A crash course on the tidyverse

FEugene Katsevich

September 4, 2023

Contents

1 Data import, representation, and tidying 2
1.1 Data import (TeadT) i 2
1.2 Tibbles e e 2
1.3 Tidy data o .. e e 3
1.4 Recognizing untidy data L 3
1.5 Making data tidy (tidyr) 4

2 Data visualization (ggplot?2) 5
2.1 Basicstructure of a ggplot 5
2.2 Adding geometric objects L 5
2.3 Customizing aesthetics L 6
2.4 Adding labels Lo 6
2.5 Creating different typesof plots 7
2.6 Faceting for Multiple Plots 7

3 Data transformation (dplyr) 8
3.1 Selecting columns with select() L 8
3.2 Filtering rows with filter() L e 8
3.3 Arranging rows with arrange() L. 9
3.4 Creating new columns with mutate() 9
3.5 Summarizing data with summarize() 9
3.6 Group-wise operations 9
3.7 Combining data with joins L L 10
3.8 Tips for efficient data transformation L Lo 10

This document is a crash course on the tidyverse, the state-of-the-art paradigm for data science in R. The
tidyverse is a collection of R packages for data import (readr), tidying (tidyr), transformation (dplyr),
visualization (ggplot2), and others.

ggpIOtZ a
) —— Communicate

Import — Tidy —* Transform

Model

Understand
. J
Program Image source: R for Data Science

All of these packages can be loaded with the following single command:

library(tidyverse)

1 Data import, representation, and tidying

1.1 Data import (readr)

The first step to analyzing data is to get it into R. When working with the tidyverse, data import is typically
handled by the readr package. This package offers a set of functions to efficiently read rectangular data (like
CSVs, TSVs, and other delimited formats).

Reading CSV files. CSV (Comma Separated Values) is one of the most common formats for sharing data.
readr offers the read_csv() function to read such files:

data <- read_csv("data.csv") # compare to base R's read.csv() function

Reading TSV files. TSV (Tab Separated Values) is another popular format, especially for datasets where
values might contain commas. To read TSV files, use read_tsv():

data <- read_tsv("data.tsv")

Reading Excel files. While readr doesn’t directly handle Excel files, the readxl package (part of the
wider tidyverse) does. It’s simple and works well with both .x1s and .x1sx formats:

data <- read_excel("data.xlsx")

Reading from databases. For database connections, the dbplyr and DBI packages are typically used.
They allow you to connect to a variety of databases, write SQL queries, and pull data directly into a tibble.

For efficient data import, consider employing the following tips:

e Use the n_max argument to limit the number of rows read. This is useful when previewing large datasets.

e Set skip to bypass initial rows, such as metadata at the top of a file.

« For large datasets, consider vroom (another package in the tidyverse universe) which is extremely fast
for reading text data.

1.2 Tibbles

The import functions in readr will return data in the form of a tibble. In the tidyverse, a tibble is an
enhanced version of a data frame. It provides a more modern and consistent way to work with tabular data.
Tibbles have several advantages over traditional data frames, including better printing of large data, stricter
handling of column types, and more informative error messages.

Creating a tibble
my_tibble <- tibble(
Name = c("Alice", "Bob", "Charlie"),
Age = c(25, 30, 22),
City = c("New York", "San Francisco", "Chicago")

)

Printing a tibble
my_tibble

A tibble: 3 x 3
Name Age City

<chr> <dbl> <chr>

1 Alice 25 New York

2 Bob 30 San Francisco
3 Charlie 22 Chicago

1.3 Tidy data

Most of the packages in the tidyverse are meant to operate on tidy data, i.e. data which adheres to three key
principles:

1. Each variable is a column; each column is a variable.
2. Each observation is a row; each row is an observation.
3. Each value is a cell; each cell is a single value.

Operating on tidy data makes data manipulation and analysis more streamlined.

1.4 Recognizing untidy data

Unfortunately, after importing data, usually we do not find it to be in a tidy format. Below are several
examples of untidy data.

Column headers are values, not variable names. Consider this dataset of people’s scores over different
years:

A tibble: 3 x 3

Name ©2020° "2021°
<chr> <dbl> <dbl>
1 Alice 85 88
2 Bob 90 91
3 Charlie 87 85

Here, the column headers (2020 and 2021) are actual values of a variable (Year) rather than variable names.

Multiple variables are stored in one column. In this dataset, city and state are combined in a single
column:

A tibble: 3 x 2
Name Location
<chr> <chr>

1 Diane Austin, TX
2 Eva Denver, CO
3 Frank Miami, FL

The Location column stores both the city and the state, which are distinct variables.
Variables are stored in both rows and columns. Imagine a dataset where the product types are both

in rows and columns:

A tibble: 3 x 3
Product “Sold in Store™ “Sold Online~

<chr> <dbl> <dbl>
##t 1 A 10 5
2 B 20 15
3 Total 30 20

Here, the “Total” row is a summary, making the Product variable mixed with actual data and aggregated
data.

