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Preface

This is a set of lecture notes developed for the PhD statistics course “STAT 9610: Statistical
Methodology” at the University of Pennsylvania. Much of the content is adapted from Alan
Agresti’s book Foundations of Linear and Generalized Linear Models (2015). These notes may
contain typos and errors, and will be updated in subsequent iterations of STAT 9610.
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Chapter 1

Linear models: Estimation

1.1 Introduction
See also Agresti 1.1

The overarching statistical goal addressed in this class is to learn about relationships between
a response y and predictors x0, x1, . . . , xp−1. This abstract formulation encompasses an extremely
wide variety of applications. The most widely used set of statistical models to address such problems
are generalized linear models, which are the focus of this class.

Let’s start by recalling the linear model, the most fundamental of the generalized linear models.
In this case, the response is continuous (y ∈ R) and modeled as

y = β0x0 + · · ·+ βp−1xp−1 + ε, (1.1)

where
ε ∼ (0, σ2), i.e. E[ε] = 0 and Var[ε] = σ2. (1.2)

We view the predictors x0, . . . , xp−1 as fixed, so the only source of randomness in y is ε. Another
way of writing the linear model is

µ ≡ E[y] = β0x0 + · · ·+ βp−1xp−1 ≡ η.

Not all responses are continuous, however. In some cases, we have binary responses (y ∈ {0, 1})
or count responses (y ∈ Z). In these cases, there is a mismatch between the

linear predictor η ≡ β0x0 + · · ·+ βp−1xp−1

and the
mean response µ ≡ E[y].

The linear predictor can take arbitrary real values (η ∈ R), but the mean response can lie in a
restricted range, depending on the response type. For example, µ ∈ [0, 1] for binary y and µ ∈ [0,∞)
for count y.

For these kinds of responses, it makes sense to model a transformation of the mean as linear,
rather than the mean itself:

g(µ) = g(E[y]) = β0x0 + · · ·+ βp−1xp−1 = η. (1.3)

1
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This transformation g is called the link function. For binary y, a common choice of link function is
the logit link, which transforms a probability into a log-odds:

logit(π) ≡ log π

1− π .

So the predictors contribute linearly on the log-odds scale rather than on the probability scale. For
count y, a common choice of link function is the log link.

Models of the form (1.3) are called generalized linear models (GLMs). They specialize to
linear models for identity link function, i.e. g(µ) = µ. The focus of this course are methodolo-
gies to learn about the coefficients β ≡ (β0, . . . , βp−1)T of a GLM based on a sample (X,y) ≡
{(xi,0, . . . , xi,p−1, yi)}ni=1 drawn from this distribution. Learning about the coefficient vector helps
us learn about the relationship between the response and the predictors. This course is broken up
into five units.

• Chapter 1. Linear model: Estimation. The least squares point estimate β̂ of β based
on a dataset (X,y) under the linear model assumptions (1.1) and (1.2).

• Chapter 2. Linear model: Inference. Under the additional assumption that ε ∼ N(0, σ2),
how to carry out statistical inference (hypothesis testing and confidence intervals) for the
coefficients.

• Chapter 3. Linear model: Misspecification. What to do when the linear model
assumptions are not correct: What issues can arise, how to diagnose them, and how to fix
them.

• Chapter 4. GLMs: General theory. Estimation and inference for GLMs (generalizing
Chapters 1 and 2). GLMs fit neatly into a unified theory based on exponential families.

• Chapter 5. GLMs: Special cases. Looking more closely at the most important special
cases of GLMs, including logistic regression and Poisson regression.

If time permits, we will cover further topics, including multiple testing (how to correct for
multiplicity when testing many hypotheses—in GLMs or otherwise) and high-dimensional inference
(how to carry out inference in situations where there are more predictors than samples).

We will use the following notations in this course. Vector and matrix quantities will be bolded,
whereas scalar quantities will not be. Capital letters will be used for matrices, and lowercase
for vectors and scalars. No notational distinction will be made between random quantities and
their realizations. The letters i = 1, . . . , n and j = 0, . . . , p− 1 will index samples and predictors,
respectively. The predictors {xij}i,j will be gathered into an n × p matrix X. The rows of X
correspond to samples, with the ith row denoted xi∗. The columns of X correspond to predictors,
with the jth column denoted x∗j . The responses {yi}i will be gathered into an n× 1 response vector
y. The notation ≡ will be used for definitions.

1.2 Types of predictors; interpreting linear model coefficients
See also Agresti 1.2

The types of predictors xj (e.g. binary or continuous) has less of an effect on the regression than
the type of response, but it is still important to pay attention to the former.
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Intercepts. It is common to include an intercept in a linear regression model, a predictor x0 such
that xi0 = 1 for all i. When an intercept is present, we index it as the 0th predictor. The simplest
kind of linear model is the intercept-only model or the one-sample model:

y = β0 + ε. (1.4)

The parameter β0 is the mean of the response.

Binary predictors. In addition to an intercept, suppose we have a binary predictor x1 ∈ {0, 1}
(e.g. x1 = 1 for patients who took blood pressure medication and x1 = 0 for those who didn’t). This
leads to the following linear model:

y = β0 + β1x1 + ε. (1.5)
Here, β0 is the mean response (say blood pressure) for observations with x1 = 0 and β0 + β1 is
the mean response for observations with x1 = 1. Therefore, the parameter β1 is the difference in
mean response between observations with x1 = 1 and x1 = 0. This parameter is sometimes called
the effect or effect size of x1, though a causal relationship might or might not be present. The
model (1.5) is sometimes called the two-sample model, because the response data can be split into
two “samples”: those corresponding to x1 = 0 and those corresponding to x1 = 1.

Categorical predictors. A binary predictor is a special case of a categorical predictor: A
predictor taking two or more discrete values. Suppose we have a predictor w ∈ {w0, w1, . . . , wC−1},
where C ≥ 2 is the number of categories and w0, . . . , wC−1 are the levels of w. E.g. suppose
{w0, . . . , wC−1} is the collection of U.S. states, so that C = 50. If we want to regress a response on
the categorical predictor w, we cannot simply set x1 = w in the context of the linear regression (1.5).
Indeed, w does not necessarily take numerical values. Instead, we need to add a predictor xj for
each of the levels of w. In particular, define xj ≡ 1(w = wj) for j = 1, . . . , C − 1 and consider the
regression

y = β0 + β1x1 + · · ·+ βC−1xC−1 + ε. (1.6)
Here, category 0 is the base category, and β0 represents the mean response in the base category.
The coefficient βj represents the difference in mean response between the jth category and the base
category.

