Link Search Menu Expand Document (external link)

STAT 9610 (Fall 2023)

Course Schedule

DateUnitTopicReadingsAssignments
Tue 8/291. Linear models: EstimationGeometry of least squaresLectures notes 1.1-1.4
Thu 8/311. Linear models: EstimationVariance decompositions; regression to the meanLectures notes 1.5-1.6
Tue 9/51. Linear models: EstimationCollinearity; adjustment; connections to causal inferenceLecture notes 1.7
Thu 9/71. Linear models: Estimationtidyverse; programming best practicestidyverse; programming best practices; R4DS Ch. 1-9
Tue 9/121. Linear models: EstimationCreating high-quality figures; Git and GitHub; Linux command line; Unit 1 R demoLecture notes 1.8
Thu 9/142. Linear models: InferenceInferential preliminariesLecture notes 2.1, 2.2.1
Tue 9/192. Linear models: InferenceHypothesis testingLecture notes 2.2.2Homework 1 due at 10am (PDF; GitHub; Solutions)
Thu 9/212. Linear models: InferencePower of hypothesis testingLecture notes 2.3
Tue 9/262. Linear models: InferenceConfidence intervals, practical considerationsLecture notes 2.4, 2.5
Thu 9/282. Linear models: InferenceUnit 2 R demo; high-performance computingLecture notes 2.6; HPC basics
Tue 10/33. Linear models: MisspecificationOverview of misspecification ILecture notes 3.1
Thu 10/53. Linear models: MisspecificationOverview of misspecification IILecture notes 3.1
Tue 10/103. Linear models: MisspecificationSandwich covariances, random effects models, feasible GLSLecture notes 3.2Homework 2 due at 10am (PDF; GitHub; Solutions)
Thu 10/12(Fall break)(Fall break)(Fall break)(Fall break)
Tue 10/173. Linear models: MisspecificationThe bootstrap and the permutation testLectures notes 3.3, 3.4
Thu 10/193. Linear models: MisspecificationRobust estimation, R demoLecture notes 3.5, 3.6
Tue 10/244. GLMs: General theoryExponential dispersion modelsLecture notes 4.1
Thu 10/264. GLMs: General theorySaddlepoint approximation, GLM definitionLecture notes 4.1-4.2Homework 3 due at 10am (PDF; GitHub; Solutions)
Tue 10/314. GLMs: General theoryEstimation in GLMsLecture notes 4.3
Thu 11/24. GLMs: General theoryInference in GLMsLecture notes 4.4
Tue 11/74. GLMs: General theoryInference in GLMs and R demoLecture notes 4.4-4.5
Thu 11/95. GLMs: Special casesLogistic regression ILecture notes 5.1
Tue 11/145. GLMs: Special casesLogistic regression IILecture notes 5.1 
Thu 11/165. GLMs: Special casesPoisson regression ILecture notes 5.2Homework 4 due at 9pm (PDF; GitHub)
Tue 11/215. GLMs: Special casesPoisson regression II and negative binomial regression ILecture notes 5.3
Thu 11/23(Thanksgiving break)(Thanksgiving break)(Thanksgiving break)(Thanksgiving break)
Tue 11/285. GLMs: Special casesNegative binomial regression II and R demoLecture notes 5.3 and 5.4
Thu 11/306. Multiple testingIntro to multiple testing and global testingLecture notes 6.1 and 6.2
Tue 12/56. Multiple testingMultiple testing ILectures notes 6.3Homework 5 due at 10am (PDF, GitHub)
Thu 12/76. Multiple testingMultiple testing IILectures notes 6.3
Thu 12/14Take-home final exam released at 9am
Mon 12/18Take-home final exam due at 9pm.