the rule of thumb for the applicability of this approximation to get statements like
(19.7) is that τ ≤ 1/3; the looser requirement on τ reflects the greater accuracy of the saddlepoint
approximation. This translates to mµ ≥ 3 and m(1 − µ) ≥ 3 for the binomial and µ ≥ 3 for the
Poisson.

19.6.3 Comparing the two approximations

The saddlepoint approximation is more accurate than the normal approximation, as discussed above.
However, the accuracy of the saddlepoint approximation relies on the assumption that the entire
parametric form of the EDM is correctly specified. On the other hand, the accuracy of the normal
distribution requires only that the first two moments of the EDM are correctly specified.



Chapter 20

GLM definition

In this class, the focus is on building models that tie a vector of predictors (xi∗) to a response yi.
For linear regression, the mean of y was modeled as a linear combination of the predictors xTi∗β:
µi = xTi∗β. More generally, we might want to model a function of the mean ηi = g(µi) as a linear
combination of the predictors; g is called the link function and ηi the linear predictor. Pairing a
link function with an EDM gives us a generalized linear model (GLM):

20.1 Definition

We define {(yi,xi∗)}ni=1 as following a generalized linear model based on the exponential dispersion
model fθ,φ, monotonic and differentiable link function g, offset terms oi ∈ R, and observation weights
wi > 0 if

yi
ind∼ EDM(µi, φ0/wi), ηi ≡ g(µi) = oi + xTi∗β. (20.1)

The offset terms oi and observation weights wi are both known in advance. The free parameters in
a GLM are the coefficients β and, possibly, the parameter φ0 controlling the dispersion. We will see
examples where φ0 is known (e.g. Poisson regression) and those where φ0 is unknown (e.g. linear
regression).

The “default” choice for the link function g is the canonical link function

g(µ) = ψ̇−1(µ),

which, given the relationship (19.2), gives η = ψ̇−1(µ) = θ, i.e. the linear predictor coincides with
the natural parameter. As discussed in the context of equation (19.3), ψ̇−1 is a valid link function
because it is monotonic and differentiable. Canonical link functions are very commonly used with
GLMs because they lead to various nice properties that general GLMs do not enjoy (e.g. concave
log-likelihood).
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20.2 Examples

20.2.1 Example: Linear regression model

The linear regression model is a special case of a GLM, with φ0 = σ2 (unknown), wi = 1, oi = 0,
and identity (canonical) link function:

yi
ind∼ N(µi, σ2); ηi = µi = xTi∗β.

20.2.2 Example: Weighted linear regression model

If each observation yi is the mean of mi independent repeated observations, then we get a weighted
linear regression model, with φ0 = σ2 (unknown), wi = mi, oi = 0, and identity (canonical) link
function:

yi
ind∼ N(µi, σ

2

mi
); ηi = µi = xTi∗β.

20.2.3 Example: Ungrouped logistic regression model

The ungrouped logistic regression model is the GLM based on the Bernoulli EDM with φ0 = 1
(known), wi = 1, oi = 0, and the canonical link function:

yi
ind∼ Ber(µi); ηi = θi = log µi

1− µi
= xTi∗β.

Thus the canonical link function for logistic regression is the logistic link function g(µ) = log µ
1−µ .

20.2.4 Example: Grouped logistic regression model

Suppose yi is a binomial proportion based on mi trials. The grouped logistic regression model is the
GLM based on the binomial EDM with φ0 = 1 (known), wi = 1/mi, oi = 0, and the canonical link
function:

miyi ∼ Bin(mi, µi); ηi = log µi
1− µi

= oi + xTi∗β.

Note that a binomial proportion yi based on mi trials and a success probability of µi can be
equivalently represented as mi independent Bernoulli draws with the same success probability µi.
Therefore, any grouped logistic regression model can be equivalently represented as an ungrouped
logistic regression model with ∑n

i=1mi observations. We will see that, despite this equivalence,
grouped logistic regression models have some useful properties that ungrouped logistic regression
models do not.

20.2.5 Example: Poisson regression model

Poisson regression is the Poisson EDM with φ0 = 1 (known), wi = 1, oi = 0, and the canonical link
function:

yi
ind∼ Poi(µi); ηi = θi = logµi = xTi∗β.



Page 131

Thus the canonical link function for Poisson regression is the log link function g(µ) = logµ.



Chapter 21

Parameter estimation

21.1 The GLM likelihood, score, and Fisher information

The log-likelihood of a GLM is:

logL(β) =
n∑
i=1

θiyi − ψ(θi)
φ0/wi

+
n∑
i=1

log h(yi, φ0/wi). (21.1)

Let’s differentiate this with respect to β, using the chain rule:

∂ logL(β)
∂β

= ∂ logL(β)
∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂β

= (y − µ)Tdiag(φ0/wi)−1 · diag(ψ̈(θi))−1 · diag
(
∂µi
∂ηi

)
·X

= 1
φ0

(y − µ)Tdiag
(

wi
V (µi)(dηi/dµi)2

)
· diag

(
∂ηi
∂µi

)
·X

≡ 1
φ0

(y − µ)TWMX.

Here, W ≡ diag(Wi) is a diagonal matrix of working weights and M ≡ diag
(
∂ηi
∂µi

)
= diag(g′(µi)) is

a diagonal matrix of link derivatives. Transposing, we get the score vector:

U(β) = 1
φ0
XTMW (y − µ). (21.2)

To get the Fisher information matrix, note first that:

Var[y] = diag
(
φ0
V (µi)
wi

)
= φ0W

−1M−2 (21.3)

we can compute the covariance matrix of the score vector:
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I(β) = Var[U(β)] = 1
φ2

0
XTMWVar[y]MWX

= 1
φ2

0
XTMWφ0W

−1M−2MWX

= 1
φ0
XTWX.

(21.4)

21.2 Maximum likelihood estimation of β

To estimate β, we can set the score vector to zero:

1
φ0
XTM̂Ŵ (y − µ̂) = 0 ⇐⇒ XTdiag

(
wi

V (µ̂i)g′(µ̂i)

)
(y − µ̂) = 0.

These equations are called the normal equations. Unfortunately, unlike least squares, the normal
equations cannot be solved analytically for β̂. They are solved numerically instead; see Section 21.3.
Note that φ0 cancels from the normal equations, and therefore the coefficients β can be estimated
without estimating the dispersion. Recall that we have seen this phenomenon for least squares. Also
note that the normal equations simplify when the canonical link function is used, so that ηi = θi.
Assuming additionally that wi = 1, we get:

M̂Ŵ = diag

 ̂∂µi/∂θi
V (µ̂i)

 = ψ̈(θ̂i)
ψ̈(θ̂i)

= 1,

so the normal equations reduce to:

XT (y − µ̂) = 0. (21.5)

We recognize these as the normal equation for linear regression. Since both ungrouped logistic
regression and Poisson regression also use canonical links and have unit weights, the simplified
normal equations (21.5) apply to the latter regressions as well.

In the linear regression case, we interpreted the normal equations (21.5) as an orthogonality
statement: y − µ̂ ⊥ C(X). In the case of GLMs, the set C(X) ≡ {µ = E[y] : β ∈ Rp} is no longer
a linear space. In fact, it is a nonlinear transformation of the column space of X (a p-dimensional
manifold in Rn):

C(X) ≡ {µ = E[y] : β ∈ Rp} = {g−1(Xβ) : β ∈ Rp}.

Therefore, we cannot view the mapping y 7→ µ̂ as a linear projection. Nevertheless, it is possible to
interpret µ̂ as the “closest” point (in some sense) to y in C(X). To see this, recall the deviance
form of the EDM density (19.6). Taking a logarithm and summing over i = 1, . . . , n, we find the
following expression for the negative log likelihood:
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− logL(β) =
n∑
i=1

d(yi, µi)
2φi

+ C

=
∑n
i=1wid(yi, µi)

2φ0
+ C

≡ D(y,µ)
2φ0

+ C

≡ 1
2D
∗(y,µ) + C.

(21.6)

D(y,µ) is called the deviance or the total deviance, and it can be interpreted as a kind of distance
between the mean vector µ and the observation vector y. For example, in the linear model case,
D(y,µ) = ‖y − µ‖2. The quantity D∗(y,µ) is called the scaled deviance. In the linear model case,
D∗(y,µ) = ‖y−µ‖2

σ2 . Therefore, maximizing the GLM log likelihood is equivalent to minimizing the
deviance:

β̂ = arg min
β

D(y,µ(β)), so that µ̂ = arg min
µ∈C(X)

D(y,µ).

21.3 Iteratively reweighted least squares

21.3.1 Log-concavity of GLM likelihood

Before talking about maximizing the GLM log-likelihood, we investigate the concavity of this
function. We claim that, in the case when the canonical link is used, logL(β) is a concave function
of β, which implies that this function is “easy to optimize”, i.e., has no local maxima.

Proposition 21.1. Proposition: If g is the canonical link function, then the function logL(β)
defined in 21.1 is concave in β.

Proof. It suffices to show that ψ is a convex function since then logL(β) would be the sum of a
linear function of β and the composition of a concave function with a linear function. To verify that
ψ is convex, it suffices to recall that ψ̈(θ) = 1

φVarθ[y] > 0.

Proposition 21.1 gives us confidence that an iterative algorithm will converge to the global maximum
of the likelihood. We present such an iterative algorithm next.

21.3.2 Newton-Raphson

We can maximize the log-likelihood (21.1) via the Newton-Raphson algorithm, which involves the
gradient and Hessian of the function we would like to maximize. We derive the Newton-Raphson
algorithm for canonical GLMs. In this case, the gradient is the score vector (21.2), while the Hessian
is the Fisher information (21.4).1 The Newton-Raphson iteration is therefore:

1The Fisher information is the expectation of the Hessian, but for canonical links, the Hessian is non-random, so
the two coincide.
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β̂(t+1) = β̂(t) − (∇2
β logL(β̂(t)))−1∇β logL(β̂(t))

= β̂(t) + (XTŴ (t)X)−1XT (y − µ̂(t)).
(21.7)

See Figure 21.1.

Figure 21.1: Newton-Raphson iteratively approximates the log likelihood via a quadratic function
and maximizing that function.

21.3.3 Iteratively reweighted least squares (IRLS)

A nice interpretation of the Newton-Raphson algorithm is as a sequence of weighted least squares
fits, known as the iteratively reweighted least squares (IRLS) algorithm. Suppose that we have a
current estimate β̂(t), and suppose we are looking for a vector β near β̂(t) that fits the model even
better. We have:

Eβ[y] = g−1(Xβ)
≈ g−1(Xβ̂(t)) + diag(∂µi/∂ηi)(Xβ −Xβ̂(t))
= µ̂(t) + (M̂ (t))−1(Xβ −Xβ̂(t))

and

Varβ[y] ≈ φ0(Ŵ (t))−1(M̂ (t))−2 = φ0Ŵ
(t),
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recalling equation (21.3). Thus, up to the first two moments, near β = β̂(t) the distribution of y is
approximately:

y = µ̂(t) + (M̂ (t))−1(Xβ −Xβ̂(t)) + ε,
ε ∼ N(0, φ0Ŵ

(t)),

or, equivalently:

z(t) ≡ M̂ (t)(y − µ̂(t)) +Xβ̂(t) = Xβ + ε′,
ε′ ∼ N(0, φ0(Ŵ (t))−1).

(21.8)

The regression of the adjusted response variable z(t) on X leaves us with a weighted linear regression
(hence the name working weights for Wi), whose maximum likelihood estimate is:

β̂(t+1) = (XTŴ (t)X)−1XTŴ (t)z(t), (21.9)

which we define as our next iterate. It’s easy to verify that the IRLS iteration (21.9) is equivalent
to the Newton-Raphson iteration (21.7). Note that we have derived these algorithms for canonical
links; they each can be derived for non-canonical links but need not be equivalent in this more
general case.

21.4 Estimation of φ0 and GLM residuals

While sometimes the parameter φ0 is known (e.g., for binomial or Poisson GLMs), in other cases
φ0 must be estimated (e.g., for the normal linear model). Recall from the linear model that we
estimated σ2 = φ0 by taking the sum of the squares of the residuals: σ̂2 = 1

n−p‖y − µ̂‖
2. However,

it’s unclear in the GLM context exactly how to define a residual. In fact, there are two common
ways of doing so, called deviance residuals and Pearson residuals. Deviance residuals are defined in
terms of the unit deviance:

rDi ≡ sign(yi − µ̂i)
√
wid(yi, µ̂i).

On the other hand, Pearson residuals are defined as variance-normalized residuals:

rPi ≡
yi − µ̂i√
V (µ̂i)/wi

.

These residuals can be viewed as residuals from the (converged) weighted linear regression model
(21.8). In the normal case, these residuals coincide, but in the general case, they do not. Based on
these two notions of GLM residuals, we can define two estimators of φ0. One, based on the deviance
residuals, is the mean deviance estimator of dispersion:

φ̃D0 ≡
1

n− p
‖rD‖2 ≡ 1

n− p

n∑
i=1

wid(yi, µ̂i) ≡
1

n− p
D(y; µ̂);
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recall that the total deviance D(y; µ̂) is a generalization of the residual sum of squares. The other,
based on the Pearson residuals, is called the Pearson estimator of dispersion:

φ̃P0 ≡
1

n− p
X2

≡ 1
n− p

‖rP ‖2

≡ 1
n− p

n∑
i=1

wi
(yi − µ̂i)2

V (µi)
.

(21.10)

X2 is known as the Pearson X2 statistic. The deviance-based estimator can be more accurate
than the Pearson estimator under small-dispersion asymptotics. However, the Pearson estimator is
more robust when only the first two moments of the EDM model are correct and in the absence of
small-dispersion asymptotics. For these reasons, the Pearson estimator is generally preferred.



Chapter 22

Inference in GLMs

22.1 Preliminaries

22.1.1 Inferential goals

There are two types of inferential goals: hypothesis testing and confidence interval/region
construction.

22.1.1.1 Hypothesis testing

1. Single coefficient: H0 : βj = β0
j versus H1 : βj 6= β0

j for some β0
j ∈ R.

2. Group of coefficients: H0 : βS = β0
S versus H1 : βS 6= β0

S for some S ⊂ {0, . . . , p− 1} and
some β0

S ∈ R|S|.
3. Goodness of fit: The goodness of fit null hypothesis is that the GLM (20.1) is correctly

specified. Consider the saturated model:

yi
ind∼ EDM(µi, φ0/wi) for i = 1, . . . , n. (22.1)

Let
MGLM ≡ {µ : g(µi) = xTi∗β + oi for some β ∈ Rp}

be the set of mean vectors consistent with the GLM. Then, the goodness of fit testing problem
is H0 : µ ∈MGLM versus H1 : µ /∈MGLM.

22.1.1.2 Confidence interval/region construction

1. Confidence interval for a single coefficient: Here, the goal is to produce a confidence
interval CI(βj) for a coefficient βj .

2. Confidence region for a group of coefficients: Here, the goal is to produce a confidence
region CR(βS) for a group of coefficients βS .