Quantitative predictors. A quantitative predictor is one that can take on any real value. For
example, suppose that x1 ∈ R, and consider the linear model

y = β0 + β1x1 + ε. (1.7)

Now, the interpretation of β1 is that an increase in x1 by 1 is associated with an increase in y by
β1. We must be careful to avoid saying “an increase in x1 by 1 causes y to increase by β1” unless
we make additional causal assumptions. Note that the units of x1 matter. If x1 is the height of a
person, then the value and the interpretation of β1 changes depending on whether that height is
measured in feet or in meters.

Ordinal predictors. There is an awkward category of predictor in between categorical and
continuous called ordinal. An ordinal predictor is one that takes a discrete number of values, but
these values have an intrinsic ordering, e.g. x1 ∈ {small, medium, large}. It can be treated as
categorical at the cost of losing the ordering information, or as continuous if one is willing to assign
quantatitive values to each category.
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Multiple predictors. A linear regression need not contain just one predictor (aside from an
intercept). For example, let’s say x1 and x2 are two predictors. Then, a linear model with both
predictors is

y = β0 + β1x1 + β2x2 + ε. (1.8)

When there are multiple predictors, the interpretation of coefficients must be revised somewhat. For
example, β1 in the above regression is the effect of an increase in x1 by 1 while holding x2 constant
or while adjusting for x2 or while controlling for x2. If y is blood pressure, x1 is a binary predictor
indicating blood pressure medication taken and x2 is sex, then β1 is the effect of the medication on
blood pressure while controlling for sex. In general, the coefficient of a predictor depends on what
other predictors are in the model. As an extreme case, suppose the medication has no actual effect,
but that men generally have higher blood pressure and higher rates of taking the medication. Then,
the coefficient β1 in the single regression model (1.5) would be nonzero but the coefficient in the
multiple regression model (1.8) would be equal to zero. In this case, sex acts as a confounder.

Interactions. Note that the multiple regression model (1.8) has the built-in assumption that the
effect of x1 on y is the same for any fixed value of x2 (and vice versa). In some cases, the effect
of one variable on the response may depend on the value of another variable. In this case, it’s
appropriate to add another predictor called an interaction. Suppose x2 is quantitative (e.g. years of
job experience) and x2 is binary (e.g. sex, with x2 = 1 meaning male). Then, we can define a third
predictor x3 as the product of the first two, i.e. x3 = x1x2. This gives the regression model

y = β0 + β1x1 + β2x2 + β3x1x2 + ε. (1.9)

Now, the effect of adding another year of job experience is β1 for females and β1 + β3 for males.
The coefficient β3 is the difference in the effect of job experience between males and females.

1.3 Model matrices, model vectors spaces, and identifiability
See also Agresti 1.3-1.4

The matrix X is called the model matrix or the design matrix. Concatenating the linear model
equations (1.1) and (1.2) across observations give us an equivalent formulation:

y = Xβ + ε; E[ε] = 0, Var[ε] = σ2In

or
E[y] = Xβ = µ.

As β varies in Rp, the set of possible vectors µ ∈ Rn is defined

C(X) ≡ {µ = Xβ : β ∈ Rp}.

C(X), called the model vector space, is a subspace of Rn: C(X) ⊆ Rn. Since

Xβ = β0x∗0 + · · ·+ βp−1x∗p−1,

the model vector space is the column space of the matrix X (Figure 1.1).
The dimension of C(X) is the rank of X, i.e. the number of linearly independent columns of

X. If rank(X) < p, this means that there are two different vectors β and β′ such that Xβ = Xβ′.
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Figure 1.1: The model vector space.

Therefore, we have two values of the parameter vector that give the same model for y. This makes
β not identifiable, and makes it impossible to reliably determine β based on the data. For this
reason, we will generally assume that β is identifiable, i.e. Xβ 6= Xβ′ if β 6= β′. This is equivalent
to the assumption that rank(X) = p. Note that this cannot hold when p > n, so for the majority of
the course we will assume that p ≤ n. In this case, rank(X) = p if and only if X has full-rank.

As an example when p ≤ n but when β is still not identifiable, consider the case of a categorical
predictor. Suppose the categories of w were {w1, . . . , wC−1}, i.e. the baseline category w0 did not
exist. In this case, the model (1.6) would not be identifiable because x0 = 1 = x1 + · · ·+ xC−1 and
thus x∗0 = 1 = x∗1 + · · ·+ x∗,C−1. Indeed, this means that one of the predictors can be expressed
as a linear combination of the others, so X cannot have full rank. A simpler way of phrasing the
problem is that we are describing C − 1 intrinsic parameters (the means in each of the C − 1 groups)
with C model parameters. There must therefore be some redundancy. For this reason, if we include
an intercept term in the model then we must designate one of our categories as the baseline and
exclude its indicator from the model.

1.4 Least squares estimation
See also Agresti 2.1.1, 2.7.1

Now, suppose that we are given a dataset (X,y). How do we go about estimating β based on
this data? The canonical approach is the method of least squares:

β̂ ≡ arg min
β

‖y −Xβ‖2. (1.10)

The quantity

‖y −Xβ̂‖2 = ‖y − µ̂‖2 =
n∑
i=1

(yi − µ̂i)2 (1.11)

is called the residual sum of squares (RSS), and it measures the lack of fit of the linear regression
model. We therefore want to choose β̂ to minimize this lack of fit. Note that if ε is assumed to be
N(0, σ2In), then the least squares solution would also be the maximum likelihood solution. Indeed,
for yi ∼ N(µi, σ2), the log-likelihood is

log
[
n∏
i=1

1√
2πσ2

exp
(
−(yi − µi)2

2σ2

)]
= constant− 1

2σ2

n∑
i=1

(yi − µi)2.
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Letting L(β) = 1
2‖y −Xβ‖

2, we can do some calculus to derive that

∂

∂β
L(β) = −XT (y −Xβ). (1.12)

Setting this vector of partial derivatives equal to zero, we arrive at the normal equations:

−XT (y −Xβ̂) = 0 ⇐⇒ XTXβ̂ = XTy. (1.13)

If X is full rank, the matrix XTX is invertible and we can therefore conclude that

β̂ = (XTX)−1XTy. (1.14)

Now that we have derived the least squares estimator, we can compute its bias and variance. To
obtain the bias, we first calculate that

E[β̂] = E[(XTX)−1XTy] = (XTX)−1XTE[y] = (XTX)−1XTXβ = β.

Therefore, the least squares estimator is unbiased. To obtain the variance, we compute

Var[β̂] = Var[(XTX)−1XTy]
= (XTX)−1XTVar[y]X(XTX)−1

= (XTX)−1XT (σ2In)X(XTX)−1

= σ2(XTX)−1.

(1.15)

According to the Gauss-Markov theorm, this covariance matrix computed above is the smallest (in
the sense of positive semidefinite matrices) among all linear unbiased estimates of β.

