Preparing high quality reports

Eugene Katsevich

August 21, 2022

Aside from statistical methodology and programming, another goal of STAT 9610 is to teach
you how to produce high-quality reports. This skill is essential to successfully communicating the
results of your research, e.g. in the form of a manuscript submitted for publication. Therefore,
each submitted homework and exam will be held to a high standard of presentation, which will
be evaluated and will comprise a small part of your grade. Below are guidelines on producing
high-quality reports, broken down by their components: text, code, figures, and tables.

1 Text

Your prose should be clear and concise. Use references to refer to equations, figures, and tables.

2 Code

Your code should be commented and easy to read. Make sure that your code does not exceed the
width of the page, like this:

tibble(x = 1:100, y = 5*x + rnorm(100, sd = 100)) ¥%>% filter(x < 80) %> summarise(sample_corr

To avoid such long lines of code, make sure your code does not reach the vertical line in the
right-hand side of your RStudio editor. Insert line breaks appropriately to make your code more
readable:

tibble(x = 1:100, y = 5*x + rnorm(100, sd = 100)) %>%
filter(x < 80) %>%
summarise(sample_correlation = cor(x, y))

3 Figures

Figures are very important tools to convey information to readers, and they should be constructed
thoughtfully. Please read Chapter 28 of R for Data Science, which is a good reference for producing
high-quality figures. Here we discuss some of the most important elements.

Sizing. The aspect ratio (i.e. ratio of width to height) of your plots is consistent with their
content; e.g. box plots are usually relatively narrow, and scatter plots often make sense with equal
aspect ratios.

https://r4ds.had.co.nz/graphics-for-communication.html

Page 2

Once you have created a plot in R, you need to export it to include it in your LaTeX report.
For example, suppose we have the plot p defined as below:

test_data <- tibble(x = rnorm(10), y = rnorm(10))
p <- test_data %>} ggplot(aes(x = x, y = y)) + geom_point() + theme_bw()

You should save it as a PDF via ggsave:

ggsave(plot = p,
filename = "figures-and-tables/test_plot.pdf",
device = "pdf",
width = 7?77,
height = ?777)

and then insert it into the LaTeX report via \includegraphics:

\begin{figure}[h!]

\centering
\includegraphics{figures-and-tables/test_plot.pdf}
\caption{A test plot.}

\label{fig:test-plot}

\end{figure}

Here, the question marks should be the width and height of the figure, in inches. Choose these to
get a reasonable aspect ratio for the plot and a reasonable overall plot size. Figures 1, 2, and 3
consider the width and length of the figure to be 1 inch, 2.5 inches, and 5 inches, respectively. The
medium-sized plot (Figure 2) appears to be the most sensible choice.

y
ILOI—\I\.)

-1012
X

Figure 1: The plot saved as 1lin by lin.

°
21 °
1-
> ° L2 | °
01 °
-11® o
°
-1 0 1 2

Figure 2: The plot saved as 2in by 2in.

Page 3

°
2-
°
l-
°
> °
° °
0-
°
°
_1- °
°
T T T T
-1 0 1 2
X

Figure 3: The plot saved as 5in by 5in.

Titles. Each plot should include informative axis and legend titles. For example, consider the
code below (drawn from R4DS Chapter 28), which produces the plot in Figure 4.

a plot without clear azis and legend titles
p <- mpg %>h
ggplot(aes(x = displ, y = hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +
theme_bw ()

save plot
ggsave(plot = p,
filename = "figures-and-tables/cars-unlabeled.pdf",
device = "pdf",
width = 5,
height = 3.75)

This is a plot of fuel efficiency versus engine displacement for various types of cars, but the axis
and legend labels on the plot do not make this very clear. We can easily add informative titles to

Page 4

[]
°
40 A

° class

[]

{]

: ® 2seater
® compact
® midsize
® minivan
® pickup

©® subcompact

® suv

Figure 4: A plot without clear titles.

this plot using labs, resulting in Figure 5, which is much easier to understand.

a plot with clear azis and legend titles
p <- mpg %>%
ggplot(aes(x = displ, y = hwy)) +
geom_point (aes(color = class)) +
geom_smooth(se = FALSE) +

labs(
x = "Engine displacement (liters)",
y = "Highway fuel economy (miles per gallon)",
colour = "Car type"
) +
theme_bw ()
save plot
ggsave(plot = p,
filename = "figures-and-tables/cars-labeled.pdf",
device = "pdf",
width = 5,

height = 3.75)

Plots might or might not need overall titles; often the axis titles speak for themselves and the
message of the plot can be conveyed in the caption (as in Figure 5.) To add plot titles if necessary,
use the title argument to labs ().