3. Confidence interval for a fitted value: In GLMs, fitted values can either be considered
for parameters on the linear scale (ηi = xTi∗β + oi) or the mean scale (µi = g−1(xTi∗β + oi)).
The goal, then, is to produce confidence intervals CI(ηi) or CI(µi) for ηi or µi, respectively.
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22.1.2 Inferential tools

Inference in GLMs is based on asymptotic likelihood theory. These asymptotics can be based on
large-sample asymptotics or small-dispersion asymptotics. Large-sample asymptotics are applicable
for testing hypotheses and estimating parameters within models where the number of parameters is
fixed while the sample size grows. Small-dispersion asymptotics are applicable for testing hypotheses
and estimating parameters within models where the dispersion is small, regardless of the sample
size. Large-sample asymptotics apply to testing and estimating coefficients in GLMs (20.1) with a
fixed number of parameters as the sample size grows, but not to testing goodness of fit. Indeed,
goodness-of-fit tests refer to the saturated model (22.1), whose number of parameters grows with n.
Small-dispersion asymptotics, on the other hand, apply to goodness-of-fit testing.

Hypothesis tests (and, by inversion, confidence intervals) can be constructed in three asymptotically
equivalent ways: Wald tests, likelihood ratio tests (LRT), and score tests. These tests can be justified
using either large-sample or small-dispersion asymptotics, depending on the context. Despite their
asymptotic equivalence, in finite samples, some tests may be preferable to others (though for normal
linear models, these tests are equivalent in finite samples as well). See Figure 22.1.

Figure 22.1: A comparison of the three asymptotic methods for GLM inference.

22.2 Wald inference

Wald inference is based on the following asymptotic normality statement:

β̂
·∼ N(β, I−1(β)) = N(β, φ0(XTW (β)X)−1), (22.2)

recalling our derivation of the Fisher information from equation (21.4). This normal approximation
can be justified via the central limit theorem in the context of large-sample asymptotics or small-
dispersion asymptotics. Wald inference is easy to carry out, and for this reason, it is considered the
default type of inference. However, as we will see in Unit 5, it also tends to be the least accurate in
small samples. Furthermore, Wald tests are usually not applied for testing goodness of fit.
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22.2.1 Wald test for βj = β0
j (known φ0)

Based on the Wald approximation (22.2), under the null hypothesis, we have:

β̂j
·∼ N(β0

j , φ0[(XTW (β)X)−1]jj)
≈ N(β0

j , φ0[(XTW (β̂)X)−1]jj)
≡ N(β0

j ,SE(β̂j)2),

where we have used a plug-in estimator of the variance. This leads us to the Wald z-test:

φ(X,y) ≡ 1
(∣∣∣∣∣ β̂j − β

0
j

SE(β̂j)

∣∣∣∣∣ > z1−α/2

)
.

Since a one-dimensional parameter is being tested, we can make the test one-sided if desired.

22.2.2 Wald test for βS = β0
S (known φ0)

Extending the reasoning above, we have under the null hypothesis that:

β̂S
·∼ N(β0

S , φ0[(XTW (β)X)−1]S,S) ≈ N(β0
S , φ0[(XTW (β̂)X)−1]S,S),

and therefore:

1
φ0

(β̂S − β0
S)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − β0

S) ·∼ χ2
|S|.

Hence, we have the Wald χ2 test:

φ(X,y)

≡ 1
( 1
φ0

(β̂S − β0
S)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − β0

S) > χ2
|S|(1− α)

)
.

22.2.3 Wald confidence interval for βj (known φ0)

Inverting the Wald test for βj , we get a Wald confidence interval:

CI(βj) ≡ β̂j ± z1−α/2 · SE(β̂j), (22.3)

where
SE(β̂j) ≡

√
φ0[(XTW (β̂)X)−1]jj .
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22.2.4 Wald confidence region for βS (known φ0)

By inverting the test of H0 : βS = β0
S , we get the Wald confidence region:

CR(βS) ≡
{
βS : 1

φ0
(β̂S − βS)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − βS) ≤ χ2

|S|(1− α)
}
.

If S = {0, 1, . . . , p− 1}, we are left with:

CR(βS) ≡
{
β : 1

φ0
(β̂ − β)TXTW (β̂)X(β̂ − β) ≤ χ2

p(1− α)
}
.

22.2.5 Wald confidence intervals for ηi and µi (known φ0)

Given the Wald approximation (22.2), we have:

η̂i ≡ oi + xTi∗β̂
·∼ N(ηi, φ0 · xTi∗(XTW (β̂)X)−1xi∗) ≡ N(ηi,SE(η̂i)2).

Hence, the Wald interval for ηi is:

CI(ηi) ≡ oi + xTi∗β̂ ± z1−α/2 · SE(η̂i),

where
SE(η̂i) ≡

√
φ0xTi∗(XTW (β̂)X)−1xi∗.

A confidence interval for µi ≡ Eβ[yi] = g−1(ηi) can be obtained by applying the monotonic function
g−1 to the endpoints of the confidence interval for ηi. Note that the resulting confidence interval
may be asymmetric. We can get a symmetric interval by applying the delta method, but this
interval would be less accurate because it involves the delta method approximation in addition to
the Wald approximation.

22.2.6 Wald inference when φ0 is unknown

When φ0 is unknown, we need to plug in an estimate φ̃0 (e.g. the deviance-based or Pearson-based
estimate). Now our standard errors are

SE(β̂j) ≡
√
φ̃0 · [(XTW (β̂)X)−1]jj ,

and our test statistic for H0 : βj = β0
j is

β̂j − β0
j√

φ̃0

√
[(XTW (β̂)X)−1]jj

.

Unlike linear regression, it is not the case in general that β̂ and φ̃0 are independent. Nevertheless,
they are asymptotically independent. Therefore, the above statistic is approximately distributed as
tn−p. Hence, the test for H0 : βj = β0

j is:
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φ(X,y) ≡ 1
(∣∣∣∣∣ β̂j − β

0
j

SE(β̂j)

∣∣∣∣∣ > tn−p(1− α/2)
)
.

Likewise, we would replace z1−α by tn−p(1− α/2) for all tests and confidence intervals concerning
univariate quantities. For multivariate quantities, we will get approximate F distributions instead
of approximate χ2 distributions. For example:

1
|S|(β̂S − β

0
S)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − β0

S)

φ̃0

·∼ F|S|,n−p.

22.3 Likelihood ratio inference

22.3.1 Testing one or more coefficients (φ0 known)

Let `(y,µ) = −D(y,µ)
2φ0

+C be the GLM log-likelihood (recall equation (21.6)). Let H0 : βS = β0
S be

a null hypothesis about some subset of variables S ⊂ {0, 1, . . . , p− 1}, and let µ̂-S be the maximum
likelihood estimate under the null hypothesis. Likelihood ratio inference is based on the following
asymptotic chi-square distribution:

2(`(y, µ̂)− `(y, µ̂-S)) = D(y, µ̂-S)−D(y, µ̂)
φ0

·∼ χ2
|S|. (22.4)

This approximation holds either in large samples (large-sample asymptotics) or in small samples
but with small dispersion (small-dispersion asymptotics). The latter has to do with the fact that
under small-dispersion asymptotics,

d(yi, µi)
φ0/wi

·∼ χ2
1,

so

D(y,µ)
φ0

=
n∑
i=1

d(yi, µi)
φ0/wi

·∼ χ2
n.

Suppose we wish to test the null hypothesis H0 : βS = β0
S . Then, based on the approximation

(22.4), we can define the likelihood ratio test:

φ(X,y) ≡ 1
(
D(y, µ̂-S)−D(y, µ̂)

φ0
> χ2

|S|(1− α)
)
.

22.3.2 Confidence interval for a single coefficient

We can obtain a confidence interval for βj by inverting the likelihood ratio test. Let µ̂-j(β0
j ) be the

fitted mean vector under the constraint βj = β0
j . Then, inverting the likelihood ratio test gives us

the confidence interval:
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CI(βj) ≡
{
βj : D(y, µ̂-j(βj))−D(y, µ̂)

φ0
≤ χ2

|S|(1− α)
}
.

Likelihood ratio-based confidence intervals tend to be more accurate than Wald intervals, especially
when the parameter is near the edge of the parameter space, but they require more computation
because µ̂-j(βj) must be computed on a large grid of βj values. If we wanted to create confidence
regions for groups of parameters, this would become computationally intensive due to the curse of
dimensionality.

22.3.3 Goodness of fit testing (φ0 known)

For φ0 known, we can also construct a goodness of fit test. To this end, we compare the deviances
of the GLM and saturated model:

D(y, µ̂)−D(y,y)
φ0

= D(y; µ̂)
φ0

·∼ χ2
n−p.

Note that the goodness of fit test is a significance test with respect to the saturated model (22.1),
which has n free parameters. Therefore, the number of free parameters increases with the sample
size, so large-sample asymptotics cannot justify this test. Instead, we must rely on small-dispersion
asymptotics. In particular, the likelihood ratio test relies on the saddlepoint approximation for
small dispersions. To verify whether the saddlepoint approximation is accurate, we can apply the
rules of thumb from Section 19.6.2.2 for each observation yi, when it is drawn from the distribution
fitted under the GLM (rather than the saturated model). For instance, we can check that mµ̂i ≥ 3
and m(1− µ̂i) ≥ 3 in the case of grouped logistic regression of µ̂i ≥ 3 for Poisson regression. Here,
µ̂i are the fitted means under the GLM.

22.3.4 Likelihood ratio inference for φ0 unknown

If φ0 is unknown, we can estimate it as discussed above and construct an F -statistic as follows:

F ≡ (D(y; µ̂-S)−D(y; µ̂))/|S|
φ̃0

.

In normal linear model theory, the null distribution of F is exactly F|S|,n−p. For GLMs, the null
distribution of F is approximately F|S|,n−p. We can use this F distribution to construct hypothesis
tests for groups of coefficients, or invert it to get a confidence interval for a single coefficient. We
cannot construct a goodness of fit test in the case that φ0 is unknown because the residual degrees
of freedom would be used up to estimate φ0 rather than to carry out inference.

22.4 Score-based inference

Score-based inference can be used for the same set of inferential tasks as likelihood ratio inference.
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22.4.1 Testing multiple coefficients (φ0 known)

Let H0 : βS = β0
S be a null hypothesis about a subset of variables S, and let β̂0 be the maximum

likelihood estimate under this null hypothesis. In particular, let β̂0
S ≡ β0

S and

β̂0
-S = arg max

β-S

`(β0
S ,β-S). (22.5)

Let us partition the score vector U(β) = ∂`(β)
∂β ≡ (US(β),U-S(β)). We have

U(β) =
(
US(β)
U-S(β)

)

∼ N (0, I(β)) = N

(
0,
[
IS,S(β) IS,-S(β)
I-S,S(β) I-S,-S(β)

])
.

(22.6)

This approximation can be justified either by small-dispersion asymptotics or large-sample
asymptotics (both based on the central limit theorem). The score test statistic is based on plugging
in the null estimate β̂0 into the score vector and extracting the components corresponding to S:

US(β̂0).

This vector does not have the distribution obtained from the coordinates S of equation (22.6) because
an estimate is plugged in. Instead, we can derive the distribution of this vector by conditioning on
U-S(β̂0) = 0:

US(β̂0) d≈ L(US(β) | U-S(β) = 0)|
β=β̂0

·∼ N
(
0, IS,S(β̂0)− IS,-S(β̂0)I-S,-S(β̂0)−1I-S,S(β̂0)

)
.

(22.7)

The second line is obtained from (22.6) using the formula for a conditional distribution of a
multivariate normal distribution. Therefore, the score test is based on the following chi-square
approximation:

US(β̂0)T
[
IS,S(β̂0)− IS,-S(β̂0)I-S,-S(β̂0)−1I-S,S(β̂0)

]−1
US(β̂0) ·∼ χ2

|S|.

Recalling the expressions for the score (21.2) and Fisher information matrix (21.4) in GLMs, we
derive the score statistic

T 2
score(X,y) ≡
1
φ0

(y − µ̂0)TŴ 0M̂0X∗,S×[
XT
∗,SŴ

0X∗,S −XT
∗,SŴ

0X∗,-S(XT
∗,-SŴ

0X∗,-S)−1XT
∗,-SŴ

0X∗,S
]−1
×

XT
∗,SM̂

0Ŵ 0(y − µ̂0).

The score test is therefore

φ(X,y) ≡ 1(T 2
score(X,y) > χ2

|S|(1− α)).

An equivalent formulation of the score test can be derived by noting that[
IS,S(β̂0)− IS,-S(β̂0)I-S,-S(β̂0)−1I-S,S(β̂0)

]−1
= [I(β̂0)−1]S,S .
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Hence, we have

US(β̂0)T
[
IS,S(β̂0)− IS,-S(β̂0)I-S,-S(β̂0)−1I-S,S(β̂0)

]−1
US(β̂0)

= US(β̂0)T [I(β̂0)−1]S,SUS(β̂0)
= U(β̂0)T I(β̂0)−1U(β̂0),

where the last step used the fact that U-S(β̂0) = 0. Specializing to GLMs, we find that the score
test statistic can be written as

T 2
score(X,y) =
1
φ0

(y − µ̂0)TŴ 0M̂0X(XTŴ 0X)−1XTM̂0Ŵ 0(y − µ̂0).
(22.8)

22.4.2 Testing a single coefficient (φ0 known)

If S = {j}, the normal approximation (22.7) specializes to

Tscore
·∼ N(0, 1),

where

Tscore =
xT∗,jM̂

0Ŵ 0(y − µ̂0)√
φ0(xT∗,jŴ 0x∗,j − xT∗,jŴ 0X∗,-j(XT

∗,-jŴ
0X∗,-j)−1XT

∗,-jŴ
0x∗,j)

.

Unlike its multivariate counterparts, we can construct not just a two-sided test but also one-sided
tests based on this normal approximation. For example, below is a right-sided score test for
H0 : βj = β0

j :

φ(X,y) = 1 (Tscore > z1−α) .

The nice thing about the score test is that the model need only be fit under the null hypothesis.
Therefore, computation can be recycled if X∗,-j is a standard set of control variables and there are
several options for x∗,j to test.

22.4.3 Confidence interval for a single coefficient (φ0 known)

Just as with the likelihood ratio test, it is possible to invert a score test for a single coefficient to
obtain a confidence interval. It is uncommon to invert a multivariate test to obtain a confidence
region for multiple coordinates of β, given the computationally expensive search across a grid of
possible β values.

22.4.4 Goodness of fit testing (φ0 known)

We can view goodness of fit testing as testing a hypothesis about the coefficients in the following
augmented GLM:

yi ∼ EDM(µi, φi); g(µi) = xTi∗β + zTi∗γ,
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where Z ∈ Rn×(n−p) is a matrix of extra variables so that the columns of the augmented model
matrix X̃ ≡ [X,Z] form a basis for Rn. Then, the goodness of fit null hypothesis is H0 : γ = 0,
and the alternative hypothesis is the saturated model. To test this hypothesis, we use the score test
statistic in the form of equation (22.8) with the augmented model matrix X̃ in place of X and the
GLM fits µ̂, Ŵ ,M̂ in place of µ̂0, Ŵ 0,M̂0 to reflect that the full original GLM is being fit under
the null hypothesis. Therefore, we get the score statistic

T 2
score = 1

φ0
(y − µ̂)TŴM̂X̃(X̃TŴ X̃)−1X̃TM̂Ŵ (y − µ̂).

Now, note that the matrix X̃ is a full-rank square matrix, and therefore it is invertible. Hence, we
can simplify the statistic as follows:

T 2
score = 1

φ0
(y − µ̂)ŴM̂X̃X̃−1Ŵ−1((X̃)T )−1X̃TM̂Ŵ (y − µ̂)

= 1
φ0

(y − µ̂)ŴM̂Ŵ−1M̂Ŵ (y − µ̂)

= 1
φ0

(y − µ̂)TŴM̂2(y − µ̂)

= 1
φ0

(y − µ̂)Tdiag
(

wi
V (µ̂i)

)
(y − µ̂)

= 1
φ0

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)

≡ 1
φ0
X2,

where X2 is the Pearson chi-square statistic. Therefore, the score test for goodness of fit is:

φ(X,y) ≡ 1
(
X2 > φ0χ

2
n−p(1− α)

)
.