1.5 Linear regression as orthogonal projection
See also Agresti 2.2, 2.3, 2.4.2, 2.4.3, 2.4.4

Let’s think about the mapping y 7→ µ̂ = Xβ̂ ∈ C(X). We claim that this mapping is an
orthogonal projection (Figure 1.2). Geometrically it makes sense, since we define β̂ so that µ̂ ∈ C(X)
is as close to y as possible. The shortest path between a point and a plane is the perpendicular.
One way of seeing this is to show that vT (y −Xβ̂) = 0 for each v ∈ C(X). Since the columns
{x∗0, . . . ,x∗p−1} of X form a basis for C(X), it suffices to show that xT∗j(y −Xβ̂) = 0 for each
j = 0, . . . , p− 1. This is a consequence of the normal equations XT (y −Xβ̂) = 0 derived in (1.13).

To derive the projection matrix corresponding to this orthogonal projection, we write

µ̂ = Xβ̂ = X(XTX)−1XTy = Hy, (1.16)

where
H ≡X(XTX)−1XT (1.17)

is called the hat matrix. This is the orthogonal projection matrix onto C(X). Recall that a matrix
P is an orthogonal projection onto a subspace W if for all v ∈ W we have Pv = v and for all
v ∈W⊥ we have Pv = 0. We can check for example the first of these conditions by noting that if
v ∈ C(X), then v = Xβ for some β ∈ Rp. Therefore, we have

Hv = X(XTX)−1XTXβ = Xβ = v.
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Figure 1.2: Least squares as orthogonal projection.

A simple example of H can be obtained by considering the intercept-only regression.
One consequence of this observation is that the fitted values µ̂ depend on X only through C(X).

As we will see in Homework 1, there are many different model matrices X leading to the same
model space. Essentially, this reflects the fact that there are many different bases for the same
vector space. Consider for example changing the units on the columns of X. It can be verified
that not just the fitted values µ̂ but also the predictions on a new set of features remain invariant
to reparametrization (this follows from parts (a) and (b) of Homework 1 Problem 1). Therefore,
while reparametrization can have a huge impact on the fitted coefficients, it has no impact on the
predictions of linear regression.

The orthogonality property of least squares, together with the Pythagorean theorem, leads
to the following fundamental relationship. Let’s say that S ⊂ {0, 1, . . . , p − 1} is a subset of the
predictors. First regress y on X to get β̂ as usual. Then, we consider the partial model matrix
X∗S obtained by selecting only the columns in S. Regression y on X∗S results in β̂S (note: β̂S is
not necessarily obtained from β̂ by extracting the coefficients corresponding to S). Now, consider
the three points y,Xβ̂,X∗Sβ̂S ∈ Rn. Since Xβ̂ and X∗Sβ̂S are both in C(X), it follows by the
orthogonal projection properpty that y −Xβ̂ is orthogonal to Xβ̂ −X∗Sβ̂S . In other words, these
three points form a right triangle (Figure 1.3). By the Pythagorean theorem, we conclude that

‖y −X∗Sβ̂S‖2 = ‖Xβ̂ −X∗Sβ̂S‖2 + ‖y −Xβ̂‖2. (1.18)

We will rely on this fundamental relationship throughout this course.
For now, we can extract a few consequences of the relationship (1.18). As a starting point,

consider the case when S = {0}, i.e. the partial model is the intercept-only model. In this case,
X∗S = 1n and β̂S = ȳ. Therefore, equation (1.18) implies that

‖y − ȳ1n‖2 = ‖Xβ̂ − ȳ1n‖2 + ‖y −Xβ̂‖2. (1.19)

Equivalently, we can rewrite this equation as follows:

SST ≡
n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(µ̂i − ȳ)2 +
n∑
i=1

(yi − µ̂i)2 ≡ SSR + SSE. (1.20)

Figure 1.4 gives an interpretation of the ANOVA decomposition (1.20) in the case of the simple
linear regression model (1.7).
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Figure 1.3: Pythagorean theorem for regression on a subset of predictors.

Figure 1.4: ANOVA decomposition for simple linear regression.

1.6 Correlation, multiple correlation, and R2

See also Agresti 2.1.3, 2.4.6

ANOVA decomposition for C groups model. Let’s consider the special case of the ANOVA
decomposition (1.20) when the model matrix X represents a single categorical predictor w. In this
case, each observation i is associated to one of the C classes of w, which we denote c(i) ∈ {1, . . . , C}.
Let’s consider the C groups of observations {i : c(i) = c} for c ∈ {1, . . . , C}. For example, w may
be the type of a car (compact, midsize, minivan, etc.) and y might be its fuel efficiency in miles per
gallon.
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It is easy to check that the least squares fitted values µ̂i are simply the means of the corresponding
groups:

µ̂i = ȳc(i), where ȳc(i) ≡
∑
i:c(i)=c yi

|{i : c(i) = c}|
. (1.21)

Therefore, we have

SSR =
n∑
i=1

(µ̂i − ȳ)2 =
n∑
i=1

(ȳc(i) − ȳ)2 ≡ between-groups sum of squares (SSB) (1.22)

and

SSE =
n∑
i=1

(yi − µ̂i)2 =
n∑
i=1

(yi − ȳc(i))2 ≡ within-groups sum of squares (SSW). (1.23)

We therefore obtain the following corollary of the ANOVA decomposition (1.20):

SST = SSB + SSW. (1.24)

R2 definition and (multiple) correlation. The ANOVA decompositions (1.20) and (1.24) of
the variation in y into that explained by the linear regression model (SSR) and that left over (SSE)
leads naturally to the definition of R2 as the fraction of variation in y explained by the linear
regression model:

R2 ≡ SSR
SST =

∑n
i=1(µ̂i − ȳ)2∑n
i=1(yi − ȳ)2 = ‖Xβ̂ − ȳ1n‖

2

‖y − ȳ1n‖2
. (1.25)

By the decomposition (1.20), we have R2 ∈ [0, 1]. The closer R2 is to 1, the closely the data follow
the fitted linear regression model. There is a connection between R2 and correlation. To see this,
let us first consider the case of the simple linear regression model with one predictor

y = β0 + β1x1 + ε. (1.26)
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In this simple case, one can directly derive a formula for the fitted coefficients:

β̂0 = ȳ − β̂1x̄; β̂1 =
∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 . (1.27)

Therefore,
µ̂− ȳ1n = β̂01n + β̂1x∗1 − ȳ1n = β̂1(x∗1 − x̄1n)

and thus

R2 = ‖µ̂− ȳ1n‖
2

‖y − ȳ1n‖2
= β̂2

1‖x∗1 − x̄1n‖2

‖y − ȳ1n‖2
=
( ∑n

i=1(xi − x̄)(yi − ȳ)
(∑n

i=1(xi − x̄)2)1/2 (∑n
i=1(yi − ȳ)2)1/2

)2

≡ ρ2
xy, (1.28)

where ρxy is the sample correlation between x1 and y. Therefore, in a simple linear regression, R2 is
the squared sample correlation between x1 and y. For general regressions, one can derive that R2

is the squared sample correlation between Xβ̂ and y. For this reason, R2 is sometimes called the
multiple correlation coefficient.