A single observational unit is spread across multiple tables. Imagine you have customer details
and their addresses in two separate tables:

A tibble: 2 x 3
CustomerID Name Age

<dbl> <chr> <dbl>
1 1 Ian 28
2 2 Jenny 32

A tibble: 2 x 2
CustomerID Address

<dbl> <chr>
1 1 123 Main St
2 2 456 Elm St

The customer information is spread across two tables, making it more challenging to work with and analyze.

1.5 Making data tidy (tidyr)
The tidyr package provides several key functions to make data tidy:

e pivot_longer(): When you want to make your data longer, or gather columns.

e pivot_wider(): When you want to make your data wider, or spread rows into columns.
e separate(): When you need to separate one column into multiple columns.

e unite(): When you need to unite multiple columns into one.

To exemplify how tidyr works, consider the first example from the previous section:

A tibble: 3 x 3

Name ©2020° "2021°
<chr> <dbl> <dbl>
1 Alice 85 88
2 Bob 90 91
3 Charlie 87 85

Here, the column headers are values (i.e., the years 2020 and 2021). We can use the pivot_longer () function
from the tidyr package to tidy this data.

tidy_scores <- scores_by_year |>
pivot_longer (
cols = c(°2020°, "2021°), # columns to be pivoted into longer format
names_to = "Year", # name of the new column that will store old column mnames
values_to = "Score" # name of the new column that will store the wvalues
)

tidy_scores

A tibble: 6 x 3

Name Year Score
<chr> <chr> <dbl>
1 Alice 2020 85
2 Alice 2021 88
3 Bob 2020 90
4 Bob 2021 91
5 Charlie 2020 87
6 Charlie 2021 85

Now, the dataset is in a tidy format where each row is an observation, and each column is a variable. The
years, which were previously column headers, are now values in the “Year” column, and the scores are in the
“Score” column.

2 Data visualization (ggplot2)

ggplot2 offers an approachable and expressive syntax for creating a diverse range of visualizations. Let’s
explore its capabilities with examples using the mtcars dataset, a dataset included with R which contains
various attributes of 32 car models.

2.1 Basic structure of a ggplot

Start with the ggplot () function to set up your visualization:

Base plot with data

ggplot(data = mtcars, aes(x = wt, y = mpg)) +
geom_point ()

35
°
°
304 *®
°
°
25- s
2 ° °
e 0o0%
204 ° ‘ °
°
15+ * .% b °
°
104 o0
2 3 4 5
wit

This creates a simple scatter plot displaying car weights (wt) against miles per gallon (mpg).

2.2 Adding geometric objects

Beyond scatter plots, there are numerous geometries:

Histogram of car miles per gallon

ggplot(data = mtcars, aes(x = mpg)) +
geom_histogram(binwidth = 3, fill = "blue", color = "black", alpha = 0.7) +
labs(title = "Histogram of Miles Per Gallon")

Histogram of Miles Per Gallon

8-
6-
=
247
[&]
2-
0-
10 15 20 25 30 35
mpg

2.3 Customizing aesthetics

Map aesthetics to data variables for deeper insights:

Scatter plot colored by number of gears
ggplot(mtcars, aes(x = wt, y = mpg, color = as.factor(gear))) +
geom_point () +

labs(color = "Number of Gears")
35
°
°
304 *°
°
° Number of Gears
251 S
2 ° ° e 3
EZO o0 © o 4
- °
§ . s
°
°
154 0% ° -
°
10+ °°
2 3 4 5
wit

2.4 Adding labels

Custom scatter plot
ggplot (mtcars, aes(x = wt, y = mpg)) +
geom_point (aes(color = hp)) +
labs(title = "Miles Per Gallon vs. Weight",
x = "Weight (1000 1bs)",
y "Miles/(US) Gallon",
color = "Horsepower")

Miles Per Gallon vs. Weight

35
[]
[]

301 ®°
- Horsepower
o °
T ° 300
8 25+ °
& o o 250
) 20 o0 o 200
=" 20+ °
%) []
3 s . 150
= ° 100
= 151 e .

o
10- T T T T . .
2 3 4 5

Weight (1000 Ibs)

2.5 Creating different types of plots

Experiment with different visual representations:

Boxzplot of miles per gallon by number of cylinders
ggplot(mtcars, aes(x = as.factor(cyl), y = mpg)) +

geom_boxplot(aes(fill = as.factor(cyl))) +
labs(title = "MPG by Number of Cylinders",

x = "Cylinders",
y = "Miles/(US) Gallon",
£ill = "Cylinders")

MPG by Number of Cylinders

N N W w
o a1 o a1
1 1 1

Miles/(US) Gallon

=
a1
1

A

o
1
(]

4 6 8
Cylinders

2.6 Faceting for Multiple Plots

Show multiple plots simultaneously:

Cylinders

Scatter plots of mpg vs weight for each number of gears

ggplot(mtcars, aes(x = wt, y = mpg)) +

geom_point (aes(color = hp)) +

facet_wrap(~ gear) +

labs(color = "Horsepower", x

"Weight (1000 1lbs)", y

"Miles/(US) Gallon")

3

4

5

35

30

25

204

Miles/(US) Gallon

[]
15+ LA

104

3 4
Weight (1000 Ibs)

Horsepower

300
250
200
150
100

By leveraging the functionalities of ggplot2, you can generate informative and aesthetic visualizations that
help decipher complex datasets like mtcars.