In the context of contingency table analysis (see the next chapter), this test reduces to the Pearson
chi-square test of independence between two categorical variables. This test was proposed in 1900;
it was only pointed out about a century later that this is a score test (Smyth 2003).

As with the likelihood ratio test for goodness of fit, the score test for goodness of fit must be
justified by small-dispersion asymptotics. In particular, the score test for goodness of fit relies on
the central limit theorem for small dispersions. To verify whether this approximation is accurate,
we can apply the rules of thumb from Section 19.6.1.2 for each observation yi, when it is drawn
from the distribution fitted under the GLM (rather than the saturated model). For instance, we
can check that mµ̂i ≥ 5 and m(1− µ̂i) ≥ 5 in the case of grouped logistic regression of µ̂i ≥ 5 for
Poisson regression. Here, µ̂i are the fitted means under the GLM.

22.4.5 Score test inference for φ0 unknown

Score test inference for one or more coefficients βS can be achieved by replacing φ0 with one of
its estimators and replacing the normal and chi-square distributions with t and F distributions,
respectively. For example, the score test for a single coefficient βj is:

φ(X,y) = 1 (Tscore > tn−p(1− α)) ,
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where

Tscore =
xT∗,jM̂

0Ŵ 0(y − µ̂0)√
φ̃0(xT∗,jŴ 0x∗,j − xT∗,jŴ 0X∗,-j(XT

∗,-jŴ
0X∗,-j)−1XT

∗,-jŴ
0x∗,j)

.

The t and F distributions are not exact in finite samples, but are better approximations than the
normal and chi-square distributions. The score test for goodness of fit is not applicable in the case
when φ0 is unknown, similarly to the likelihood ratio test. Indeed, note the relationship between the
Pearson goodness of fit test, which rejects when 1

φ0
X2 > χ2

n−p(1− α), and the Pearson estimator of
the dispersion parameter: φ̃0 ≡ X2

n−p . If we try to plug in the Pearson estimator for the dispersion
into the Pearson goodness of fit test, we end up with a test statistic deterministically equal to
n− p. This reflects the fact that the residual degrees of freedom can either be used to estimate the
dispersion or to test goodness of fit; they cannot be used for both.



Chapter 23

R demo

23.1 Crime data

Let’s revisit the crime data from Homework 2, this time fitting a logistic regression to it.

library(readr)
library(dplyr)
library(ggplot2)

# read crime data
crime_data <- read_tsv("data/Statewide_crime.dat")

# read and transform population data
population_data <- read_csv("data/state-populations.csv")
population_data <- population_data |>

filter(State != "Puerto Rico") |>
select(State, Pop) |>
rename(state_name = State, state_pop = Pop)

# collate state abbreviations
state_abbreviations <- tibble(

state_name = state.name,
state_abbrev = state.abb

) |>
add_row(state_name = "District of Columbia", state_abbrev = "DC")

# add CrimeRate to crime_data
crime_data <- crime_data |>

mutate(STATE = ifelse(STATE == "IO", "IA", STATE)) |>
rename(state_abbrev = STATE) |>
filter(state_abbrev != "DC") |> # remove outlier
left_join(state_abbreviations, by = "state_abbrev") |>
left_join(population_data, by = "state_name") |>

148
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mutate(CrimeRate = Violent / state_pop) |>
select(state_abbrev, CrimeRate, Metro, HighSchool, Poverty, state_pop)

crime_data

# A tibble: 50 x 6
state_abbrev CrimeRate Metro HighSchool Poverty state_pop
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 AK 0.000819 65.6 90.2 8 724357
2 AL 0.0000871 55.4 82.4 13.7 4934193
3 AR 0.000150 52.5 79.2 12.1 3033946
4 AZ 0.0000682 88.2 84.4 11.9 7520103
5 CA 0.0000146 94.4 81.3 10.5 39613493
6 CO 0.0000585 84.5 88.3 7.3 5893634
7 CT 0.0000867 87.7 88.8 6.4 3552821
8 DE 0.000664 80.1 86.5 5.8 990334
9 FL 0.0000333 89.3 85.9 9.7 21944577
10 GA 0.0000419 71.6 85.2 10.8 10830007
# i 40 more rows

We can fit a GLM using the glm command, specifying as additional arguments the observation
weights as well as the exponential dispersion model. In this case, the weights are the state populations
and the family is binomial:

glm_fit <- glm(CrimeRate ~ Metro + HighSchool + Poverty,
weights = state_pop,
family = "binomial",
data = crime_data

)

We can print the summary table as usual:

summary(glm_fit)

Call:
glm(formula = CrimeRate ~ Metro + HighSchool + Poverty, family = "binomial",

data = crime_data, weights = state_pop)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.609e+01 3.520e-01 -45.72 <2e-16 ***
Metro -2.586e-02 5.727e-04 -45.15 <2e-16 ***
HighSchool 9.106e-02 3.450e-03 26.39 <2e-16 ***
Poverty 6.077e-02 4.852e-03 12.53 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15590 on 49 degrees of freedom
Residual deviance: 11742 on 46 degrees of freedom
AIC: 12136

Number of Fisher Scoring iterations: 5

Amazingly, everything is very significant! This is because the weights for each observation (the state
populations) are very high, effectively making the sample size very high. But frankly, this is a bit
suspicious. Glancing at the bottom of the regression summary, we see a residual deviance of 11742
on 46 degrees of freedom. This part of the summary refers to the deviance-based goodness of fit
test. Under the null hypothesis that the model fits well, we expect that the residual deviance has a
distribution of χ2

46, which has a mean of 46.

Let’s formally check the goodness of fit. We can extract the residual deviance and residual degrees
of freedom from the GLM fit:

glm_fit$deviance

[1] 11742.28

glm_fit$df.residual

[1] 46

We can then compute the chi-square p-value:

# compute based on residual deviance from fit object
pchisq(glm_fit$deviance,

df = glm_fit$df.residual,
lower.tail = FALSE

)

[1] 0

# compute residual deviance as sum of squares of residuals
pchisq(sum(resid(glm_fit, "deviance")ˆ2),

df = glm_fit$df.residual,
lower.tail = FALSE

)

[1] 0

Wow, we get a p-value of zero! Let’s try doing a score-based (i.e., Pearson) goodness of fit test:

pchisq(sum(resid(glm_fit, "pearson")ˆ2),
df = glm_fit$df.residual,
lower.tail = FALSE
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)

[1] 0

Also zero. So we need to immediately stop using this model for inference about these data, since it
fits the data very poorly. We will discuss how to build a better model for the crime data in the next
unit. For now, we turn to analyzing a different dataset.

23.2 Noisy miner data

Credit: Generalized Linear Models With Examples in R textbook.

Let’s consider the noisy miner dataset. Noisy miners are a small but aggressive native Australian
bird. We want to know how the number of these birds observed in a patch of land depends on
various factors of that patch of land.

library(GLMsData)
data("nminer")
nminer |> as_tibble()

# A tibble: 31 x 8
Miners Eucs Area Grazed Shrubs Bulokes Timber Minerab
<int> <int> <int> <int> <int> <int> <int> <int>

1 0 2 22 0 1 120 16 0
2 0 10 11 0 1 67 25 0
3 1 16 51 0 1 85 13 3
4 1 20 22 0 1 45 12 2
5 1 19 4 0 1 160 14 8
6 1 18 61 0 1 75 6 1
7 1 12 16 0 1 100 12 8
8 1 16 14 0 1 321 15 5
9 0 3 5 0 1 275 8 0
10 1 12 6 1 0 227 10 4
# i 21 more rows

Since the response is a count, we can model it as a Poisson random variable. Let’s fit that GLM:

glm_fit <- glm(Minerab ~ . - Miners, family = "poisson", data = nminer)
summary(glm_fit)

Call:
glm(formula = Minerab ~ . - Miners, family = "poisson", data = nminer)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.886345 0.875737 -1.012 0.311
Eucs 0.129309 0.021757 5.943 2.79e-09 ***
Area -0.028736 0.013241 -2.170 0.030 *
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Grazed 0.140831 0.364622 0.386 0.699
Shrubs 0.335828 0.375059 0.895 0.371
Bulokes 0.001469 0.001773 0.828 0.408
Timber -0.006781 0.009074 -0.747 0.455
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 150.545 on 30 degrees of freedom
Residual deviance: 54.254 on 24 degrees of freedom
AIC: 122.41

Number of Fisher Scoring iterations: 6

We exclude Miners because this is just a binarized version of the response variable. Things look a
bit better on the GOF front:

pchisq(sum(resid(glm_fit, "deviance")ˆ2),
df = glm_fit$df.residual,
lower.tail = FALSE

)

[1] 0.000394186

pchisq(sum(resid(glm_fit, "pearson")ˆ2),
df = glm_fit$df.residual,
lower.tail = FALSE

)

[1] 0.0001185197

Still, there is some model misspecification, but for now, we still proceed with the rest of the analysis.

The standard errors shown in the summary are based on the Wald test. We can get Wald confidence
intervals based on these standard errors by using the formula:

glm_fit |>
summary() |>
coef() |>
as.data.frame() |>
transmute(`2.5 %` = Estimate + qnorm(0.025)*`Std. Error`,

`97.5 %` = Estimate + qnorm(0.025)*`Std. Error`)

2.5 % 97.5 %
(Intercept) -2.602757559 -2.602757559
Eucs 0.086666177 0.086666177
Area -0.054686818 -0.054686818
Grazed -0.573814583 -0.573814583
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Shrubs -0.399274191 -0.399274191
Bulokes -0.002007061 -0.002007061
Timber -0.024565751 -0.024565751

Or, we can simply use confint.default():

confint.default(glm_fit)

2.5 % 97.5 %
(Intercept) -2.602757559 0.830066560
Eucs 0.086666177 0.171951888
Area -0.054686818 -0.002784651
Grazed -0.573814583 0.855476296
Shrubs -0.399274191 1.070929206
Bulokes -0.002007061 0.004944760
Timber -0.024565751 0.011002885

Or, we might want LRT-based confidence intervals, which are given by confint():

confint(glm_fit)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -2.63176754 0.812111327
Eucs 0.08782624 0.173336323
Area -0.05658079 -0.004456166
Grazed -0.57858596 0.855903871
Shrubs -0.38600748 1.090319407
Bulokes -0.00214123 0.004838901
Timber -0.02483241 0.010820749

In this case, the two sets of confidence intervals seem fairly similar.

Now, we can get prediction intervals, either on the linear predictor scale or on the mean scale:

pred_linear <- predict(glm_fit, newdata = nminer[31,], se.fit = TRUE)
pred_mean <- predict(glm_fit, newdata = nminer[31,], type = "response", se.fit = TRUE)

pred_linear

$fit
31

0.6556799

$se.fit
[1] 0.2635664

$residual.scale
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[1] 1

pred_mean

$fit
31

1.926452

$se.fit
31

0.5077481

$residual.scale
[1] 1

log(pred_mean$fit)

31
0.6556799

We see that the prediction on the linear predictor scale is exactly the logarithm of the prediction
on the mean scale. However, the standard error given on the mean scale uses the delta method.
We prefer to directly transform the confidence interval from the linear scale using the inverse link
function (in this case, the exponential):

# using delta method
c(pred_mean$fit + qnorm(0.025)*pred_mean$se.fit,

pred_mean$fit + qnorm(0.975)*pred_mean$se.fit)

31 31
0.9312839 2.9216197

# using transformation
exp(c(pred_linear$fit + qnorm(0.025)*pred_linear$se.fit,

pred_linear$fit + qnorm(0.975)*pred_linear$se.fit))

31 31
1.149238 3.229285

In this case, the intervals obtained are somewhat different. We can plot confidence intervals for the
fit in a univariate case (e.g., regressing Minerab on Eucs) using geom_smooth():

nminer |>
ggplot(aes(x = Eucs, y = Minerab)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "glm",

method.args = list(family = "poisson"))
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`geom_smooth()` using formula = 'y ~ x'
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We can also test the coefficients in the model. The Wald tests for individual coefficients were already
given by the regression summary above. We might want to carry out likelihood ratio tests for
individual coefficients instead. For example, let’s do this for Eucs:

glm_fit_partial <- glm(Minerab ~ . - Miners - Eucs, family = "poisson", data = nminer)
anova(glm_fit_partial, glm_fit, test = "LRT")

Analysis of Deviance Table

Model 1: Minerab ~ (Miners + Eucs + Area + Grazed + Shrubs + Bulokes +
Timber) - Miners - Eucs

Model 2: Minerab ~ (Miners + Eucs + Area + Grazed + Shrubs + Bulokes +
Timber) - Miners

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 25 95.513
2 24 54.254 1 41.259 1.333e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Eucs variable is quite significant! We can manually carry out the LRT as a sanity check:

deviance_partial <- glm_fit_partial$deviance
deviance_full <- glm_fit$deviance
lrt_stat <- deviance_partial - deviance_full
p_value <- pchisq(lrt_stat, df = 1, lower.tail = FALSE)
tibble(lrt_stat, p_value)

# A tibble: 1 x 2
lrt_stat p_value
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<dbl> <dbl>
1 41.3 1.33e-10

We can test groups of variables using the likelihood ratio test as well.



Part V

Generalized linear models: Special
cases
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Chapter 4 developed a general theory for GLMs. In Chapter 5, we specialize this theory to several
important cases, including logistic regression and Poisson regression.



Chapter 24

Logistic regression

24.1 Model definition and interpretation

24.1.1 Model definition

Recall from Chapter 4 that the logistic regression model is

miyi
ind∼ Bin(mi, πi); logit(πi) = log πi

1− πi
= xTi∗β.

Here we use the canonical logit link function, although other link functions are possible. We also
set the offsets to 0. The interpretation of the parameter βj is that a unit increase in xj—other
predictors held constant—is associated with an (additive) increase of βj on the log-odds scale or
a multiplicative increase of eβj on the odds scale. Note that logistic regression data come in two
formats: ungrouped and grouped. For ungrouped data, we have m1 = · · · = mn = 1, so yi ∈ {0, 1}
are Bernoulli random variables. For grouped data, we can have several independent Bernoulli
observations per predictor xi∗, which give rise to binomial proportions yi ∈ [0, 1]. This happens most
often when all the predictors are discrete. You can always convert grouped data into ungrouped data,
but not necessarily vice versa. We’ll discuss below that the grouped and ungrouped formulations of
logistic regression have the same MLE and standard errors but different deviances.

24.1.2 Generative model equivalent

Consider the following generative model for (x, y) ∈ Rp−1 × {0, 1}:

y ∼ Ber(π); x|y ∼
{
N(µ0,V ) if y = 0
N(µ1,V ) if y = 1

.
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Then, we can derive that y|x follows a logistic regression model (called a discriminative model
because it conditions on x). Indeed,

logit(p(y = 1|x)) = log p(y = 1)p(x|y = 1)
p(y = 0)p(x|y = 0)

= log
π exp

(
−1

2(x− µ1)TV −1(x− µ1)
)

(1− π) exp
(
−1

2(x− µ0)TV −1(x− µ0)
)

= β0 + xTV −1(µ1 − µ0)
≡ β0 + xTβ−0.

This is another natural route to motivating the logistic regression model.