Regression to the mean. Let’s go back to the simple regression model (1.26), and let’s take a
closer look at β̂1 in (1.27). Denoting by σx is the sample standard deviation of x1 and σy is the
sample standard deviation of y, we can rewrite β̂1 as

β̂1 = σy
σx
· ρxy. (1.29)

Assuming that x∗1 and y have been normalized to have the same sample standard deviation σx = σy,
we find that the least squares coefficient β̂1 is equal to the sample correlation ρxy between x and y.
Since |ρxy| < 1 unless x∗1 and y are perfectly correlated (by the Cauchy-Schwarz inequality), this
means that

|µ̂i − ȳ| < |xi − x̄| for each i. (1.30)
Therefore, we expect yi to be closer to its mean than xi is to its mean. This phenomenon is called
regression to the mean (and is in fact the origin of the term “regression”). Many mistakenly attribute
a causal mechanism to this phenomenon, when in reality it is simply a statistical artifact. For
example, suppose xi is the number of games a sports team won last season and yi is the number of
games it won this season. It is widely observed that teams with exceptional performance in a given
season suffer a “winner’s curse”, performing worse in the next season. The reason for the winner’s
curse is simple: teams perform exceptionally well due to a combination of skill and luck. While skill
stays roughly constant from year to year, the team which performed exceptionally well in a given
season is unlikely to get as lucky as it did next season.

R2 increases as predictors are added. The R2 is an in-sample measure, i.e. it uses the same
data to fit the model and to assess the quality of the fit. Therefore, it is generally an optimistic
measure of the (out-of-sample) prediction error. One manifestation of this is that the R2 increases
if any predictors are added to the model (even if these predictors are “junk”). To see this, it suffices
to show that SSE decreases as we add predictors. Without loss of generality, suppose that we start
with a model including predictors S ⊂ {0, 1, . . . , p− 1} and compare it to the model including all
the predictors {0, 1, . . . , p− 1}. We can read off from the Pythagorean theorem (1.18) that

SSE(X∗S ,y) = ‖y −X∗Sβ̂S‖2 ≥ ‖y −Xβ̂‖2 = SSE(X,y).

Adding many junk predictors will have the effect of degrading predictive performance but will
nevertheless increase R2.
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1.7 Collinearity, adjustment, and partial correlation
See also Agresti 2.2.4, 2.5.6, 2.5.7, 4.6.5

An important part of linear regression analysis is the dependence of the least squares coefficient
for a predictor on what other predictors are in the model. This relationship is dictated by the extent
to which the given predictor is correlated with the other predictors. In this section, we’ll use some
additional notation. Let S ⊂ {0, . . . , p− 1} be a group of predictors (we can assume without loss of
generality that S = {0, . . . , s− 1} for some 1 ≤ s < p). Then, denote -S ≡ {0, . . . , p− 1} \ S. Let
β̂S denote the least squares coefficients when regressing y on X∗S and let β̂S|-S denote the least
squares coefficients corresponding to S when regressing y on X = (X∗S ,X∗,-S).

Least squares estimates in the orthogonal case. The simplest case to analyze is when a
groups of predictors X∗S is orthogonal to the rest of the predictors X∗,-S in the sense that

XT
∗SX∗,-S = 0. (1.31)

In this case, we can derive the least squares coefficient vector β̂ = (β̂S|-S , β̂-S|S) from the normal
equations: (

β̂S|-S

β̂-S|S

)
= (XTX)−1XTy

=
(
XT
SXS 0
0 XT

-SX-S

)−1(
XT
S

XT
-S

)
y

=
(

(XT
SXS)−1XT

S y

(XT
-SX-S)−1XT

-Sy

)

=
(
β̂S

β̂-S

)
.

(1.32)

Therefore, the least squares coefficients when regressing y on (XS ,X-S) are the same as those
obtained from regressing y separately on XS and X-S , i.e.

β̂S|-S = β̂S . (1.33)

Least squares estimates via orthogonalization. Let’s now focus our attention on a single
predictor xj . If this predictor is orthogonal to the remaining predictors, then the result (1.33) states
that β̂j|-j can be obtained from simply regressing y on xj . However, this is usually not the case.
Usually, x∗j has a nonzero projection X∗,-jγ̂ onto C(X∗,-j):

x∗j = X∗,-jγ̂ + x⊥∗j , (1.34)

where x⊥∗j is the residual from regressing x∗j onto X∗,-j and is therefore orthogonal to C(X∗,-j). In
other words, x⊥∗j is the projection of x∗j onto the orthogonal complement of C(X∗,-j).

With this decomposition, let us change basis from (x∗j ,X∗,-j) to (x⊥∗j ,X∗,-j) by the process
explored in Homework 1 Question 1. Let us write

y = x∗jβj|-j +X∗,-jβ-j|j + ε ⇐⇒ y = (X∗,-jγ̂ + x⊥∗j)βj|-j +X∗,-jβ-j|j + ε
⇐⇒ y = x⊥∗jβj|-j +X∗,-jβ′-j|j + ε.



Page 12

What this means is that β̂j|-j , the least squares coefficient of x∗j in the regression of y on (x∗j ,X∗,-j)
is also the least squares coefficient of x⊥∗j in the regression of y on (x⊥∗j ,X∗,-j). However, since x⊥∗j
is orthogonal to X∗,-j by construction, we can use the result (1.32) to conclude that

β̂j|-j is the least squares coefficient of x⊥∗j in the univariate regression of y on x⊥∗j (without intercept).

We can solve this univariate regression explicitly to obtain

β̂j|-j =
(x⊥∗j)Ty
‖x⊥∗j‖2

. (1.35)

Adjustment and partial correlation. Equivalently, letting β̂-j be the least squares estimate
in the regression of y on X∗,-j (note that this is not the same as β̂-j|j), we can write

β̂j|-j =
(x⊥∗j)T (y −X∗,-jβ̂-j)

‖x⊥∗j‖2
= (x∗j −X∗,-jγ̂)T (y −X∗,-jβ̂-j)

‖x∗j −X∗,-jγ̂‖2
. (1.36)

We can interpret this result as follows: The linear regression coefficient β̂j|-j results from first
adjusting y and x∗j for the effects of all other variables, and then regressing the residuals from y
onto the residuals from x∗j . In this sense, the least squares coefficient for a predictor in a multiple
linear regression reflects the effect of the predictor on the response after controlling for the effects of
all other predictors. A related quantity is the partial correlation between x∗j and y after controlling
for X∗,-j , defined as the correlation between x∗j −X∗,-jγ̂ and y −X∗,-jβ̂-j . We can then connect
the least squares coefficient β̂j to this partial correlation in a similar spirit to equation (1.29).