3 Data transformation (dplyr)

dplyr provides a suite of tools for efficiently manipulating datasets in R. It focuses on tools for working with
data frames (or tibbles), its primary datatype.

3.1 Selecting columns with select()

This function lets you quickly isolate columns of interest:

Selecting 'mpg' and 'hp' columns from mtcars

selected_data <- mtcars |>

select (mpg, hp)

head(selected_data)

mpg
Mazda RX4 21.0
Mazda RX4 Wag 21.0
Datsun 710 22.8
Hornet 4 Drive 21.4
Hornet Sportabout 18.7
Valiant 18.1

hp
110
110

93
110
175
105

3.2 Filtering rows with filter()

Isolate observations based on their values:

Filtering cars that have more than 30 mpg

efficient_cars <- mtcars
filter(mpg > 30)

head(efficient_cars)

##
##
##

mpg cyl disp hp drat
4 78.7 66 4.08 2.200 19.47
4 75.7 52 4.93 1.615 18.52

Fiat 128 32.4
Honda Civic 30.4

|>

wt gsec vs am gear carb

Toyota Corolla 33.
30.

Lotus Europa

9
4

4 71

.1 65 4.22 1.835 19.90

4 95.1 113 3.77 1.513 16.90

3.3 Arranging rows with arrange ()

Order the rows of your data:

Ordering cars based on horsepower

sorted_cars <- mtcars

arrange (hp)

head(sorted_cars)

| >

mpg cyl
Honda Civic 30.4 4
Merc 240D 24.4 4
Toyota Corolla 33.9 4
Fiat 128 32.4 4
Fiat X1-9 27.3 4
Porsche 914-2 26.0 4

di

75.
146.
71.
78.
79.
120.

hp
52
62
65
66
66
91

sp

Wwo N~ N~

dr

H N NN NN VIS

.93
.69
.22
.08
.08
.43

at

N, NP W=

1
1

1
1

wt gsec vs am gear carb

.615
.190
.835
.200
.935
.140

18.
20.
19.
19.
18.
16.

3.4 Creating new columns with mutate()

Generate new variables:

Creating a new column 'hp_per_mpg' as a ratio of horsepower

modified_data <- mtcars |>
mutate (hp_per_mpg = hp / mpg)

head(modified_data)

mpg cyl
Mazda RX4 21.0 6
Mazda RX4 Wag 21.0 6
Datsun 710 22.8 4
Hornet 4 Drive 21.4 6
Hornet Sportabout 18.7 8
Valiant 18.1 6

disp
160
160
108
258
360
225

hp
110
110

93
110
175
105

drat
.90
.90
.85
.08
.15
.76

N W wwww

W wWwwNnNDN

3.5 Summarizing data with summarize()

Generate summary statistics:

Calculating mean mpg for the dataset

avg_mpg <- mtcars |>

summarize (mean_mpg = mean(mpg))

avg_mpg

mean_mpg
1 20.09062

3.6 Group-wise operations

Perform operations on subsets of your data:

wt

.620
.875
.320
.215
.440
.460

52
00
90
47
90
70

gsec vs am
.46
.02
.61
.44
.02
.22

16
17
18
19
17
20

1

O P - -

R, R R RO

0

= O = = O

O OO - = =

4 2
4 2
4 1
4 1
4 1
5 2
to mpg

gear carb hp_per_mpg

4 4 5.238095
4 4 5.238095
4 1 4.078947
3 1 5.140187
3 2 9.3568289
3 1 5.801105

Calculating mean mpg for each number of cylinders
cyl_mpg <- mtcars |>
summarize (mean_mpg = mean(mpg), .by = cyl)

cyl_mpg

cyl mean_mpg
1 6 19.74286
2 4 26.66364
3 8 15.10000

3.7 Combining data with joins

Join multiple datasets based on common columns:

Assuming a second data frame 'car_brands' that has a 'model’' column and a 'brand' column
joined_data <- mtcars |>
left_join(car_brands, by = "model")

3.8 Tips for efficient data transformation

o Use the pipe (1>) to chain operations, making your code more readable.

e Use rename () if you need to change column names.

e Remember functions like n_distinct () for counting distinct values or tally () for counting occurrences.

o Familiarize yourself with dplyr’s join functions (inner_join(), full_join(), etc.) for more complex
merging operations.

10

	Data import, representation, and tidying
	Data import (readr)
	Tibbles
	Tidy data
	Recognizing untidy data
	Making data tidy (tidyr)

	Data visualization (ggplot2)
	Basic structure of a ggplot
	Adding geometric objects
	Customizing aesthetics
	Adding labels
	Creating different types of plots
	Faceting for Multiple Plots

	Data transformation (dplyr)
	Selecting columns with select()
	Filtering rows with filter()
	Arranging rows with arrange()
	Creating new columns with mutate()
	Summarizing data with summarize()
	Group-wise operations
	Combining data with joins
	Tips for efficient data transformation