24.1.3 Special case: 2× 2 contingency table

Suppose that x ∈ {0, 1}, and consider the logistic regression model logit(πi) = β0 + β1xi. For
example, suppose that x ∈ {0, 1} encodes treatment (1) and control (0) in a clinical trial, and
yi ∈ {0, 1} encodes success (1) and failure (0). We make n observations of (xi, yi) in this ungrouped
setup. The parameter eβ1 can be interpreted as the odds ratio:

eβ1 = P[y = 1|x = 1]/P[y = 0|x = 1]
P[y = 1|x = 0]/P[y = 0|x = 0] .

This parameter is the multiple by which the odds of success increase when going from control to
treatment. We can summarize such data via the 2× 2 contingency table (Table 24.1). A grouped
version of this data would be {(x1, y1) = (0, 7/24), (x2, y2) = (1, 9/21)}. The null hypothesis
H0 : β1 = 0 ⇐⇒ H0 : eβ1 = 1 states that the success probability in both rows of the table is the
same.

Table 24.1: An example of a 2× 2 contingency table.

Success Failure Total
Treatment 9 12 21
Control 7 17 24
Total 16 29 45

24.2 Logistic regression with case-control studies

In a prospective study (e.g. a clinical trial), we assign treatment or control (i.e., x) to individuals,
and then observe a binary outcome (i.e., y). Sometimes, the outcome y takes a long time to measure
or has a highly imbalanced distribution in the population (e.g., the development of lung cancer). In
this case, an appealing study design is the retrospective study, where individuals are sampled based
on their response values (e.g., presence of lung cancer) rather than their treatment/exposure status
(e.g., smoking). It turns out that a logistic regression model is appropriate for such retrospective
study designs as well.

Indeed, suppose that y|x follows a logistic regression model. Let’s try to figure out the distribution
of y|x in the retrospectively gathered sample. Letting z ∈ {0, 1} denote the indicator that an
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observation is sampled, define ρ1 ≡ P[z = 1|y = 1] and ρ0 ≡ P[z = 1|y = 0], and assume that
P[z = 1, y,x] = P[z = 1|y]. The latter assumption states that the predictors x were not used in the
retrospective sampling process. Then,

logit(P[y = 1|z = 1,x]) = log ρ1P[y = 1|x]
ρ0P[y = 0|x]

= log ρ1
ρ0

+ logit(P[y = 1|x])

=
(

log ρ1
ρ0

+ β0

)
+ xTβ−0.

Thus, conditioning on retrospective sampling changes only the intercept term, but preserves the
coefficients of x. Therefore, we can carry out inference for β−0 in the same way regardless of whether
the study design is prospective or retrospective.

24.3 Estimation and inference

24.3.1 Score and Fisher information

Recall from Chapter 4 that

U(β) = 1
φ0
XTMW (y − µ) and I(β) = 1

φ0
XTWX,

where

W ≡ diag
(

wi
V (µi)(dηi/dµi)2

)
,

M ≡ diag
(
∂ηi
∂µi

)
.

Since logistic regression uses a canonical link function, we get the following simplifications:

W = diag (wiV (µi)) = diag (miπi(1− πi)) ,

M = diag
( 1
πi(1− πi)

)
.

Here we have substituted the notation π for µ, and recall that for logistic regression, φ0 = 1,
wi = mi, and V (πi) = πi(1− πi). Therefore, the score equations for logistic regression are

0 = XTdiag (mi) (y − µ̂) ⇐⇒
n∑
i=1

mixij(yi − π̂i) = 0, (24.1)

for j = 0, . . . , p− 1. We can solve these equations using IRLS. The Fisher information is

I(β) = XTdiag (miπi(1− πi))X.
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24.3.2 Wald inference

Using the results in the previous paragraph, we can carry out Wald inference based on the normal
approximation

β̂
·∼ N

(
β,
(
XTdiag(miπ̂i(1− π̂i))X

)−1
)
.

This approximation holds for ∑n
i=1mi →∞.

24.3.2.1 Example: 2× 2 contingency table

Suppose we have a 2× 2 contingency table. The grouped logistic regression formulation of these
data is

y0 ∼
1
m0

Bin(m0, π0); y1 ∼
1
m1

Bin(m1, π1); logit(πi) = β0 + β1xi.

In this case, we have n = p = 2, so the grouped logistic regression model is saturated. Therefore, we
have

π̂0 = y0, and π̂1 = y1, so β̂1 = log π̂1/(1− π̂1)
π̂0/(1− π̂0) = log y1/(1− y1)

y0/(1− y0) .

The squared Wald standard error for β̂1 is

SE2(β̂1) ≡
[(
XTdiag(miπ̂i(1− π̂i))X

)−1
]

22

=


(1 0

1 1

)T (
m0y0(1− y0) 0

0 m1y1(1− y1)

)(
1 0
1 1

)−1


22

=

((m0y0(1− y0) +m1y1(1− y1) m1y1(1− y1)
m1y1(1− y1) m1y1(1− y1)

))−1


22

= m0y0(1− y0) +m1y1(1− y1)
m0y0(1− y0) ·m1y1(1− y1)

= 1
m0y0(1− y0) + 1

m1y1(1− y1) .

Therefore, the Wald test for H0 : β1 = 0 rejects if

∣∣∣∣∣ β̂1

SE(β̂1)

∣∣∣∣∣ =

∣∣∣∣∣∣
log y1/(1−y1)

y0/(1−y0)√
1

m0y0(1−y0) + 1
m1y1(1−y1)

∣∣∣∣∣∣ > z1−α/2.
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24.3.2.2 Hauck-Donner effect

Unfortunately, Wald inference in finite samples does not always perform very well. The Wald test
above is known to be conservative if one or more of the mean parameters (in this case, πi) tends to
the edge of the parameter space (in this case, πi → 0 or πi → 1). This is called the Hauck-Donner
effect. As an example, consider testing H0 : β0 = 0 in the intercept-only model

my ∼ Bin(m,π); logit(π) = β0.

The Wald test statistic is z ≡ β̂/SE = logit(y)
√
my(1− y). This test statistic actually tends to

decrease as y → 1 (see Figure 24.1), since the standard error grows faster than the estimate itself.
So the test statistic becomes less significant as we go further away from the null! A similar situation
arises in the 2× 2 contingency table example above, where the Wald test for H0 : β1 = 0 becomes
less significant as y0 → 0 and y1 → 1. As a limiting case of this, the Wald test is undefined if y0 = 0
and y1 = 1. This situation is a special case of perfect separability in logistic regression: when a
hyperplane in covariate space separates observations with yi = 0 from those with yi = 1. Some of
the maximum likelihood coefficient estimates are infinite in this case, causing the Wald test to be
undefined since it uses these coefficient estimates as test statistics.
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Figure 24.1: The Hauck-Donner effect: The Wald statistic for testing H0 : π = 0.5 within the model
my ∼ Bin(m,π) decreases as the proportion y approaches 1. Here, m = 25.

24.3.3 Likelihood ratio inference

24.3.3.1 The Bernoulli and binomial deviance

Let’s first compute the deviance of a Bernoulli or binomial model. These deviances are the same
because these two models have the same natural parameter and log-partition function. Recalling
the definition of the unit deviance (19.4), we have

d(y, µ) ≡ 2{[θ(y)y − ψ(θ(y))]− [θ(µ)y − ψ(θ(µ))]}
= 2{[y log y

1−y + log(1− y)]− [y log π
1−π + log(1− π)]}

= 2
(
y log y

π
+ (1− y) log 1− y

1− π

)
.
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The total deviance, therefore, is

D(y, π̂) ≡
n∑
i=1

wid(yi, π̂i)

= 2
n∑
i=1

(
miyi log yi

π̂i
+mi(1− yi) log 1− yi

1− π̂i

)
.

(24.2)

24.3.3.2 Comparing the deviances of grouped and ungrouped logistic regression
models

Let us pause to compare the total deviances of grouped and ungrouped logistic regression models.
Consider the following grouped and ungrouped models:

ygrp
i

ind∼ 1
mi

Bin(mi, πi) and yungrp
ik

ind∼ Ber(πi), k = 1, . . . ,mi,

where
logit(πi) = xTi∗β.

The relationship between the grouped and ungrouped observations is that

ygrp
i = 1

mi

mi∑
k=1

yungrp
ik ≡ ȳungrp

i .

Since the grouped and ungrouped logistic regression models have the same likelihoods, it follows
that they have the same maximum likelihood estimates β̂ and π̂. However, the total deviances of
the two models are different. The total deviance of the grouped model can be derived from equation
(24.2):

D(ygrp, π̂)

= 2
n∑
i=1

(
miy

grp
i log y

grp
i

π̂i
+mi(1− ygrp

i ) log 1− ygrp
i

1− π̂i

)
.

(24.3)

On the other hand, the total deviance of the ungrouped model is

D(yungrp, π̂)

= 2
n∑
i=1

mi∑
k=1

(
yungrp
ik log y

ungrp
ik

π̂i
+ (1− yungrp

ik ) log 1− yungrp
ik

1− π̂i

)

= 2
n∑
i=1

mi∑
k=1

(
yungrp
ik log 1

π̂i
+ (1− yungrp

ik ) log 1
1− π̂i

)

= 2
n∑
i=1

(
miy

grp
i log 1

π̂i
+mi(1− ygrp

i ) log 1
1− π̂i

)
.

(24.4)

In the second line, we used the fact that y log y → 0 and (1− y) log(1− y)→ 0 as y → 0 or y → 1.
Comparing the grouped (24.3) and ungrouped (24.4) total deviances, we see that these are given
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by related, but different expressions. Because small dispersion asymptotics applies to the grouped
model but not the ungrouped model, we have that under small-dispersion asymptotics,

D(ygrp, π̂) ·∼ χ2
n−p but D(yungrp, π̂) 6∼ χ2

n−p.

24.3.3.3 Likelihood ratio inference for one or more coefficients

Letting π̂0 and π̂1 be the MLEs from two nested models, we can then express the likelihood ratio
statistic as

D(y, π̂0)−D(y, π̂1) = 2
n∑
i=1

(
miyi log π̂i1

π̂i0
+mi(1− yi) log 1− π̂i1

1− π̂i0

)
.

Note that this expression holds for grouped or ungrouped logistic regression models. We can then
construct a likelihood ratio test in the usual way. Likelihood ratio inference can be justified by
either large-sample or small-dispersion asymptotics.

24.3.3.4 Goodness of fit testing

In grouped logistic regression, we can also use the likelihood ratio test to test goodness of fit. To do
so, we compare the total deviance of the fitted model (24.2) to a chi-squared quantile. In particular,
the deviance-based goodness of fit test rejects when:

D(y, π̂) =

2
n∑
i=1

(
miyi log yi

π̂i
+mi(1− yi) log 1− yi

1− π̂i

)
> χ2

n−p(1− α).
(24.5)

This test is justified by small-dispersion asymptotics based on the saddlepoint approximation, which
is decent when min(miπ̂i, (1−mi)π̂i) ≥ 3 for each i.

24.3.3.5 Example: 2× 2 table

Let us revisit the example of the 2× 2 table model, within which we would like to test H0 : β1 = 0.
Note that we can view this as a goodness of fit test of the intercept-only model in a grouped logistic
regression model since the alternative model is the saturated model (it has two observations and
two parameters). To compute the likelihood ratio statistic, we first need to fit the intercept-only
model. The score equations (24.1) reduce to:

m0(y0 − π̂) +m1(y1 − π̂) = 0 =⇒ π̂0 = π̂1 = π̂ = m0y0 +m1y1
m0 +m1

.

Therefore, the deviance-based test of H0 : β1 = 0 rejects when:
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D(y, π̂) = 2
n∑
i=1

(
miyi log yi

π̂i
+mi(1− yi) log 1− yi

1− π̂i

)
= 2

(
m0y0 log y0

π̂
+m0(1− y0) log 1− y0

1− π̂

)
+

2
(
m1y1 log y1

π̂
+m1(1− y1) log 1− y1

1− π̂

)
> χ2

1(1− α).

Likelihood ratio inference can give nontrivial conclusions in cases when Wald inference cannot,
e.g. in the case of perfect separability. In the above example, suppose y0 = 0 and y1 = 1, giving
perfect separability. Then, we can use the fact that y log y → 0 and (1− y) log(1− y)→ 0 as y → 0
or y → 1 to see that:

D(y, π̂) = 2
(
m0 log 1

1− π̂ +m1 log 1
π̂

)
= 2

(
m0 log m0 +m1

m0
+m1 log m0 +m1

m1

)
.

(24.6)

This gives us a finite value, which we can compare to χ2
1(1− α) to test H0 : β1 = 0. Even though

the likelihood ratio statistic is still defined, we do still have to be careful because the data may
suggest that the parameters are too close to the boundary of the parameter space. However, the
rate at which the test breaks down as the parameters approach this boundary is slower than the
rate at which the Wald test breaks down.

24.3.4 Score-based inference

Here we present only the score-based goodness-of-fit test. Recalling Section 22.4.4, the score statistic
for goodness of fit is Pearson’s X2 statistic:

X2 =
n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)
=

n∑
i=1

mi(yi − π̂i)2

π̂i(1− π̂i)
. (24.7)

This test is justified by small-dispersion asymptotics based on the central limit theorem, which is
decent when min(miπi, (1−mi)πi) ≥ 5 for each i.

24.3.5 Fisher’s exact test

As an alternative to asymptotic tests for logistic regression, in the case of 2× 2 tables, there is an
exact test of H0 : β1 = 0. Suppose we have:

s1 = m1y1 ∼ Bin(m1, π1) and s2 = m2y2 ∼ Bin(m2, π2). (24.8)

The trick is to conduct inference conditional on s1 + s2. Note that under H0 : π1 = π2, we have:
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P[s1 = t|s1 + s2 = v]
= P[s1 = t|s1 + s2 = v]

= P[s1 = t, s2 = v − t]
P[s1 + s2 = v]

=
(m1
t

)
πt(1− π)m1−t

(m2
v−t
)
πv−t(1− π)m2−(v−t)(m1+m2

v

)
πv(1− π)m1+m2−v

=
(m1
t

)(m2
v−t
)(m1+m2

v

) .

(24.9)

Therefore, a finite-sample p-value to test H0 : π1 = π2 versus H1 : π1 > π2 is P[s1 ≥ t|s1 + s2], which
can be computed exactly based on the formula above.



Chapter 25

Poisson regression

25.1 Model definition and interpretation

The Poisson regression model (with offsets) is:

yi
ind∼ Poi(µi); logµi = oi + xTi∗β. (25.1)

Because the log of the mean is linear in the predictors, Poisson regression models are often called
loglinear models. To interpret the coefficients, note that a unit increase in xj (while keeping the
other variables fixed) is associated with an increase in the predicted mean by a factor of eβj .

25.2 Example: Modeling rates

One cool feature of the Poisson model is that rates can be easily modeled with the help of offsets.
Let’s say that the count yi is collected over the course of a time interval of length ti, or a spatial
region with area ti, or a population of size ti, etc. Then, it is meaningful to model:

yi
ind∼ Poi(πiti), log πi = xTi∗β,

where πi represents the rate of events per day / per square mile / per capita, etc. In other words:

yi
ind∼ Poi(µi), logµi = log ti + xTi∗β,

which is exactly equation (25.1) with offsets oi = log ti. For example, in single-cell RNA-sequencing,
yi is the number of RNA molecules aligning to a gene in cell i and ti is the total number of RNA
molecules measured in the cell, a quantity called the library size. We might use a Poisson regression
model to carry out a differential expression analysis between two cell types.