Effects of collinearity. Collinearity between a predictor xj and the other predictors tends to
make the estimate β̂j|-j unstable. Intuitively, this makes sense because it becomes harder to
distinguish between the effects of predictor xj and those of the other predictors on the response.
To find the variance of β̂j|-j for a model matrix X, we could in principle use the formula (1.15).
However, this formula involves the inverse of the matrix XTX, which is hard to reason about.
Instead, we can employ the formula (1.35) to calculate directly that

Var[β̂j|-j ] = σ2

‖x⊥∗j‖2
. (1.37)

We see that the variance of β̂j|-j is inversely proportional to ‖x⊥∗j‖2. This means that the greater
the collinearity, the less of x∗j is left over after adjusting for X∗,-j , and the greater the variance of
β̂j|-j . To quantify the effect of this adjustment, suppose there were no other predictors other than
the intercept term. Then, we would have

Var[β̂j ] = σ2

‖x∗j − x̄j1n‖2
. (1.38)

Therefore, we can rewrite the variance (1.37) as

Var[β̂j|-j ] = ‖x∗j − x̄j1n‖2

‖x∗j −X∗,-jγ̂‖2
·Var[β̂j ] = 1

1−R2
j

·Var[β̂j ] ≡ VIFj ·Var[β̂j ], (1.39)

where R2
j is the R2 value when regressing x∗j on X∗,-j and VIF stands for variance inflation factor.

The higher R2
j , the more of the variance in x∗j is explained by other predictors, the higher the

variance in β̂j|-j .
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Aside: Average treatment effect estimation in causal inference. Suppose we’d like to
study the effect of an exposure or treatment on a response y. In the Neyman-Rubin causal model,
for a given individual i we denote by yi(1) and yi(0) the outcomes that would have occurred had the
individual received the treatment and the control, respectively. These are called potential outcomes.
Let ti ∈ {0, 1} indicate whether the ith individual actually received treatment or control. Therefore,
the observed outcome is yobs

i = yi(ti). Based on the data {(ti, yi)}i=1,...,n, the most basic goal is to
estimate the

average treatment effect τ ≡ E[y(1)− y(0)],

where averaging is done over the population of individuals (often called units in causal inference).
Of course, we do not observe both y(1) and y(0) for any unit. Additionally, usually in observational
studies we have confounding variables z2, . . . , zp−1: variables that influence both the treatment
assignment and the response. It is important to control for these confounders in order to get an
unbiased estimate of the treatment effect. Suppose the following linear model holds:

y(t) = β0 + β1t+ β2z2 + · · ·+ βp−1zp−1 + ε for t ∈ {0, 1}, where ε ⊥⊥ t. (1.40)

This assumption implies that the treatment effect is constant, and the response is a linear function
of the treatment and observed confounders, and there is no unmeasured confounding. Note that

τ ≡ E[y(1)− y(0)] = β1. (1.41)

Furthermore,
yobs = β0 + β1t+ β2z2 + · · ·+ βp−1zp−1 + ε for t ∈ {0, 1}. (1.42)

In this case, the average treatment effect τ is identified as the coefficient β1 in the above regression,
i.e. τ = β. Therefore, the least squares estimate β̂1 is an unbiased estimate of the average treatment
effect. (Causal inference is beyond the scope of STAT 961; see STAT 921 instead.)

1.8 R demo
See also Agresti 2.6

The R demo will be based on the ScotsRaces data from the textbook. Data description (quoted
from the textbook):

“Each year the Scottish Hill Runners Association publishes a list of hill races in Scotland
for the year. The table below shows data on the record time for some of the races (in
minutes). Explanatory variables listed are the distance of the race (in miles) and the
cumulative climb (in thousands of feet).”

We will also familiarize ourselves with several important functions from the tidyverse packages,
including the ggplot2 package for data visualization and dplyr package for data manipulation.

library(tidyverse) # for data import, manipulation, and plotting
library(GGally) # for ggpairs() function
library(ggrepel) # for geom_text_repel() function
library(car) # for vif() function
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# read the data into R
scots_races <- read_tsv("data/ScotsRaces.dat") # read_tsv from readr for data import

## Rows: 35 Columns: 4
## – Column specification ––––––––––––––––––––––––––––
## Delimiter: "\t"
## chr (1): race
## dbl (3): distance, climb, time
##
## i Use ‘spec()‘ to retrieve the full column specification for this data.
## i Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.

scots_races

## # A tibble: 35 x 4
## race distance climb time
## <chr> <dbl> <dbl> <dbl>
## 1 GreenmantleNewYearDash 2.5 0.65 16.1
## 2 Carnethy5HillRace 6 2.5 48.4
## 3 CraigDunainHillRace 6 0.9 33.6
## 4 BenRhaHillRace 7.5 0.8 45.6
## 5 BenLomondHillRace 8 3.07 62.3
## 6 GoatfellHillRace 8 2.87 73.2
## 7 BensofJuraFellRace 16 7.5 205.
## 8 CairnpappleHillRace 6 0.8 36.4
## 9 ScoltyHillRace 5 0.8 29.8
## 10 TraprainLawRace 6 0.65 39.8
## # ... with 25 more rows

Exploration. Before modeling our data, let’s first explore it.

# pairs plot

# Q: What are the typical ranges of the variables?
# Q: What are the relationships among the variables?

scots_races %>%
select(-race) %>% # select() from dplyr for selecting columns
ggpairs() # ggpairs() from GGally to create pairs plot
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# mile time versus distance

# Q: How does mile time vary with distance?
# Q: What races deviate from this trend?
# Q: How does climb play into it?

# add mile time variable to scots_races
scots_races <- scots_races %>%

mutate(mile_time = time / distance) # mutate() from dplyr to add column

# plot mile time versus distance
scots_races %>%

ggplot(aes(x = distance, y = mile_time)) +
geom_point()
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scots_races %>%

ggplot(aes(x = distance, y = mile_time, colour = climb)) +
geom_point()
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# highlight extreme points
scots_races_extreme <- scots_races %>%

filter(distance > 15 | mile_time > 9) # filter() from dplyr to subset rows

# plot mile time versus distance
scots_races %>%

ggplot(aes(x = distance, y = mile_time, label = race, colour = climb)) +
geom_point() +
geom_text_repel(aes(label = race), data = scots_races_extreme)
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# clean up plot
scots_races %>%

ggplot(aes(x = distance, y = mile_time, label = race, color = climb)) +
geom_point() +
geom_text_repel(aes(label = race), data = scots_races_extreme) +
labs(

x = "Distance (miles)",
y = "Mile Time (minutes per mile)",
color = "Climb\n(thousands of ft)"

)
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Linear model coefficient interpretation. Let’s fit some linear models and interpret the coeffi-
cients.