If applicable, axis titles should also include the units of measurement, e.g. liters or miles

Page 5

[J
=
o °
t—cg’40'
o ° Car type
g °
" H ® 2seater
Q@ ®
E ® compact
530' ® midsize
g ® minivan
Q ® pickup
@
© ® subcompact
Y 20-
2 ® suv
=
=
2
I

2 3 4 5 6 7
Engine displacement (liters)

Figure 5: (A plot with clear axis and legend titles). Fuel efficiency generally decreases
with engine size; two-seaters (sports cars) are an exception because of their light weight.

per gallon as in Figure 5. If axis titles involve mathematical formulas, these should be typeset
appropriately. The code below (drawn from R4DS Chapter 28) and Figure 6, which it produces,
illustrate how to do this. More examples can be found at ?plotmath.

a plot 2llustrating how to include formulas in axis titles
p = tibble(x = runif (10),
y = runif (10)) %>%
ggplot(aes(x, y)) +
geom_point () +
labs(x = quote(sum(x[i] =~ 2, i == 1, n)),
y = quote(alpha + beta + frac(delta, theta))) +
theme_bw ()

save the plot
ggsave(plot = p,

filename = "figures-and-tables/fig-formulas.pdf",
device = "pdf",
width = 2.5,

height = 2.5)

Captions. Figures should have informative captions to help readers understand what information
is displayed and how to interpret it.

https://rdrr.io/r/grDevices/plotmath.html

Page 6

[]
084 * S
o |

+
Q061
o i ° °

0.4-

[J
[] []

02 04 06
n

2%

|:

Figure 6: An illustration of using formulas in axis titles.

Layout. Sometimes, two or more plots make sense to present together in a single figure. This can
be accomplished in two ways. If the different plots convey the same type of information but for
different slices of the data, then facet_grid and facet_wrap are the best way of laying out these
plots. For example, the code below and Figure 7 illustrates facet_wrap for the mpg data used in
Figures 4 and 5.

p = mpg %>h
filter(class %in%
c("2seater", "compact", "midsize")) %>%
ggplot(aes(x = displ, y = hwy)) +
geom_point () +

facet_wrap(class ~ .) +
labs(
x = "Engine displacement (liters)",
y = "Highway fuel economy\n(miles per gallon)",
) +
theme_bw ()

ggsave(plot = p,

filename = "figures-and-tables/facet-wrap.pdf",
device = "pdf",
width = 5.5,

height = 2.25)

If the plots convey different types of information, then they should be created separately and
then concatenated together using plot_grid from the cowplot package. An example is shown
below and in Figure 8. Note that the figure caption should reference the subpanels by their labels
(in this case, a and b).

Page 7

2seater compact midsize

> 45 o
£~

c
c -
8:% 40
q.’ .
= 2 35- .
g .
T £ *‘
© QO
gL . 4
E%\/ZS- H s o oi% K o °
T [

2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
Engine displacement (liters)

Figure 7: An illustration of using facet_wrap to create a multi-panel plot.

t2llustration of using cowplot to concatenate multiple plots
library(cowplot)

farst plot: box plot of fuel ecomomy by car type
pl = mpg %>h
mutate(class = # re-order car classes by fuel economy
fct_reorder(class, hwy)) %>%
ggplot(aes(x = class, y = hwy, fill = class)) +
geom_boxplot () +
labs(
x = "Car type",

y = "Highway fuel economy\n(miles per gallon)"
) +
theme_bw() +
theme (legend.position = "none", # remove legend and = azis text because

axis.text.x = element_blank()) # <information present in second plot

second plot: scatter plot of fuel econmomy versus car type
p2 = mpg h>h
mutate(class = # re-order car classes by fuel economy
fct_reorder(class, hwy)) %>%
ggplot(aes(x = displ, y = hwy)) +
geom_point (aes(color = class)) +
geom_smooth(se = FALSE) +

labs(
x = "Engine displacement (liters)",
colour = "Car type"

) +

theme_bw() +
theme (axis.title.y = element_blank()) # remove y azis title because already
present in the first plot

Page 8

use plot_grid from cowplot to concatenate the two plots
p = plot_grid(pl,

P2,

labels = "auto", # generate labels for subplots
rel_widths = c(1,2), # specify relative widths
align = "h") # how to align subplots

save the plot
ggsave(plot = p,

filename = "figures-and-tables/cowplot-demo.pdf",
device = "pdf",
width = 5,

height = 2.5)

a ee | D[Car type
> | °)
gﬁ40 | 40 o pickup

c
§§ ® o suv
oS -
5 = 307 ® minivan

o)
2 3— i - e 2seater
%] ® ' [J
== subcompact
~ E 20'
o2 * ° ® compact
I

® o ©® midsize
2 3 4 5 6 7
Car type Engine displacement (liters)

Figure 8: (An illustration of using cowplot to create a multi-panel plot.) Relationships
between highway fuel economy and car type (a) and engine displacement (b).

4 Tables

The two tools used to create nice tables are kable (requiring the knitr and kableExtra packages)
and stargazer (from the stargazer package). kable is useful for printing general rectangular
tables, while stargazer is useful for printing regression outputs. Both export tables as LaTeX code,
which can be imported in a LaTeX document using \include. Problem 3 of the sample homework
shows how to create tables using kable and stargazer, and the corresponding LaTeX document
shows how to include the tables produced in your report.

As far as presentation quality for tables, many of the principles of creating high-quality figures
carry over, e.g. using informative captions and column names.

https://github.com/stat-9610-fall-2022/sample-homework-stat-9610/blob/main/problem-3.R
https://github.com/stat-9610-fall-2022/sample-homework-stat-9610/blob/main/sample-homework.tex

	Text
	Code
	Figures
	Tables