25.3 Estimation and inference

25.3.1 Score, Fisher information, and Wald inference

We found in Chapter 4 that the score and Fisher information for Poisson regression are:

168
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U(β) = XT (y − µ),

and:

I(β) = XTWX = XTdiag(V (µi))X = XTdiag(µi)X,

respectively. Hence, the normal equations for the MLE are:

XT (y − µ̂).

Wald inference is based on the approximation:

β̂
·∼ N(β, (XTdiag(µ̂i)X)−1).

25.3.2 Likelihood ratio inference

For likelihood ratio inference, we first derive the total deviance. The unit deviance of a Poisson
distribution is:

d(y, µ) = 2
(
y log y

µ
− (y − µ)

)
.

Hence, the total deviance is:

D(y,µ) =
n∑
i=1

d(yi, µi) = 2
n∑
i=1

(
yi log yi

µi
− (yi − µi)

)
.

The residual deviance is then:

D(y, µ̂) = 2
n∑
i=1

(
yi log yi

µ̂i
− (yi − µ̂i)

)
= 2

n∑
i=1

yi log yi
µ̂i
.

The last equality holds for any model containing the intercept, since by the normal equations we
have ∑n

i=1(yi − µ̂i) = 1T (y − µ̂) = 0. We can carry out a likelihood ratio test for H0 : βS = 0 via:

D(y, µ̂0)−D(y, µ̂) = 2
n∑
i=1

yi log µ̂i
µ̂0
i

·∼ χ2
|S|.

We can carry out a goodness-of-fit test via:

D(y, µ̂) = 2
n∑
i=1

yi log yi
µ̂i

·∼ χ2
n−p.

This approximation is justified by the saddlepoint approximation in small-dispersion asymptotics,
which is reliable if µ̂i ≥ 3 for all i.
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25.3.3 Score-based inference

Recalling Section 22.4.2, the score test for H0 : βj = 0 is based on the approximation

xT∗,j(y − µ̂0)√
xT∗,jŴ

0x∗,j − xT∗,jŴ 0X∗,-j(XT
∗,-jŴ

0X∗,-j)−1XT
∗,-jŴ

0x∗,j

·∼ N(0, 1),

where
Ŵ 0 = diag(µ̂0).

On the other hand, the score test for goodness-of-fit is based on the Pearson X2 statistic:

X2 ≡
n∑
i=1

(yi − µ̂i)2

µ̂i

·∼ χ2
n−p.

This approximation is justified by the central limit theorem in small-dispersion asymptotics, which
is reliable if µ̂i ≥ 5 for all i.

25.4 Relationship between Poisson and multinomial distributions

Suppose that yi ind∼ Poi(µi) for i = 1, . . . , n. Then,

P
[
y1 = m1, . . . , yn = mn

∣∣∣∣∣∑
i

yi = m

]
= P[y1 = m1, . . . , yn = mn]

P[∑i yi = m]

=
∏n
i=1 e

−µi µ
mi
i
mi!

e−
∑

i
µi (
∑

i
µi)m
m!

=
(

m

m1, . . . ,mn

)
n∏
i=1

πmii ,

where
πi ≡

µi∑n
i′=1 µi′

.

We recognize the last expression in the previous display as the probability mass function of
the multinomial distribution with parameters (π1, . . . , πn) summing to one. In words, the joint
distribution of a set of independent Poisson distributions conditional on their sum is a multinomial
distribution.

25.5 Example: 2× 2 contingency tables

25.5.1 Poisson model for 2× 2 contingency tables

Let’s say that we have two binary random variables x1, x2 ∈ {0, 1} with joint distribution P(x1 =
j, x2 = k) = πjk for j, k ∈ {0, 1}. We collect a total of m samples from this joint distribution and
summarize the counts in a 2×2 table, where yjk is the number of times we observed (x1, x2) = (j, k),
so that:
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(y00, y01, y10, y11) ∼ Mult(m, (π00, π01, π10, π11)).

Our primary question is whether these two random variables are independent, i.e.

πjk = πj+π+k, (25.2)

where
πj+ ≡ P[x1 = j] = πj1 + πj2; π+k ≡ P[x2 = k] = π1k + π2k.

We can express this equivalently as:

π00π11 = π01π10.

In other words, we can express the independence hypothesis concisely as:

H0 : π11π00
π10π01

= 1. (25.3)

Let’s arbitrarily assume that, additionally, m ∼ Poi(µ++). Then, by the relationship between
Poisson and multinomial distributions, we have:

yjk
ind∼ Poi(µ++πjk).

Let i ∈ {1, 2, 3, 4} index the four pairs

(x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},

so that for i = 1, . . . , 4, we have

yi
ind∼ Poi(µi); logµi = β0 + β1xi1 + β2xi2 + β12xi1xi2, (25.4)

where:

β0 = logµ++ + log π00; β1 = log π10
π00

;

β2 = log π01
π00

; β12 = log π11π00
π10π01

.
(25.5)

Note that the independence hypothesis (25.3) reduces to the hypothesis H0 : β12 = 0:

H0 : π11π00
π10π01

= 1 ⇐⇒ H0 : β12 = 0.

So the presence of an interaction in the Poisson regression is equivalent to a lack of independence
between x1 and x2. We can test the latter hypothesis using our standard tools for Poisson regression.

For example, we can use the Pearson X2 goodness-of-fit test. To apply this test, we must find the
fitted means under the null hypothesis model:
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yi
ind∼ Poi(µi); logµi = β0 + β1xi1 + β2xi2, i = 1, . . . , 4. (25.6)

The normal equations give us the following:

y++ ≡
1∑

j,k=0
yjk =

1∑
j,k=0

µ̂jk ≡ µ̂++;

y+1 ≡
1∑
j=0

yj1 =
1∑
j=0

µ̂j1 ≡ µ̂+1;

y1+ ≡
1∑

k=0
y1k =

1∑
k=0

µ̂1k ≡ µ̂1+.

By combining these equations, we arrive at:

µ̂++ = y++; µ̂j+ = yj+ for all j ∈ {0, 1}; µ̂+k = y+k for all k ∈ {0, 1}.

Therefore, the fitted means under the null hypothesis model (25.6) are:

µ̂jk = µ̂++π̂jk = µ̂++π̂j+π̂+k = y++
yj+
y++

y+k
y++

= yj+y+k
y++

.

Hence, we have:

X2 =
1∑

j,k=0

(yjk − µ̂jk)2

µ̂jk
=

1∑
j,k=0

(yjk − yj+y+k/y++)2

yj+y+k/y++
.

Alternatively, we can use the likelihood ratio test, which gives:

G2 = 2
1∑

j,k=0
yjk log yjk

µ̂jk
= 2

1∑
j,k=0

yjk log yjk
yj+y+k/y++

.

We would compare both X2 and G2 to a χ2
1 distribution.

25.5.2 Inference is the same regardless of conditioning on margins

Now, our data might actually have been collected such that m = y++ ∼ Poi(µ++); for example,
maybe y++ = m was fixed in advance. Is the Poisson inference proposed above actually valid in the
latter case? In fact, it is! To see this, let us consider the log likelihoods of the two models:

pµ(y) = pµ++(y++)pπ(y|y++),

so:
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log pµ(y) = log pµ++(y++) + log pπ(y|y++) = C + log pπ(y|y++).

In other words, the log-likelihoods of the Poisson and multinomial models, as a function of π,
differ from each other by a constant. Therefore, any likelihood-based inference in these models is
equivalent. The same argument shows that conditioning on the row or column totals (as opposed
to the overall total) also yields the same exact inference. Therefore, regardless of the sampling
mechanism, we can always conduct an independence test in a 2× 2 table via a Poisson regression.

25.5.3 Equivalence among Poisson and logistic regressions

We’ve talked about two ways to view a 2× 2 contingency table. In the logistic regression view, we
thought about one variable as a predictor and the other as a response, seeking to test whether the
predictor has an impact on the response. In the Poisson regression view, we thought about the two
variables symmetrically, seeking to test independence. It turns out that these two perspectives are
equivalent. Recall that we have derived in equations (25.4) and (25.5) that x1 ⊥⊥ x2 if and only if
β12 = 0 in the Poisson regression:

log yi ind∼ Poi(µi), logµi = β0 + β1xi1 + β2xi2 + β12xi1xi2, i = 1, . . . , 4.

However, we have:

β12 = log π11π00
π01π10

= log π11/π01
π01/π00

= log P[x2 = 1 | x1 = 1]/P[x2 = 0 | x1 = 1]
P[x2 = 1 | x1 = 0]/P[x2 = 0 | x1 = 0] .

Recalling the logistic regression of x2 on x1:

logit P[x2 = 1 | x1] = β̃0 + β̃1x1, (25.7)

and that β̃1 is the log odds ratio, we conclude that:

β12 = β̃1,

so x1 ⊥⊥ x2 if and only if β̃1 = 0. Due to the equivalence between Poisson and multinomial
distributions, the hypothesis tests and confidence intervals for the log odds ratio β12 (or β̃1) obtained
from Poisson and logistic regressions will be the same.

25.6 Example: Poisson models for J ×K contingency tables

Suppose now that x1 ∈ {0, 1, . . . , J − 1} and x2 ∈ {0, 1, . . . ,K − 1}. Then, we denote P[x1 = j, x2 =
k] = πjk. We still are interested in testing for independence between x1 and x2, which amounts to a
goodness-of-fit test for the Poisson model:
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yjk
ind∼ Poi(µjk); logµjk = β0 + β1

j + β2
k.

The score (Pearson) and deviance-based goodness-of-fit statistics for this test are:

X2 =
J−1∑
j=0

K−1∑
k=0

(yjk − µ̂jk)2

µ̂jk
and G2 = 2

J−1∑
j=0

K−1∑
k=0

yjk log yjk
µ̂jk

,

where µ̂jk = ŷ++
yj+
y++

y+k
y++

. Like with the 2× 2 case, the test is the same regardless of whether we
condition on the row sums, column sums, total count, or if we do not condition at all. The degrees
of freedom in the full model is JK, while the degrees of freedom in the partial model is J +K − 1,
so the degrees of freedom for the goodness-of-fit test is JK − J −K + 1 = (J − 1)(K − 1). Pearson
erroneously concluded that the test had JK − 1 degrees of freedom, which, when Fisher corrected
it, created a lot of animosity between these two statisticians.

25.7 Example: Poisson models for J ×K × L contingency tables

These ideas can be extended to multi-way tables, for example, three-way tables. If we have
x1 ∈ {0, 1, . . . , J − 1}, x2 ∈ {0, 1, . . . ,K − 1}, x3 ∈ {0, 1, . . . , L− 1}, then we might be interested in
testing several kinds of null hypotheses:

• Mutual independence: H0 : x1 ⊥⊥ x2 ⊥⊥ x3.
• Joint independence: H0 : x1 ⊥⊥ (x2, x3).
• Conditional independence: H0 : x1 ⊥⊥ x2 | x3.

These three null hypotheses can be shown to be equivalent to the Poisson regression model:

yjkl
ind∼ Poi(µjkl),

where:

logµjkl = β0 + β1
j + β2

k + β3
l (mutual independence);

logµjkl = β0 + β1
j + β2

k + β3
l + β2,3

kl (joint independence);

logµjkl = β0 + β1
j + β2

k + β3
l + β1,3

jl + β2,3
kl (conditional independence).

Here, j = 1, . . . , J − 1, k = 1, . . . ,K − 1, and l = 1, . . . , L− 1.

For example, consider conditional independence. In this case, we have

πjkl = P[x1 = j, x2 = k | x3 = l]
= P[x1 = j | x3 = l]P[x2 = k | x3 = l]P[x3 = l]

= πj+l
π++l

πk+l
π++l

π++l

= πj+lπ+kl
π++l

.
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Therefore,

logµjkl = logµ+++ + log πjkl
= logµ+++ + log πj+l + log π+kl − log π++l.

Therefore,

logµi = logµ+++ +
J−1∑
j=0

L−1∑
l=0

log πj+l1(xi1 = j)1(xi3 = l)

+
K−1∑
k=0

L−1∑
l=0

log πk+l1(xi2 = k)1(xi3 = l)

−
L−1∑
l=0

log π++l1(xi3 = l).

In this representation, there is some multicollinearity among the predictors. For example,
{1(xi3=l)}L−1

l=0 are multicollinear with the intercept, so we remove the 1(xi3 = 0). Next,
{1(xi1 = j)1(xi3 = l)}J−1

j=0 are multicollinear with 1(xi3 = l) for each l, so we remove
1(xi1 = 0)1(xi3 = l) for each l. Similarly, {1(xi2 = k)1(xi3 = l)}K−1

k=0 are multicollinear with
1(xi3 = l) for each l, so we remove 1(xi2 = 0)1(xi3 = l) for each l. This leaves us with the model

logµi = β0 +
J−1∑
j=1

L−1∑
l=0

β1,3
j,l (xi1 = j)1(xi3 = l)

+
K−1∑
k=1

L−1∑
l=0

β2,3
k,l 1(xi2 = k)1(xi3 = l)

+
L−1∑
l=1

β3
l 1(xi3 = l).

Alternatively, we can reparameterize to the following form:

logµi = β0+
J−1∑
j=1

β1
j 1(xi1 = j) +

K−1∑
k=1

β2
k1(xi2 = k) +

L−1∑
l=1

β3
l 1(xi3 = l)

+
J−1∑
j=1

L−1∑
l=1

β1,3
j,l (xi1 = j)1(xi3 = l) +

K−1∑
k=1

L−1∑
l=1

β2,3
k,l 1(xi2 = k)1(xi3 = l).

Note that the coefficients here are not necessarily the same as the coefficients in the display above.
This formulation recovers the conditional independence model referenced above.
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Negative binomial regression

26.1 Overdispersion

A pervasive issue with Poisson regression is overdispersion: that the variances of observations are
greater than the corresponding means. A common cause of overdispersion is omitted variable bias.
Suppose that y ∼ Poi(µ), where logµ = β0 + β1x1 + β2x2. However, we omitted variable x2 and are
considering the GLM based on logµ = β0 + β1x1. If β2 6= 0 and x2 is correlated with x1, then we
have a confounding issue. Let’s consider the more benign situation that x2 is independent of x1.
Then, we have

E[y|x1] = E[E[y|x1, x2]|x1]
= E[eβ0+β1x1+β2x2 |x1]
= eβ0+β1x1E[eβ2x2 ] = eβ

′
0+β1x1 .

(26.1)

So in the model for the mean of y, the impact of omitted variable x2 seems only to have impacted
the intercept. Let’s consider the variance of y:

Var[y|x1] = E[Var[y|x1, x2]|x1] + Var[E[y|x1, x2]|x1]
= eβ

′
0+β1x1 + e2(β′0+β1x1)Var[eβ2x2 ]

> eβ
′
0+β1x1

= E[y|x1].

(26.2)

So indeed, the variance is larger than what we would have expected under the Poisson model.