# Q: What is the effect of an extra mile of distance on time?

lm_fit <- lm(time ~ distance + climb, data = scots_races)
coef(lm_fit)

## (Intercept) distance climb
## -13.108551 6.350955 11.780133

# Linear model with interaction

# Q: What is the effect of an extra mile of distance on time
# for a run with low climb?

# Q: What is the effect of an extra mile of distance on time
# for a run with high climb?

lm_fit_int <- lm(time ~ distance * climb, data = scots_races)
coef(lm_fit_int)

## (Intercept) distance climb distance:climb
## -0.7671925 4.9622542 3.7132519 0.6598256

scots_races %>%
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summarise(min_climb = min(climb), max_climb = max(climb))

## # A tibble: 1 x 2
## min_climb max_climb
## <dbl> <dbl>
## 1 0.3 7.5

Let’s take a look at the regression summary for lm_fit:

lm_fit <- lm(time ~ distance + climb, data = scots_races)
summary(lm_fit)

##
## Call:
## lm(formula = time ~ distance + climb, data = scots_races)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.654 -4.842 1.110 4.667 27.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.1086 2.5608 -5.119 1.41e-05 ***
## distance 6.3510 0.3578 17.751 < 2e-16 ***
## climb 11.7801 1.2206 9.651 5.37e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.734 on 32 degrees of freedom
## Multiple R-squared: 0.9717,Adjusted R-squared: 0.97
## F-statistic: 549.9 on 2 and 32 DF, p-value: < 2.2e-16

We get a coefficient of 6.35 with standard error 0.36 for distance, where the standard error is an
estimate of the quantity (1.37).

R2 and sum-of-squared decompositions. We can extract the R2 from this fit by reading it
off from the bottom of the summary, or by typing

summary(lm_fit)$r.squared

## [1] 0.971725

We can construct sum-of-squares decompositions (1.18) using the anova function. This function
takes as arguments the partial model and the full model. For example, consider the partial model
time ~ distance.

lm_fit_partial <- lm(time ~ distance, data = scots_races)
anova(lm_fit_partial, lm_fit)

## Analysis of Variance Table
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##
## Model 1: time ~ distance
## Model 2: time ~ distance + climb
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 33 9546.9
## 2 32 2441.3 1 7105.6 93.14 5.369e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We find that adding the predictor climb reduces the RSS by 7106, from 9547 to 2441. As another
example, we can compute the R2 by comparing the full model with the null model:

lm_fit_null <- lm(time ~ 1, data = scots_races)
anova(lm_fit_null, lm_fit)

## Analysis of Variance Table
##
## Model 1: time ~ 1
## Model 2: time ~ distance + climb
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 34 86340
## 2 32 2441 2 83899 549.87 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Therefore, the R2 is 83899/86340 = 0.972, consistent with the above regression summary.

Adjustment and collinearity. We can also test the adjustment formula (1.35) numerically.
Let’s consider the coefficient of distance in the regression time ~ distance + climb. We can
obtain this coefficient by first regressing climb out of distance and time:

lm_dist_on_climb <- lm(distance ~ climb, data = scots_races)
lm_time_on_climb <- lm(time ~ climb, data = scots_races)

scots_races_resid <- tibble(
dist_residuals = residuals(lm_dist_on_climb),
time_residuals = residuals(lm_time_on_climb)

)

lm_adjusted <- lm(time_residuals ~ dist_residuals - 1,
data = scots_races_resid

)
summary(lm_adjusted)

##
## Call:
## lm(formula = time_residuals ~ dist_residuals - 1, data = scots_races_resid)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -16.654 -4.842 1.110 4.667 27.762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## dist_residuals 6.3510 0.3471 18.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.474 on 34 degrees of freedom
## Multiple R-squared: 0.9078,Adjusted R-squared: 0.9051
## F-statistic: 334.8 on 1 and 34 DF, p-value: < 2.2e-16

We find a coefficient of 6.35 with standard error 0.35, which matches that obtained in the original
regression.
We can get the partial correlation between distance and time by taking the empirical correlation
between the residuals. We can compare this quantity to the usual correlation.

scots_races_resid %>%
summarise(cor(dist_residuals, time_residuals)) %>%
pull()

## [1] 0.9527881

scots_races %>%
summarise(cor(distance, time)) %>%
pull()

## [1] 0.9430944

In this case, the two correlation quantities are similar.
To obtain the variance inflation factors defined in equation (1.39), we can use the vif function

from the car package:

vif(lm_fit)

## distance climb
## 1.740812 1.740812

Why are these two VIF values the same?



Chapter 2

Linear models: Inference

We now understand the least squares estimator β̂ from geometric and algebraic points of view. In
Chapter 2, we will switch to a probabilistic perspective to derive inferential statements for linear
models, in the form of hypothesis tests and confidence intervals. In order to facilitate this, we will
assume that the error terms are normally distributed:

y = Xβ + ε, where ε ∼ N(0, σ2In). (2.1)

2.1 Building blocks for linear model inference
See also Agresti 3.1.1, 3.1.2, 3.1.4

First we put in place some building blocks: The multivariate normal distribution (Section 2.1.1),
the distributions of linear regression estimates and residuals (Section 2.1.2), and estimation of the
noise variance σ2 (Section 2.1.3).

2.1.1 The multivariate normal distribution

Recall that a random vector w ∈ Rd has a multivariate normal distribution with mean µ and
covariate matrix Σ if it has probability density

p(w) = 1√
(2π)ddet(Σ)

exp
(
−1

2(w − µ)TΣ−1(w − µ)
)
.

These random vectors have lots of special properties, including:

• (Linear transformation) If w ∼ N(µ,Σ), then Aw + b ∼ N(Aµ+ b,AΣAT ).

• (Independence) If
(
w1
w2

)
∼ N

((
µ1
µ2

)
,

(
Σ11 Σ12
ΣT

12 Σ22

))
, then w1 ⊥⊥ w2 if and only if Σ12 = 0.

An important distribution related to the multivariate normal is the χ2
d (chi-squared with d degrees

of freedom) distribution, defined as

χ2
d ≡

d∑
j=1

w2
j for w1, . . . , wd

i.i.d.∼ N(0, 1).

