STAT 9610: Homework 2

Name

Due October 10, 2023 at 10:00am

1 Instructions

Setup. Clone this repository and open homework-2.tex in your LaTeX editor. Use this document as a starting point for your writeup, adding your solutions between \begin{sol} and \end{sol}. Add R code for problem *i* in problem-i.R (rather than in your LaTeX report), saving your figures and tables to the figures-and-tables folder for LaTeX import.

Resources. Consult the getting started guide if you need to brush up on R, LaTeX, or Git, the preparing reports guide for guidelines on presentation quality, the sample homework for an example of a completed homework repository, and this webpage for more detailed instructions on using GitHub and Gradescope to complete and submit homework.

Programming. The tidyverse paradigm for data manipulation (dplyr) and plotting (ggplot2) is required; points will be deducted for using base R.

Grading. Each sub-part of each problem will be worth 3 points: 0 points for no solution or completely wrong solution; 1 point for some progress; 2 points for a mostly correct solution; 3 points for a complete and correct solution modulo small flaws. The presentation quality of the solution for each problem (see the preparing reports guide) will be evaluated out of an additional 3 points.

Submission. Compile your LaTeX report to PDF and commit your work. Then, push your work to GitHub. Finally, submit your GitHub repository to Gradescope.

Materials and collaboration. The policy is as stated on the Syllabus:

"Students may consult all course materials, textbooks, the internet, or AI tools (e.g. ChatGPT or GitHub Copilot) to complete their homework. Students may not use solutions to problems that may be available online and/or from past iterations of the course. For each homework and exam, students must disclose all classmates with whom they collaborated, which AI tools they used, and how they used them. Failure to do so will result in a 5-point penalty. The instructor reserves the right to update this policy during the semester."

In accordance with this policy,

Please disclose all classmates with whom you collaborated:

Please disclose which AI tools you used, and how you used them:

Failure to answer the above questions will result in a 5-point penalty.

Problem 1. Likelihood inference in linear regression.

Let's consider the usual linear regression setup. Given a full-rank $n \times p$ model matrix \mathbf{X} , a coefficient vector $\boldsymbol{\beta} \in \mathbb{R}^p$, and a noise variance $\sigma^2 > 0$, suppose

$$\boldsymbol{y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(0, \sigma^2 \boldsymbol{I}_n). \tag{1}$$

The goal of this problem is to connect linear regression inference with classical likelihood-based inference (below is a quick refresher).

- (a) For the sake of simplicity, let's start by assuming σ^2 is known. Under the fixed-design model, why does the linear regression model (1) not fit into the classical inferential setup (2)? Write the linear model in as close a form as possible to (2).
- (b) Continue assuming that σ^2 is known. Why does the Fisher information (4) not immediately make sense for the linear regression model? Propose and compute an analog to this quantity, and using this quantity exhibit a result analogous to the asymptotic normality (3).
- (c) Now assume that neither β nor σ^2 is known. Derive the maximum likelihood estimates for (β, σ^2) . How do these compare to the estimates $(\hat{\beta}, \hat{\sigma}^2)$ discussed in class?
- (d) Continuing to assume that neither β nor σ^2 is known, consider the null hypothesis $H_0: \beta_S = \mathbf{0}$ for some $S \subseteq \{1, \ldots, p\}$. Write this hypothesis in the form (5), and derive the likelihood ratio test for this hypothesis. Discuss the connection of this test with the *F*-test.

Refresher on likelihood inference. In classical likelihood inference, we have observations

$$y_i \stackrel{\text{i.i.d.}}{\sim} p_{\theta}, \quad i = 1, \dots, n$$
 (2)

from some model parameterized by a vector $\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^d$. Under regularity conditions, the maximum likelihood estimate $\hat{\boldsymbol{\theta}}_n$ is known to converge to a normal distribution centered at its true value:

$$\sqrt{n}(\widehat{\boldsymbol{\theta}}_n - \boldsymbol{\theta}) \xrightarrow{d} N(0, \boldsymbol{I}(\boldsymbol{\theta})^{-1}),$$
(3)

where

$$\boldsymbol{I}(\boldsymbol{\theta}) \equiv -\mathbb{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2}{\partial \boldsymbol{\theta}^2} \log p_{\boldsymbol{\theta}}(y) \right]$$
(4)

is the per-observation Fisher information matrix. Furthermore, an optimal test of the null hypothesis