26.2 Hierarchical Poisson regression

Let’s say that y|x ∼ Poi(λ), where λ|x is random due to the fluctuations of the omitted variables.
A common distribution used to model nonnegative random variables is the gamma distribution
Γ(µ, k), parameterized by a mean µ > 0 and a shape k > 0. This distribution has probability density
function

176
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f(λ; k, µ) = (k/µ)k
Γ(k) e−kλ/µλk−1, (26.3)

with mean and variance given by

E[λ] = µ; Var[λ] = µ2/k. (26.4)

Therefore, it makes sense to augment the Poisson regression model as follows:

λ|x ∼ Γ(µ, k), logµ = xTβ, y|λ ∼ Poi(λ). (26.5)

26.3 Negative binomial distribution

A simpler way to write the hierarchical model (26.5) would be to marginalize out λ. Doing so leaves
us with a count distribution called the negative binomial distribution:

λ ∼ Γ(µ, k), y|λ ∼ Poi(λ) =⇒ y ∼ NegBin(µ, k). (26.6)

The negative binomial probability mass function is

p(y;µ, k) =
∫ ∞

0

(k/µ)k
Γ(k) e−kλ/µλk−1e−λ

λy

y! dλ

= Γ(y + k)
Γ(k)Γ(y + 1)

(
µ

µ+ k

)y ( k

µ+ k

)k
.

(26.7)

This random variable has mean and variance given by

E[y] = E[λ] = µ and Var[y] = E[λ] + Var[λ] = µ+ µ2

k
. (26.8)

As we send k →∞, the distribution of λ tends to a point mass and the negative binomial distribution
tends to Poi(µ).

26.4 Negative binomial as exponential dispersion model

Let us see whether we can express the negative binomial model as an exponential dispersion model.
First, let us write out the probability mass function:

p(y;µ, k) = exp
(
y log µ

µ+ k
− k log µ+ k

k

) Γ(y + k)
Γ(k)Γ(y + 1) . (26.9)

Unfortunately, we run into difficulties expressing this probability mass function in EDM form,
because there is not a neat decoupling between the natural parameter and the dispersion parameter.
Indeed, for unknown k, the negative binomial model is not an EDM. However, we can still express
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the negative binomial model as an EDM (in fact, a one-parameter exponential family) if we treat k
as known. In particular, we can read off that

θ = log µ

µ+ k
, ψ(θ) = k log µ+ k

k
= −k log(1− eθ). (26.10)

An alternate parameterization of the negative binomial model is via γ = 1/k. With this
parameterization, we have

E[y] = µ and Var[y] = µ+ γµ2. (26.11)

Here, γ acts as a kind of dispersion parameter, as the variance of y grows with γ. Note that the
relationship between Var[y] and γ is not exactly proportional, as it is in EDMs. Nevertheless, the γ
parameter is often called the negative binomial dispersion. Note that setting γ = 0 recovers the
Poisson distribution.

26.5 Negative binomial regression

Let’s revisit the hierarchical model 26.5, writing it more succinctly in terms of the negative binomial
distribution:

yi
ind∼ NegBin(µi, γ), logµi = xTβ. (26.12)

Notice that we typically assume that all observations share the same dispersion parameter γ.
Reading off from equation (26.10), we see that the canonical link function for the negative binomial
distribution is µ 7→ log µ

µ+k . However, typically for negative binomial regression we use the log
link g(µ) = logµ instead. This is the link of Poisson regression, and leads to more interpretable
coefficient estimates. This is our first example of a non-canonical link!

26.6 Score and Fisher information

Recall from Chapter 4 that

U(β) = 1
φ0
XTMW (y − µ);

I(β) = 1
φ0
XTWX,

(26.13)

where

W ≡ diag
(

wi
V (µi)(dηi/dµi)2

)
;

M ≡ diag
(
∂ηi
∂µi

)
.

(26.14)

In our case, we have
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wi = 1; V (µi) = µi + γµ2
i ;

∂ηi
∂µi

= 1
µi
. (26.15)

Putting this together, we find that

W = diag
(

µi
1 + γµi

)
; M = diag

( 1
µi

)
. (26.16)

26.7 Estimation in negative binomial regression

Negative binomial regression is an EDM when γ is known, but typically the dispersion parameter is
unknown. Note that there is a dependency in ψ on k (i.e. on γ), which complicates things. It means
that the estimate β̂ depends on the parameter γ (this does not happen, for example, in the normal
linear model case).1 Therefore, estimation in negative binomial regression is typically an iterative
procedure, where at each step β is estimated for the current value of γ and then γ is estimated
based on the updated value of β. Let’s discuss each of these tasks in turn. Given a value of γ̂, we
have the normal equations:

XTdiag
( 1

1 + γ̂µ̂i

)
(y − µ̂) = 0. (26.17)

This reduces to the Poisson normal equations when γ̂ = 0. Solving these equations for a fixed value
of γ̂ can be done via IRLS, as usual. Estimating γ for a fixed value of β̂ can be done in several
ways, including setting to zero the derivative of the likelihood with respect to γ. This results in a
nonlinear equation (not given here) that can be solved iteratively.

26.8 Wald inference

Wald inference is based on

V̂ar[β̂] = (XTŴX)−1, where Ŵ = diag
(

µ̂i
1 + γ̂µ̂i

)
. (26.18)

26.9 Likelihood ratio test inference

The negative binomial deviance is

D(y; µ̂) = 2
n∑
i=1

(
yi log yi

µ̂i
−
(
yi + 1

γ̂

)
log 1 + γ̂yi

1 + γ̂µ̂i

)
. (26.19)

We can use this for comparing nested models, but not for goodness of fit testing! The issue is
that we have estimated the parameter γ, whereas goodness of fit tests are applicable only when the
dispersion parameter is known.

1Having said that, the dependency between β̂ and γ̂ is weak, as the two are asymptotically independent parameters.
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26.10 Testing for overdispersion

It is reasonable to want to test for overdispersion, i.e., to test the null hypothesis H0 : γ = 0. This
is somewhat of a tricky task because γ = 0 is at the edge of the parameter space. We can do so
using a likelihood ratio test. As it turns out, the likelihood ratio statistic TLRT has asymptotic null
distribution

TLRT ≡ 2(`NB − `Poi) ·∼ 1
2δ0 + 1

2χ
2
1. (26.20)

Here, δ0 is the delta mass at zero. The reason for this is that, under the null, we can view the
estimated dispersion parameter as being symmetrically distributed around 0. However, since the
dispersion parameter is nonnegative, this means it gets rounded up to 0 with probability 1/2.
Therefore, the likelihood ratio test for H0 : γ = 0 rejects when

TLRT > χ2
1(1− 2α). (26.21)

Note that the above test for overdispersion can be viewed as a goodness of fit test for the Poisson
GLM. It is different from the usual GLM goodness of fit tests, because the saturated model against
which the latter tests stays in the Poisson family. Nevertheless, significant results in standard
goodness of fit tests for Poisson GLMs are often an indication of overdispersion. Or, they may
indicate omitted variable bias (e.g., you forgot to include an interaction), so it’s somewhat tricky.

26.11 Overdispersion in logistic regression

Note that overdispersion is potentially an issue not only in Poisson regression models but in logistic
regression models as well. Dealing with overdispersion in the latter case is more tricky, because the
analog of the negative binomial model (the beta-binomial model) is not an exponential family. An
alternate route to dealing with overdispersion is quasi-likelihood modeling, but this topic is beyond
the scope of the course.



Chapter 27

R demo

27.1 Contingency table analysis

Let’s take a look at the UC Berkeley admissions data:

library(readr)
library(dplyr)
library(ggplot2)
library(tibble)
library(tidyr)

ucb_data <- UCBAdmissions |> as_tibble()
ucb_data

# A tibble: 24 x 4
Admit Gender Dept n
<chr> <chr> <chr> <dbl>

1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353
6 Rejected Male B 207
7 Admitted Female B 17
8 Rejected Female B 8
9 Admitted Male C 120
10 Rejected Male C 205
# i 14 more rows

It contains data on applicants to graduate school at Berkeley for the six largest departments in
1973 classified by admission and sex. Let’s see whether there is an association between Gender and
Admit. Let’s first aggregate over department:

181
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ucb_data_agg <- ucb_data |>
group_by(Admit, Gender) |>
summarise(n = sum(n), .groups = "drop")

ucb_data_agg

# A tibble: 4 x 3
Admit Gender n
<chr> <chr> <dbl>

1 Admitted Female 557
2 Admitted Male 1198
3 Rejected Female 1278
4 Rejected Male 1493

Let’s see what the admissions rates are by gender:

ucb_data_agg |>
group_by(Gender) |>
summarise(`Admission rate` = sum(n*(Admit == "Admitted"))/sum(n))

# A tibble: 2 x 2
Gender `Admission rate`
<chr> <dbl>

1 Female 0.304
2 Male 0.445

This suggests that men have substantially higher admission rates than women. Let’s see if we can
confirm this using either a Fisher’s exact test or a Pearson chi-square test.

# first convert to 2x2 table format
admit_vs_gender <- ucb_data_agg |>

pivot_wider(names_from = Gender, values_from = n) |>
column_to_rownames(var = "Admit")

admit_vs_gender

Female Male
Admitted 557 1198
Rejected 1278 1493

# Fisher exact test (note that the direction of the effect can be deduced)
fisher.test(admit_vs_gender)

Fisher's Exact Test for Count Data

data: admit_vs_gender
p-value < 2.2e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
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0.4781839 0.6167675
sample estimates:
odds ratio
0.5432254

# Chi-square test
chisq.test(admit_vs_gender)

Pearson's Chi-squared test with Yates' continuity correction

data: admit_vs_gender
X-squared = 91.61, df = 1, p-value < 2.2e-16

As a sanity check, let’s run the Poisson regression underlying the chi-square test above.

pois_fit <- glm(n ~ Admit + Gender + Admit*Gender,
family = "poisson",
data = ucb_data_agg)

summary(pois_fit)

Call:
glm(formula = n ~ Admit + Gender + Admit * Gender, family = "poisson",

data = ucb_data_agg)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.32257 0.04237 149.218 <2e-16 ***
AdmitRejected 0.83049 0.05077 16.357 <2e-16 ***
GenderMale 0.76584 0.05128 14.933 <2e-16 ***
AdmitRejected:GenderMale -0.61035 0.06389 -9.553 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4.8635e+02 on 3 degrees of freedom
Residual deviance: -3.4062e-13 on 0 degrees of freedom
AIC: 43.225

Number of Fisher Scoring iterations: 2

Based on all of these tests, there seems to be a very substantial difference in admissions rates based
on gender. That is not good.

But perhaps, women tend to apply to more selective departments? Let’s look into this:

ucb_data |>
group_by(Dept) |>
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summarise(admissions_rate = sum(n*(Admit == "Admitted"))/sum(n),
prop_female_applicants = sum(n*(Gender == "Female"))/sum(n)) |>

ggplot(aes(x = admissions_rate, y = prop_female_applicants)) +
geom_point() +
scale_x_continuous(limits = c(0, 1)) +
scale_y_continuous(limits = c(0, 1)) +
labs(x = "Admissions rate",

y = "Proportion female applicants")
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Indeed, it does seem that female applicants typically applied to more selective departments! This
suggests that it is very important to control for department when evaluating the association between
admissions and gender. To do this, we can run a test for conditional independence in the J ×K ×L
table:

pois_fit <- glm(n ~ Admit + Dept + Gender + Admit:Dept + Gender:Dept,
family = "poisson",
data = ucb_data)

pchisq(sum(resid(pois_fit, "pearson")ˆ2),
df = pois_fit$df.residual,
lower.tail = FALSE

)

[1] 0.002840164

Still we find a significant effect! But what is the direction of the effect? The chi-square test does
not tell us. We can simply compute the admissions rates by department and plot them:

ucb_data |>
group_by(Dept, Gender) |>
summarise(`Admission rate` = sum(n*(Admit == "Admitted"))/sum(n),
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.groups = "drop") |>
pivot_wider(names_from = Gender, values_from = `Admission rate`) |>
ggplot(aes(x = Female, y = Male, label = Dept)) +
geom_point() +
ggrepel::geom_text_repel() +
geom_abline(color = "red", linetype = "dashed") +
scale_x_continuous(limits = c(0, 1)) +
scale_y_continuous(limits = c(0, 1)) +
labs(x = "Female admission rate",

y = "Male admission rate")
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Now the difference doesn’t seem so huge, with most departments close to even and with department
A heavily skewed towards admitting women!

27.2 Revisiting the crime data, again

library(tidyverse)

Here we are again, face to face with the crime data, with one last chance to get the analysis right.
Let’s load and preprocess it, as before.

# read crime data
crime_data <- read_tsv("data/Statewide_crime.dat")

# read and transform population data
population_data <- read_csv("data/state-populations.csv")
population_data <- population_data |>

filter(State != "Puerto Rico") |>
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select(State, Pop) |>
rename(state_name = State, state_pop = Pop)

# collate state abbreviations
state_abbreviations <- tibble(

state_name = state.name,
state_abbrev = state.abb

) |>
add_row(state_name = "District of Columbia", state_abbrev = "DC")

# add CrimeRate to crime_data
crime_data <- crime_data |>

mutate(STATE = ifelse(STATE == "IO", "IA", STATE)) |>
rename(state_abbrev = STATE) |>
filter(state_abbrev != "DC") |> # remove outlier
left_join(state_abbreviations, by = "state_abbrev") |>
left_join(population_data, by = "state_name") |>
select(state_abbrev, Violent, Metro, HighSchool, Poverty, state_pop)

crime_data

# A tibble: 50 x 6
state_abbrev Violent Metro HighSchool Poverty state_pop
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 AK 593 65.6 90.2 8 724357
2 AL 430 55.4 82.4 13.7 4934193
3 AR 456 52.5 79.2 12.1 3033946
4 AZ 513 88.2 84.4 11.9 7520103
5 CA 579 94.4 81.3 10.5 39613493
6 CO 345 84.5 88.3 7.3 5893634
7 CT 308 87.7 88.8 6.4 3552821
8 DE 658 80.1 86.5 5.8 990334
9 FL 730 89.3 85.9 9.7 21944577
10 GA 454 71.6 85.2 10.8 10830007
# i 40 more rows

Let’s recall the logistic regression we ran on these data in Chapter 4:

bin_fit <- glm(Violent / state_pop ~ Metro + HighSchool + Poverty,
weights = state_pop,
family = "binomial",
data = crime_data

)

We had found very poor results from the goodness of fit test for this model. We have therefore
omitted some important variables and/or we have serious overdispersion on our hands.