22
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2.1.2 The distributions of linear regression estimates and residuals

The most important distributional result in linear regression is that

β̂ ∼ N(β, σ2(XTX)−1). (2.2)

Indeed, by the linear transformation property of the multivariate normal distribution,

y ∼ N(Xβ, σ2In) =⇒ β̂ = (XTX)−1XTy ∼ N((XTX)−1XTXβ, (XTX)−1XTσ2InX(XTX)−1)
= N(β, σ2(XTX)−1).

Next, let’s consider the joint distribution of µ̂ = Xβ̂ and ε̂ = y −Xβ̂. We have(
µ̂
ε̂

)
=
(

Hy
(I −H)y

)
=
(

H
I −H

)
y ∼ N

((
H

I −H

)
Xβ,

(
H

I −H

)
· σ2I

(
H I −H

))

= N

((
Xβ
0

)
,

(
σ2H 0

0 σ2(I −H)

))
.

(2.3)

In other words,

µ̂ ∼ N(Xβ, σ2H) and ε̂ ∼ N(0, σ2(I −H)), with µ̂ ⊥⊥ ε̂. (2.4)

Since β̂ is a deterministic function of µ̂ (in particular, β̂ = (XTX)−1XT µ̂), it also follows that

β̂ ⊥⊥ ε̂. (2.5)

2.1.3 Estimation of the noise variance σ2

We can’t quite do inference for β based on the distributional result (2.2) because the noise variance
σ2 is unknown to us. Intuitively, since σ2 = E[ε2i ], we can get an estimate of σ2 by looking at the
quantity ‖ε̂‖2. To get the distribution of this quantity, we need the following lemma:

Lemma 2.1.1. Let w ∼ N(0,P ) for some projection matrix P . Then, ‖w‖2 ∼ χ2
d, where

d = trace(P ) is the dimension of the subspace onto which P projects.

Proof. Let P = UDUT be an eigenvalue decomposition of P , where U is orthogonal and D is a
diagonal matrix with Dii ∈ {0, 1}. We have w d= UDz for z ∼ N(0, In). Therefore,

‖w‖2 = ‖Dz‖2 =
∑

i:Dii=1
z2
i ∼ χ2

d, where d = |{i : Dii = 1}| = trace(D) = trace(P ).

Recall that I −H is a projection onto the (n− p)-dimensional space C(X)⊥, so by Lemma 2.1.1
and equation (2.4) we have

‖ε̂‖2 ∼ σ2χ2
n−p. (2.6)

From this result, it follows that E[‖ε̂‖2] = n− p, so

σ̂2 ≡ 1
n− p

‖ε̂‖2 (2.7)

is an unbiased estimate for σ2. Why does the denominator need to be n− p rather than n for the
estimator above to be unbiased? The reason for this is that the residuals ε̂ are the projection of the
true noise vector ε onto the lower-dimensional subspace C(X)⊥. To see this, note that

ε̂ = (I −H)y = (I −H)(Xβ + ε) = (I −H)ε. (2.8)
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2.2 Hypothesis testing
See also Agresti 3.2.1, 3.2.2, 3.2.4, 3.2.8

Typically two types of null hypotheses are tested in a regression setting: Those involving one-
dimensional parameters and those involving multi-dimensional parameters. For example, consider
the null hypotheses H0 : βj = 0 and H0 : βS = 0 for S ⊆ {0, 1, . . . , p− 1}, respectively. We discuss
tests of these two kinds of hypothesis in Sections 2.2.1 and 2.2.2, and then discuss the power of
these tests in Section 2.3.

2.2.1 Testing a one-dimensional parameter

t-test for a single coefficient. The most common question to ask in a linear regression context
is: Is the jth predictor associated with the response, when controlling for the other predictors? In
the language of hypothesis testing, this corresponds to the null hypothesis

H0 : βj = 0. (2.9)

According to (2.2), we have β̂j ∼ N(0, σ2/s2
j ), where, as we learned in Chapter 1,

s2
j ≡ [(XTX)−1

jj ]−1 = ‖x⊥∗j‖2. (2.10)

Therefore,
β̂j
σ/sj

∼ N(0, 1), (2.11)

and we are tempted to define a level α test of the null hypothesis (2.9) based on this normal
distribution. While this is infeasible since we don’t know σ2, we can substitute in the unbiased
estimate (2.7) derived in Section 2.1.3. Then,

SEj ≡
σ̂

sj
is the standard error of β̂j , (2.12)

which is an approximation to the standard deviation of β̂j . Dividing β̂j by its standard error gives
us the t-statistic

tj ≡
β̂j
SEj

= β̂j√
1

n−p‖ε̂‖2/sj
. (2.13)

This statistic is pivotal, in the sense that it has the same distribution for any β such that βj = 0.
Indeed, we can rewrite it as

tj =
β̂

σ/sj√
σ−2‖ε̂‖2

n−p

. (2.14)

Recalling the independence of β̂ and ε̂ (2.5), the scaled chi square distribution of ‖ε̂‖2 (2.6), the
standard normal distribution of β̂

σ/sj
(2.11), we find that

under H0 : βj = 0, tj ∼
N(0, 1)√

1
n−pχ

2
n−p

, with numerator and denominator independent. (2.15)
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The latter distribution is called the t distribution with n− p degrees of freedom and denoted tn−p.
This paves the way for the two-sided t-test:

φt(X,y) = 1(|tj | > tn−p(1− α/2)), (2.16)

where tn−p(1− α/2) denotes the 1− α/2 quantile of tn−p. Note that, by the law of large numbers,

1
n− p

χ2
n−p

P→ 1 as n− p→∞, (2.17)

so for large n − p we have tj ∼ tn−p ≈ N(0, 1). Hence, the t-test is approximately equal to the
following z-test:

φt(X,y) ≈ φz(X,y) ≡ 1(|tj | > z(1− α/2)), (2.18)

where z(1− α/2) is the 1− α/2 quantile of N(0, 1). The t-test can also be defined in a one-sided
fashion, if power against one-sided alternatives is desired.

Example: One-sample model. Consider the intercept-only linear regression model y = β0 + ε,
and let’s apply the t-test derived above to test the null hypothesis H0 : β0 = 0. We have β̂0 = ȳ.
Furthermore, we have

SE2
0 = σ̂2

n
, where σ̂2 = 1

n− 1‖y − ȳ1n‖
2. (2.19)

Hence, we obtain the t statistic

t = β̂0
SE0

=
√
nȳ√

1
n−1‖y − ȳ1n‖2

. (2.20)

According to the theory above, this test statistic has a null distribution of tn−1.