$$H_0: \boldsymbol{\theta} \in \Theta_0 \quad \text{versus} \quad H_1: \boldsymbol{\theta} \in \Theta_1 \setminus \Theta_0 \tag{5}$$

for some $\Theta_0 \subseteq \Theta_1 \subseteq \Theta$ is the likelihood ratio test based on the test statistic

$$\Lambda = \frac{\max_{\boldsymbol{\theta} \in \Theta_1} \prod_{i=1}^n p_{\boldsymbol{\theta}}(y_i)}{\max_{\boldsymbol{\theta} \in \Theta_0} \prod_{i=1}^n p_{\boldsymbol{\theta}}(y_i)}.$$
(6)

Under H_0 , we have the convergence

$$2\log\Lambda \xrightarrow{d} \chi_k^2$$
, where $k \equiv \dim(\Theta_1) - \dim(\Theta_0)$. (7)

Solution 1.

Problem 2. Relationships among *t*-tests, *F*-tests, and R^2 .

Consider the linear regression model (1), such that $x_{*,0} = \mathbf{1}_n$ is an intercept term.

- (a) Relate the R^2 of the linear regression to the *F*-statistic for a certain hypothesis test. What is the corresponding null hypothesis? What is the null distribution of the *F*-statistic? Are R^2 and *F* positively or negative related, and why does this make sense?
- (b) Use the relationship found in part (a) to simulate the null distribution of the R^2 by repeatedly sampling from an F distribution (via rf). Fix n = 100 and try $p \in \{2, 25, 50, 75, 99\}$. Comment on these null distributions, how they change as a function of p, and why.
- (c) Consider the null hypothesis $H_0: \beta_j = 0$, which can be tested using either a *t*-test or an *F*-test. Write down the corresponding *t* and *F* statistics, and prove that the latter is the square of the former.
- (d) Now suppose we are interested in testing the null hypothesis $H_0: \beta_{-0} = \mathbf{0}$ (here, $\beta_{-0} \equiv (\beta_1, \ldots, \beta_{p-1})^T$). One way of going about this is to start with the usual test statistic $t(\mathbf{c})$ for the null hypothesis $H_0: \mathbf{c}^T \boldsymbol{\beta}_{-0} = 0$, and then maximize over all $\mathbf{c} \in \mathbb{R}^{p-1}$:

$$t_{\max} \equiv \max_{\boldsymbol{c} \in \mathbb{R}^{p-1}} t(\boldsymbol{c}). \tag{8}$$

What is the null distribution of t_{\max}^2 ? What *F*-statistic is t_{\max}^2 equivalent to? How does the null distribution of t_{\max}^2 compare to that of $t(c)^2$?

Solution 2.

Problem 3. Case study: Violent crime.

The Statewide_crime.tsv file contains information on the number of violent crimes and murders for each U.S. state in 2015, as well as three socioeconomic indicators: percent living in metropolitan areas, high school graduation rate, and poverty rate (Table 1).

STATE	Violent	Murder	Metro	HighSchool	Poverty
AK	593	6	65.6	90.2	8.0
AL	430	7	55.4	82.4	13.7
AR	456	6	52.5	79.2	12.1
AZ	513	8	88.2	84.4	11.9
\mathbf{CA}	579	7	94.4	81.3	10.5

Table 1: The first five rows of the crime data.

The goal of this problem is to study the relationship between the three socioeconomic indicators and the per capita violent crime rate.

- (a) These data contain the total number of violent crimes per state, but it is more meaningful to model violent crime rate per capita. To this end, go online to find a table of current populations for each state. Augment crime_data with a new variable called Pop with this population information (see left_join() from the dplyr package) and create a new variable called CrimeRate defined as CrimeRate = Violent/Pop (see mutate() from the dplyr package).
- (b) Explore the variation and covariation among the variables CrimeRate, Metro, HighSchool, Poverty with the help of visualizations and summary statistics.
- (c) Construct linear model based hypothesis tests and confidence intervals associated with the relationship between CrimeRate and the three socioeconomic variables, including any relevant tables or plots in your LaTeX report. Discuss the results in technical terms.
- (d) Discuss your interpretation of the results from part (c) in language that a policymaker could comprehend, including any caveats or limitations of the analysis. Comment on what other data you might want to gather for a more sophisticated analysis of violent crime.

Solution 3.