We haven’t discussed in any detail how to deal with overdispersion in logistic regression models, so
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let’s try a Poisson model instead. The natural way to model rates using Poisson distributions is via
offsets:

pois_fit <- glm(Violent ~ Metro + HighSchool + Poverty + offset(log(state_pop)),
family = "poisson",
data = crime_data

)
summary(pois_fit)

Call:
glm(formula = Violent ~ Metro + HighSchool + Poverty + offset(log(state_pop)),

family = "poisson", data = crime_data)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.609e+01 3.520e-01 -45.72 <2e-16 ***
Metro -2.585e-02 5.727e-04 -45.15 <2e-16 ***
HighSchool 9.106e-02 3.450e-03 26.39 <2e-16 ***
Poverty 6.077e-02 4.852e-03 12.53 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 15589 on 49 degrees of freedom
Residual deviance: 11741 on 46 degrees of freedom
AIC: 12135

Number of Fisher Scoring iterations: 5

Again, everything is significant, and again, the regression summary shows that we have a huge
residual deviance. This was to be expected, given that Bin(m,π) ≈ Poi(mπ) for large m and small
π. So, the natural thing to try is a negative binomial regression! Negative binomial regression is
not implemented in the regular glm package, but glm.nb() from the MASS package is a dedicated
function for this task. Let’s see what we get:

nb_fit <- MASS::glm.nb(Violent ~ Metro + HighSchool + Poverty + offset(log(state_pop)),
data = crime_data

)
summary(nb_fit)

Call:
MASS::glm.nb(formula = Violent ~ Metro + HighSchool + Poverty +

offset(log(state_pop)), data = crime_data, init.theta = 1.467747388,
link = log)

Coefficients:
Estimate Std. Error z value Pr(>|z|)
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(Intercept) -10.254088 5.273418 -1.944 0.0518 .
Metro -0.012188 0.008518 -1.431 0.1525
HighSchool 0.028052 0.052482 0.535 0.5930
Poverty -0.026852 0.068449 -0.392 0.6948
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.4677) family taken to be 1)

Null deviance: 59.516 on 49 degrees of freedom
Residual deviance: 55.487 on 46 degrees of freedom
AIC: 732.58

Number of Fisher Scoring iterations: 1

Theta: 1.468
Std. Err.: 0.268

2 x log-likelihood: -722.575

Aha! Things are not looking so significant anymore! And the residual deviance is not as huge!
Although, we must be careful! The residual deviance no longer has the usual χ2 distribution because
of the estimated dispersion parameter. So we don’t really have an easy goodness of fit test. The
estimated value of γ (confusingly called θ in the summary) is significantly different from zero,
indicating overdispersion. Let’s formally test for overdispersion using the nonstandard likelihood
ratio test discussed above:

T_LRT <- 2 * (as.numeric(logLik(nb_fit)) - as.numeric(logLik(pois_fit)))
p_LRT <- pchisq(T_LRT, df = 1, lower.tail = FALSE)/2
p_LRT

[1] 0

So at the very least the NB model fits much better than the Poisson model. Let’s do some inference
based on this model. For example, we can get Wald confidence intervals:

confint.default(nb_fit)

2.5 % 97.5 %
(Intercept) -20.58979658 0.081620714
Metro -0.02888413 0.004507747
HighSchool -0.07481066 0.130915138
Poverty -0.16100973 0.107305015

Or we can get LRT-based (i.e. profile) confidence intervals:

confint(nb_fit)

Waiting for profiling to be done...
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2.5 % 97.5 %
(Intercept) -19.20209590 -0.860399348
Metro -0.03153902 0.006365841
HighSchool -0.06265118 0.115318303
Poverty -0.13930110 0.085200541

Or we can get confidence intervals for the predicted means:

predict(nb_fit,
newdata = crime_data |> column_to_rownames(var = "state_abbrev"),
type = "response",
se.fit = TRUE

)

$fit
AK AL AR AZ CA CO CT DE

116.1520 617.7064 375.4895 700.6931 3257.5300 725.1538 436.7863 127.2572
FL GA HI ID IL IN IA KS

2232.2308 1301.2937 157.1416 263.8572 1379.1847 954.3366 546.5503 439.0649
KY LA MA MD ME MI MN MO

541.5706 391.6745 747.7454 737.0032 274.2879 1322.9956 970.4078 871.2829
MS MT NC ND NE NH NJ NM

380.6756 199.4947 1313.0904 134.8128 305.0634 261.1975 966.9940 204.3311
NV NY OH OK OR PA RI SC

327.7316 1926.3861 1477.1713 495.9711 517.8397 1600.0813 96.3565 684.9102
SD TN TX UT VA VT WA WI

160.9225 867.0224 2423.0647 416.6648 1244.5168 148.1635 1012.1932 892.0644
WV WY

226.4515 100.1906

$se.fit
AK AL AR AZ CA CO CT DE

21.00552 143.65071 130.44272 165.08459 910.57769 121.34777 85.53768 32.15169
FL GA HI ID IL IN IA KS

427.89514 173.04544 31.73873 40.28262 239.43324 147.21049 104.05752 68.82044
KY LA MA MD ME MI MN MO

133.28938 129.40665 150.23524 158.93816 92.04222 171.28409 216.32477 110.88843
MS MT NC ND NE NH NJ NM

138.28105 65.60335 379.90855 26.74061 69.62560 66.73731 220.88371 59.26953
NV NY OH OK OR PA RI SC

64.30971 387.25204 241.24541 95.44911 81.97419 220.42078 33.97964 119.45174
SD TN TX UT VA VT WA WI

41.50215 169.68896 738.95321 107.62725 209.14651 51.32810 191.75629 137.35158
WV WY

71.55328 22.79279

$residual.scale
[1] 1
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We can carry out some hypothesis tests as well, e.g. to test H0 : βMetro = 0:

nb_fit_partial <- MASS::glm.nb(Violent ~ HighSchool + Poverty + offset(log(state_pop)),
data = crime_data

)
anova_fit <- anova(nb_fit_partial, nb_fit)
anova_fit

Likelihood ratio tests of Negative Binomial Models

Response: Violent
Model theta Resid. df

1 HighSchool + Poverty + offset(log(state_pop)) 1.428675 47
2 Metro + HighSchool + Poverty + offset(log(state_pop)) 1.467747 46

2 x log-lik. Test df LR stat. Pr(Chi)
1 -724.1882
2 -722.5753 1 vs 2 1 1.612878 0.2040877



Part VI

Multiple testing
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Consider the problem of assessing which variables in a GLM have nonzero coefficients. In the
preceding chapters, we have described a variety of tests for obtaining p-values for each coefficient.
Given this set of p-values (call them p1, . . . , pm), we must determine which variables to deem
significant. As it turns out, this task is a nontrivial one for several reasons. In this chapter, we
formalize this task as a multiple testing problem, discuss the challenges that arise, and describe some
common methods for addressing these challenges.



Chapter 28

Introduction

28.1 The multiplicity problem

When R prints a regression summary, it adds stars to variables based on their p-values. Variables
with p-values below 0.05 get one star, those with p-values below 0.01 get two stars, and those with
p-values below 0.001 get three stars. A natural strategy for selecting significant variables is to
choose those with one or more stars. However, the issue with this strategy is that even null variables
(those with coefficients of zero) will sometimes have small p-values by chance (Figure 28.1). The
more total variables we are testing, the more of them will have small p-values by chance. This is
the multiplicity problem.

Figure 28.1: A spurious correlation resulting from data snooping.

To quantify this issue, consider the case when all m variables under consideration are null. Then,
the chance that any one of them has a p-value below 0.05 is 0.05. So, the expected number of
variables with one or more stars is 0.05m. For example, if we have 100 variables, then we expect to
see 5 variables with stars on average, even though none of the variables are actually relevant to the
response! The growth of the quantity 0.05m with m confirms that the multiplicity problem grows
more severe as the number of hypotheses tested increases.

Another way of thinking about the multiplicity problem is in the context of selection bias. The process
of scanning across all variables and selecting those with small p-values is a selection event. Once the
selection event has occurred, one must consider the null distribution of a p-value conditionally on
the fact that it was selected. Since the selection event favors small p-values, the null distribution of a
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p-value conditional on selection is no longer uniform; it becomes skewed toward zero. Interpreting
p-values (and their accompanying stars) “at face value” is misleading because it ignores the crucial
selection step. Other terms for this include “data snooping” and “p-hacking.”

The multiplicity problem is not limited to regression. In the next two sections, we develop some
definitions to describe the multiplicity problem more formally and generally.

28.2 Global testing and multiple testing

Suppose we have m null hypotheses H01, . . . ,H0m. Let p1, . . . , pm be the corresponding p-values.

Definition 28.1. A p-value pj for a null hypothesis H0j is valid if
PH0j [pj ≤ t] ≤ t for all t ∈ [0, 1]. (28.1)

This definition covers the uniform distribution, as well as distributions that are stochastically larger
than uniform. Distributions of the latter kind are often obtained from resampling-based tests, such
as permutation tests. In the remainder of this chapter, we will assume that all p-values are valid.

Given a set of p-values, there are several inferential goals potentially of interest. These can be
subdivided first into global testing and multiple testing.

Definition 28.2. A global testing procedure is a test of the global null hypothesis

H0 ≡
m⋂
j=1

H0j .

In other words, it is a function φ : (p1, . . . , pm) 7→ [0, 1]. A global test has level α if it controls the
Type-I error at this level:

EH0 [φ(p1, . . . , pm)] ≤ α. (28.2)

A global testing procedure determines whether any of the null hypotheses can be rejected. In
regression modeling, a global test would be a test of the hypothesis H0 : β1 = · · · = βm = 0.

Definition 28.3. A multiple testing procedure is a mapping from the set of p-values to a set of
hypotheses to reject:

M : (p1, . . . , pm) 7→ Ŝ ⊆ {1, . . . ,m}.

A multiple testing procedure determines which of the null hypotheses can be rejected. In regression
modeling, a multiple testing procedure would be a method for selecting which variables have nonzero
coefficients, the problem we discussed in the beginning of this section.

28.3 Multiple testing goals

Let us define
H0 ≡ {j ∈ {1, . . . ,m} : H0j is true}

and
H1 ≡ {j ∈ {1, . . . ,m} : H0j is false}.

In other words, H0 is the set of indices of the true null hypotheses, and H1 is the set of indices
of the false null hypotheses. There are two primary notions of Type-I error that multiple testing
procedures seek to control: the family-wise error rate (FWER) and the false discovery rate (FDR).
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28.3.1 Definitions of Type-I error rate and power

Definition 28.4 (Tukey, 1953). The family-wise error rate (FWER) of a multiple testing procedure
M : (p1, . . . , pm) 7→ Ŝ is the probability that it makes any false rejections:

FWER(M) ≡ P[Ŝ ∩H0 6= ∅].

A multiple testing procedure controls the FWER at level α if

FWER(M) ≤ α.

Definition 28.5 (Benjamini and Hochberg, 1995). The false discovery proportion (FDP) of a
rejection set Ŝ is the proportion of these rejections that are false:

FDP(Ŝ) ≡ |Ŝ ∩H0|
|Ŝ|

, where 0
0 ≡ 0.

The false discovery rate (FDR) of a multiple testing procedureM : (p1, . . . , pm) 7→ Ŝ is its expected
false discovery proportion:

FDR(M) ≡ E[FDP(Ŝ)] = E
[
|Ŝ ∩H0|
|Ŝ|

]
. (28.3)

A multiple testing procedure controls the FDR at level q if

FDR(M) ≤ q.

Regardless of what error rate a multiple testing procedure is intended to control, we would like it to
have high power :

power(M) ≡ E
[
|Ŝ ∩H1|
|H1|

]
.

28.3.2 Relationship between the FWER and FDR

Note that the FWER is a probability, while the FDR is an expected proportion. This distinction
is highlighted by using the different symbols α and q for the nominal FWER and FDR levels,
respectively. The FWER is a more stringent error rate than the FDR, because it can only be low if
no false discoveries are made most of the time; the FDR can be low if false discoveries are a small
proportion of the total number of discoveries most of the time.

Proposition 28.1. For any multiple testing procedure M, we have FDR(M) ≤ FWER(M).
Therefore, a multiple testing procedure controlling the FWER at level α also controls the FDR at
level α.

Proof.

FDR ≡ E
[
|Ŝ ∩H0|
|Ŝ|

]
≤ E

[
1(|Ŝ ∩H0| > 0)

]
≡ FWER.
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The FWER was the error rate of choice in the 20th century, when limitations on data collection
permitted only small handfuls of hypotheses to be tested. In the 21st century, the internet and
other new technologies permitted much larger-scale collection of data, leading to much larger sets
of hypotheses being tested (e.g., tens of thousands). In this context, the less stringent FDR rate
became more popular. In many cases, an initial large-scale FDR-controlling procedure is viewed as
an exploratory analysis, whose goal is to nominate a smaller number of hypotheses for confirmation
with follow-up experiments. The purpose of controlling the FDR in this context is to limit resources
wasted on following up false leads.



Chapter 29

Global testing

Recall that a global test is a test of the intersection null hypothesis H0 ≡ ∩mj=1H0j . Let us first
examine the naive global test, which rejects if any of the p-values are below α:

φnaive(p1, . . . , pm) = 1 (pj ≤ α for some j = 1, . . . ,m) . (29.1)

This test does not control the Type-I error. In fact, assuming the input p-values are independent,
we have

EH0 [φnaive(p1, . . . , pm)] = 1− (1− α)m → 1 as m→∞.

This is a manifestation of the multiplicity problem discussed before. In this section, we will discuss
two ways of adjusting for multiplicity in the context of global testing:

• Bonferroni test: Powerful against few strong signals.
• Fisher combination test: Powerful against many weak signals.

Each test is listed with the alternative against which it is powerful. Note that in the context of
global testing and multiple testing, the alternative is a multivariate object. The main difference
between the Bonferroni test and the Fisher combination test is how the signal (i.e., deviation from
the null) is spread across the m hypotheses being tested. If the signal is highly concentrated in a
few non-null hypotheses, then the Bonferroni test is better. If the signal is spread out over many
non-null hypotheses, then the Fisher combination test is better.

29.1 Bonferroni global test (Bonferroni, 1936 and Dunn, 1961)

29.1.1 Test definition and validity

The motivation for the Bonferroni global test is to find the strongest signal among the p-values and
reject the global null if this signal is strong enough. It makes sense that such a strategy would be
powerful against sparse alternatives. We define the Bonferroni test via

φ(p1, . . . , pm) ≡ 1
(

min
1≤j≤m

pj ≤ α/m
)
.

The Bonferroni global test rejects if any of the p-values cross the multiplicity-adjusted or Bonferroni-
adjusted significance threshold of α/m. This test can be viewed as a modified version of the naive

197



Page 198

test (29.1), but with the significance threshold α adjusted downward to α/m. The more hypotheses
we test, the more stringent the significance threshold must be.

Proposition 29.1. The Bonferroni test controls the FWER at level α for any joint dependence
structure among the p-values.

Proof. We can verify the Type-I error control of the Bonferroni test via a union bound:

PH0

[
min

1≤j≤m
pj ≤ α/m

]
≤

m∑
j=1

PH0j [pj ≤ α/m] = m · α/m = α.

29.1.2 The impact of p-value dependence

While the Bonferroni global test is valid for arbitrary p-value dependence structures, the underlying
union bound may be loose for certain dependence structures. In particular, the Bonferroni bound
derived above is tightest for independent p-values. Intuitively, the smallest p-value has the highest
chance of being small if each p-value has its own independent source of randomness. Mathematically,
let us compute the Type-I error of the Bonferroni global test under independence:

PH0

[
min

1≤j≤m
pj ≤ α/m

]
= 1− (1− α/m)m ≈ α.

Therefore, the Bonferroni test exhausts essentially its entire level under independence. On the other
hand, under perfect dependence (i.e., p1 = · · · = pm almost surely), the Bonferroni test is quite
conservative:

PH0

[
min

1≤j≤m
pj ≤ α/m

]
= PH01 [p1 ≤ α/m] = α/m.

In this special case, the level is m times lower than it should be, because no multiplicity adjustment
is needed if the p-values are perfectly dependent.

29.2 Fisher combination test (Fisher, 1925)

If, on the other hand, we expect the signal to be spread out over many non-null hypotheses, the
valuable evidence against the alternative is missed if only the minimum p-value is considered. In
such circumstances, the Fisher combination test may be more powerful than the Bonferroni global
test.

29.2.1 Test definition and validity

The Fisher combination test is based on the observation that

if p ∼ U [0, 1], then − 2 log p ∼ χ2
2.

Therefore, if p1, . . . , pm are independent uniform random variables, then we have

−2
m∑
j=1

log pj ∼ χ2
2m.
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This leads to the Fisher combination test:

φ(p1, . . . , pm) ≡ 1

−2
m∑
j=1

log pj ≥ χ2
2m(1− α)

 . (29.2)

Proposition 29.2. The Fisher combination test controls Type-I error at level α (28.2) if the
p-values are independent.

Proof. Under the null, the p-values are stochastically larger than uniform (29.2). Therefore,
−2∑m

j=1 log pj is stochastically smaller than χ2
2m, from which the conclusion follows.

29.2.2 Discussion

The Fisher exact test has a similar flavor to another chi-squared test. Suppose Xj ∼ N(µj , 1), and
we would like to test Hj : µj = 0. Under the global null, we have

if X1, . . . , Xm
i.i.d.∼ N(0, 1), then

m∑
j=1

X2
j ∼ χ2

m. (29.3)

It turns out that the tests based on (29.2) and (29.3) are quite similar. This helps us build intuition
for what the Fisher combination test is doing: it’s averaging the strengths of the signal across
hypotheses.

The independence assumption of the Fisher combination test makes it significantly less broadly
applicable than the Bonferroni global test. However, one common application of the Fisher
combination test is meta-analysis: the combination of information across multiple studies of the
same hypothesis (or very related hypotheses). In this setting, the p-values are independent across
studies, and the Fisher combination test is a natural choice because the strength of the signal is
roughly the same across studies since they are studying very related hypotheses.



Chapter 30

Multiple testing

Here we present one method each for FWER and FDR control.

30.1 The Bonferroni procedure for FWER control

We discussed the Bonferroni test for the global null. This test can be extended to an FWER-
controlling procedure:

Ŝ ≡ {j : pj ≤ α/m}. (30.1)

Proposition 30.1. The Bonferroni procedure controls the FWER at level α for arbitrary p-value
dependence structures.

Proof. We have

P[Ŝ ∩H0 6= ∅] = P
[

min
j∈H0

pj ≤ α/m
]
≤
∑
j∈H0

P[pj ≤ α/m] = |H0|
m

α ≤ α.

This completes the proof.

Note that the FWER is actually controlled at the level |H0|
m α ≤ α, making the Bonferroni test

conservative to the extent that |H0| < m. The null proportion |H0|
m has such an effect on the

performance of many multiple testing procedures. Not all global tests can be extended to FWER-
controlling procedures in this way. For example, the Fisher combination test does not single out any
of the hypotheses, as it only aggregates the p-values. By contrast, the Bonferroni test searches for
p-values that are individually very small, allowing it to double as an FWER-controlling procedure.

30.2 The Benjamini-Hochberg procedure for FDR control

Designing procedures with FDR control, as well as verifying the latter property, is typically harder
than for FWER control. It is harder to decouple the effects of the individual hypotheses, as the
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denominator |S| in the FDR definition (28.3) couples them together. Both the FDR criterion and
the most popular FDR-controlling procedure were proposed by Benjamini and Hochberg in 1995.

30.2.1 Procedure

We first present the BH procedure, as reformulated by Storey, Taylor, and Siegmund (2004). Consider
thresholding the p-values at t ∈ [0, 1]. We would expect E[|{j : pj ≤ t}∩H0|] = |H0|t false discoveries
among {j : pj ≤ t}. Since |H0| is unknown, we can bound it from above by mt. This leads to the
FDP estimate:

F̂DP(t) ≡ mt

|{j : pj ≤ t}|
. (30.2)

The BH procedure is then defined via:

Ŝ ≡ {j : pj ≤ t̂}, (30.3)

where
t̂ = max{t ∈ [0, 1] : F̂DP(t) ≤ q}. (30.4)

In words, we choose the most liberal p-value threshold for which the estimated FDP is below the
nominal level q. Note that the set over which the above maximum is taken is always nonempty
because it at least contains 0: F̂DP(0) = 0

0 ≡ 0.

BH procedure (Storey et al. formulation)

1. For each t ∈ [0, 1], compute the estimated FDP using (30.2).
2. Let t̂ be the largest threshold t for which the estimated FDP is below q (30.4).
3. Reject the null hypotheses j whose p-values are below t̂ (30.3).

The original BH procedure was formulated differently:

BH procedure (original formulation)

1. Order the p-values p(1) ≤ p(2) ≤ · · · ≤ p(m).
2. Let k̂ be the largest index k such that p(k) ≤ k

mq, or 0 if no such k exists.
3. Reject the null hypotheses j corresponding to the k̂ smallest p-values.
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These two formulations are equivalent. Indeed, defining p(0) ≡ 0 for convenience, note that

t̂ ≡ max
{
t ∈ [0, 1] : mt

|{j : pj ≤ t}|
≤ q

}

= max
{
t ∈ {0, p(1), . . . , p(m)} : mt

|{j : pj ≤ t}|
≤ q

}

= max
{
p(k) :

mp(k)
k
≤ q, k = 0, . . . ,m

}
= max

{
p(k) : p(k) ≤

qk

m
, k = 0, . . . ,m

}
= p(k̂).

30.2.2 FDR control under independence

Benjamini and Hochberg established that their procedure controls the FDR if the p-values are
independent.

Proposition 30.2. The BH procedure controls the FDR at level q assuming that the p-values are
independent.

We present two proofs of this fact, one due to Benjamini and Yekutieli (2001) and one due to Storey,
Taylor, and Siegmund (2004).

Benjamini and Yekutieli, 2001. As a starting point, note that

FDP(Ŝ) =
m∑
k=1

|Ŝ ∩H0|
k

1(|Ŝ| = k)

=
m∑
k=1

∑
j∈H0

1
k

1(j ∈ Ŝ, |Ŝ| = k)

=
m∑
k=1

∑
j∈H0

1
k

1
(
pj ≤

qk

m
, |Ŝ| = k

)
.

(30.5)

From here, define Ŝ(pj → 0) as the rejection set of BH when applied to the p-values
(p1, . . . , pj−1, 0, pj+1, . . . , pm). We claim that if the jth hypothesis is the rejected, the size of the
rejection set does not change if the jth p-value is set to 0. In other words, we claim that

1
(
pj ≤

qk

m
, |Ŝ| = k

)
= 1

(
pj ≤

qk

m
, |Ŝ(pj → 0)| = k

)
. (30.6)

This can be seen by noting that |Ŝ| = k if and only if p(k) ≤ qk/m and p(k′) > qk′/m for each k′ > k.
Therefore, if |Ŝ| = k and pj ≤ qk/m, then pj is among the k smallest p-values, so setting pj to
zero will preserve the statements p(k) ≤ qk/m and p(k′) > qk′/m, so |Ŝ(pj → 0)| = k. The converse
implication can be established by similar logic. Given the statement (30.6), we can deduce from



Page 203

equation (30.5) that

FDR = E[FDP(Ŝ)]

=
m∑
k=1

∑
j∈H0

1
k
P
[
pj ≤

qk

m
, |Ŝ| = k

]

=
m∑
k=1

∑
j∈H0

1
k
P
[
pj ≤

qk

m
, |Ŝ(pj → 0)| = k

]

=
m∑
k=1

∑
j∈H0

1
k
P
[
pj ≤

qk

m

]
P
[
|Ŝ(pj → 0)| = k

]

≤
m∑
k=1

∑
j∈H0

1
k

qk

m
P
[
|Ŝ(pj → 0)| = k

]

= q

m

∑
j∈H0

m∑
k=1

P
[
|Ŝ(pj → 0)| = k

]
= |H0|

m
q

≤ q.

Storey, Taylor, and Siegmund, 2004. We have

FDR = E
[
FDP(t̂)

]
= E

[
|{j ∈ H0 : pj ≤ t̂}|
|{j : pj ≤ t̂}|

]

= E
[
|{j ∈ H0 : pj ≤ t̂}|

mt̂
F̂DP(t̂)

]
≤ q · E

[
|{j ∈ H0 : pj ≤ t̂}|

mt̂

]
.

To prove that the last expectation is bounded above by 1, note that

M(t) ≡ |{j ∈ H0 : pj ≤ t}|
mt

(30.7)

is a backwards martingale with respect to the filtration

Ft = σ({pj : j ∈ H1}, |{j ∈ H0 : pj ≤ t′}| for t′ ≥ t), (30.8)

with t running backwards from 1 to 0. Indeed, for s < t we have

E[M(s)|Ft] = E
[ |{j ∈ H0 : pj ≤ s}|

ms

∣∣∣∣Ft]
=

s
t |{j ∈ H0 : pj ≤ t}|

ms

= |{j ∈ H0 : pj ≤ t}|
mt

= M(t).
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The threshold t̂ is a stopping time with respect to this filtration, so by the optional stopping theorem,
we have

E
[
|{j ∈ H0 : pj ≤ t̂}|

mt̂

]
= E[M(t̂)] = E[M(1)] = |H0|

m
≤ 1.

This completes the proof.

30.2.3 FDR control under dependence

Under some forms of dependence, the BH procedure can be shown to control FDR at level q. One
such form of dependence is a special kind of positive dependence, defined below:

Definition 30.1. The p-values (p1, . . . , pm) are said to be positively regression dependent on a
subset J ⊆ {1, . . . ,m} (PRDS on J ) if for all j ∈ J and all non-decreasing sets D ⊆ [0, 1]m (sets
for which z ∈ D and z′ ≥ z coordinatewise imply z′ ∈ D), the quantity

P[(p1, . . . , pm) ∈ D | pj = t]

is nondecreasing in t.

One example of positively dependent p-values are those based on one-sided tests of µj = 0 in based
on y ∼ N(µ,Σ), where Σj1,j2 ≥ 0 for all j1 and j2.

Given this definition, we have the following result:

Proposition 30.3. If the p-values are PRDS on H0, then the BH procedure controls the FDR at
level q.

This result is due to Benjamini and Yekutieli (2001). See this paper for a proof. While there are
not much more general conditions under which BH has been proven to control FDR, numerical
simulations have shown that the BH procedure controls FDR under nearly all dependency structures
(though it is possible to construct contrived counterexamples).

For those wanting a rigorous FDR guarantee regardless of dependence structure, Benjamini and
Yekutieli showed that BH can be run with an FDR level of q/(1 + 1

2 + · · ·+ 1
m). However, this is

rarely done in practice.

Proposition 30.4. The BH procedure controls the FDR at level q(1 + 1
2 + · · ·+ 1

m) regardless of
the p-value dependency structure.

Proof. This proof is for the case that pj ∼ Unif[0, 1] for j ∈ H0. Using the relationship (30.5), we
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have

FDP(Ŝ) =
m∑
k=1

∑
j∈H0

1
k

1
(
pj ≤

qk

m
, |Ŝ| = k

)

=
m∑
k=1

∑
j∈H0

k∑
l=1

1
k

1
(
pj ∈

[
q(l − 1)
m

,
ql

m

]
, |Ŝ| = k

)

≤
m∑
k=1

∑
j∈H0

k∑
l=1

1
l
1
(
pj ∈

[
q(l − 1)
m

,
ql

m

]
, |Ŝ| = k

)

=
∑
j∈H0

m∑
l=1

1
l
1
(
pj ∈

[
q(l − 1)
m

,
ql

m

]) m∑
k=l

1
(
|Ŝ| = k

)

≤
∑
j∈H0

m∑
l=1

1
l
1
(
pj ∈

[
q(l − 1)
m

,
ql

m

])
.

It follows that

FDR = E[FDP(Ŝ)]

≤
∑
j∈H0

m∑
l=1

1
l
P
(
pj ∈

[
q(l − 1)
m

,
ql

m

])

=
∑
j∈H0

m∑
l=1

1
l

q

m

= |H0|
m

q
m∑
l=1

1
l

≤ q
m∑
l=1

1
l
.

This completes the proof.

30.3 Additional topics

30.3.1 Weighted multiple testing procedures

Sometimes, we may have more prior evidence against certain null hypotheses than others, which we
wish to incorporate in the global testing or multiple testing procedure to boost power. A common
approach to doing so is to weight the p-values. Letting w1, . . . , wm be p-value weights averaging to
1, define weighted p-values p̃j via:

p̃j ≡
pj
wj

(30.9)

Note that p-values corresponding to hypotheses with large (small) weights will be made more (less)
significant. We can then attempt to apply the above global testing and multiple testing procedures
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on the weighted p-values p̃j rather than the original p-values pj . As it turns out, in many cases
these weighted procedures retain the Type-I error guarantees of their unweighted counterparts.

Proposition 30.5. The weighted variants of the Bonferroni global test, the Bonferroni FWER
procedure, and the BH FDR procedure all control their respective Type-I error rates under the same
conditions as their unweighted counterparts (arbitrary dependence for the Bonferroni procedures and
independence for BH).

Proof. Here, we prove the statement just for the Bonferroni global test; the remaining proofs are
left as exercises. The weighted Bonferroni global test is as follows:

φ(p1, . . . , pm) ≡ 1
(

min
1≤j≤m

pj
wj
≤ α

m

)
.

It follows that

EH0 [φ(p1, . . . , pm)] ≤
m∑
j=1

α

m
wj = α.

The last equality follows from the fact that the weights wj average to 1 by assumption. This
completes the proof.

30.3.2 Adaptive multiple testing procedures

Recall that, under independence, the BH procedure controls Type-I error at the level |H0|
m q. To

the extent that |H0| < m, this makes the BH procedure conservative. If we had access to the null
proportion π ≡ |H0|

m , then we could control FDR at level q by applying BH targeting a less stringent
FDR level of q/π. Since π is usually unknown, Storey et al. (2004) proposed the following estimator:

π̂λ ≡
|{j : pj > λ}|
m(1− λ) , (30.10)

where λ ∈ (0, 1) is a tuning parameter, with default recommended value of λ = 0.5. The motivation
for this definition is that p-values larger than a threshold λ are mostly from null hypotheses, so we
would expect

|{j : pj > λ}| ≈ |{j ∈ H0 : pj > λ}| ≈ |H0|P[Unif[0, 1] > λ] = πm(1− λ).

This leads to the Storey-BH procedure, which adapts to the null proportion:

Storey-BH procedure

1. Estimate the null proportion π̂λ using equation (30.10).
2. Run the BH procedure, targeting nominal level q/π̂λ.

Storey et al. (2004) showed that a small modification of the Storey-BH procedure controls FDR at
level q under independent p-values.
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Proposition 30.6. The Storey-BH procedure with

π̂+
λ = 1 + |{j : pj > λ}|

m(1− λ)

instead of π̂λ controls FDR at level q under independent p-values.

Note that the Storey-BH procedure is less resilient to p-value dependency than the BH procedure.

30.3.3 False discovery exceedance control

Controlling the mean of the FDP (i.e., the FDR), does not guarantee that the FDP will not
substantially exceed the nominal level for a given realization of the p-values. To address this, the
stricter false discovery exceedance (FDX) criterion was proposed (Guo and Romano, 2005).

Definition 30.2. The false discovery exceedance (FDX) of a multiple testing procedure with respect
to threshold γ ∈ (0, 1) is the probability that the FDP exceeds this threshold:

FDXγ ≡ P[FDP(Ŝ) > γ].

A procedure controls the FDX with threshold γ at level α if FDXγ ≤ α.

A simple way to control the FDX is to apply the BH procedure with a more stringent FDR level of
γα.

Proposition 30.7. Under independence or PRDS on H0, the BH procedure targeting FDR level
γα controls the FDX with threshold γ at level α.

Proof. Markov’s inequality allows us to bound the FDX in terms of the FDR.

FDXγ ≡ P[FDP(Ŝ) > γ] ≤ E[FDP(Ŝ)]
γ

≡ 1
γ
FDR.

Given independent or PRDS p-values, Proposition 30.2 and Proposition 30.3 guarantee that FDR ≤
γα, which implies FDXγ ≤ α.
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