Example: Two-sample model. Suppose we have x1 ∈ {0, 1}, in which case the linear regression
y = β0 + β1x1 + ε becomes a two-sample model. We can rewrite this model as

yi ∼
{
N(β0, σ

2) for xi = 0;
N(β0 + β1, σ

2) for xi = 1.
(2.21)

It is often of interest to test the null hypothesis H0 : β1 = 0, i.e. that the two groups have equal
means. Let’s define

ȳ0 ≡
1
n0

∑
i:xi=0

yi, ȳ1 ≡
1
n1

∑
i:xi=1

yi, where n0 = |{i : xi = 0}| and n1 = |{i : xi = 1}|. (2.22)

Then, we have seen before that β̂0 = ȳ0 and β̂1 = ȳ1 − ȳ0. We can compute that

s2
1 ≡ ‖x⊥∗1‖2 = ‖x∗1 −

n1
n

1‖2 = n1
n2

0
n2 + n0

n2
1
n2 = n0n1

n
= 1

1
n0

+ 1
n1

(2.23)

and

σ̂2 = 1
n− 2

 ∑
i:xi=0

(yi − ȳ0)2 +
∑
i:xi=1

(yi − ȳ1)2

 . (2.24)
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Therefore, we arrive at a t-statistic of

t =

√
1

1
n0

+ 1
n1

(ȳ1 − ȳ0)√
1

n−2

(∑
i:xi=0(yi − ȳ0)2 +∑

i:xi=1(yi − ȳ1)2
) . (2.25)

Under the null hypothesis, this statistic has a distribution of tn−2.

t-test for a contrast among coefficients. Given a vector c ∈ Rp, the quantity cTβ is sometimes
called a contrast. For example, suppose c = (1,−1, 0, . . . , 0). Then, cTβ = β1 − β2 is the difference
in effects of the first and second predictors. We are sometimes interested in testing whether such
a contrast is equal to zero, i.e. H0 : cTβ = 0. While this hypothesis can involve two or more of
the predictors, the parameter cTβ is still one-dimensional and therefore we can still apply a t-test.
Going back to the distribution β̂ ∼ N(β, σ2(XTX)−1), we find that

cT β̂ ∼ N(cTβ, σ2cT (XTX)−1c).

Therefore, under the null hypothesis that cTβ = 0, we can derive that

cT β̂

σ̂
√
cT (XTX)−1c

∼ tn−p, (2.26)

giving us another t-test. Note that the t-tests described above can be recovered from this more
general formulation by setting c = ej , the indicator vector with jth coordinate equal to 1 and all
others equal to zero.

2.2.2 Testing a multi-dimensional parameter

F -test for a group of coefficients. Now we move on to the case of testing a multi-dimensional
parameter: H0 : βS = 0 for some S ⊆ {0, 1, . . . , p− 1}. In other words, we would like to test

H0 : y = X∗,-Sβ−S + ε versus H1 : Xβ + ε. (2.27)

To test this hypothesis, let us fit least squares coefficients β̂−S and β̂ for the partial model as well
as the full model. If the partial model fits well, then the residuals y −X∗,-Sβ̂−S from this model
will not be much larger than the residuals y −Xβ̂ from the full model. To quantify this intuition,
let us recall our analysis of variance decomposition from Chapter 1:

‖y −X∗,-Sβ̂−S‖2 = ‖Xβ̂ −X∗,-Sβ̂−S‖2 + ‖y −Xβ̂‖2. (2.28)

Let’s consider the ratio

‖y −X∗,-Sβ̂−S‖2 − ‖y −Xβ̂‖2

‖y −Xβ̂‖2
= ‖Xβ̂ −X∗,-Sβ̂−S‖

2

‖y −Xβ̂‖2
, (2.29)

which is the relative increase in the residual sum of squares when going from the full model to the
partial model. Let us rewrite this ratio in terms of projection matrices. Let H be the projection
matrix for the full model, and let H-S be the projection matrix for the partial model. Note that
H −H-S is the projection matrix onto the |S|-dimensional space C(X) ∩ C(X-S)⊥ (Figure 2.1).
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Figure 2.1: Geometry of the F -test. Orthogonality relationships stem from
C(X∗,-S) ⊥ C(X) ∩ C(X∗,-S)⊥ ⊥ C(X)⊥.

We have
‖Xβ̂ −X∗,-Sβ̂-S‖2

‖y −Xβ̂‖2
= ‖(H −H-S)y‖2
‖(I −H)y‖2 , (2.30)

so the numerator and denominator are the squared norms of the projections of y onto C(X) ∩
C(X∗,-S)⊥ and C(X)⊥, respectively (Figure 2.1). Under the null hypothesis, we have y = X∗,-Sβ-S +
ε, and

(H −H-S)X∗,-Sβ-S = (I −H)X∗,-Sβ-S = 0 (2.31)

because X∗,-Sβ-S ∈ C(X∗,-S) ⊥ C(X) ∩ C(X∗,-S)T ⊥ C(X)⊥. It follows that

‖(H −H-S)y‖2
‖(I −H)y‖2 = ‖(H −H-S)ε‖2

‖(I −H)ε‖2 . (2.32)

Since the projection matrices in the numerator and denominator project onto orthogonal subspaces,
we have (H −H-S)ε ⊥⊥ (I −H)ε, with ‖(H −H-S)ε‖2 ∼ σ2χ2

|S| and ‖(I −H)ε‖2 ∼ σ2χ2
n−p.

Renormalizing numerator and denominator to have expectation 1 under the null, we arrive at the
F -statistic

F ≡ (‖y −X∗,-Sβ̂−S‖2 − ‖y −Xβ̂‖2)/|S|
‖y −Xβ̂‖2/(n− p)

. (2.33)

We have derived that under the null hypothesis,

F ∼
χ2
|S|/|S|

χ2
n−p/(n− p)

, with numerator and denominator independent. (2.34)

This distribution is called the F -distribution with |S| and n− p degrees of freedom, and denoted
F|S|,n−p. Denoting by F|S|,n−p(1− α) the 1− α quantile of this distribution, we arrive at the F -test

φF (X,y) ≡ 1(F > F|S|,n−p(1− α)). (2.35)
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Example: Testing for any significant coefficients except the intercept. Suppose x∗,0 = 1n
is an intercept term. Then, consider the null hypothesis H0 : β1 = · · · = βp−1 = 0. In other words,
the null hypothesis is the intercept-only model and the alternative hypothesis is the regression model
with an intercept and p − 1 additional predictors. In this case, S = {1, . . . , p − 1} and -S = {0}.
The corresponding F statistic is

F ≡ (‖y − ȳ1‖2 − ‖y −Xβ̂‖2)/(p− 1)
‖y −Xβ̂‖2/(n− p)

, (2.36)

with null distribution Fp−1,n−p.

Example: Testing for equality of group means in C-groups model. As a further special
case, consider the C-groups model from Chapter 1. Recall the ANOVA decomposition

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(ȳc(i) − ȳ)2 +
n∑
i=1

(yi − ȳc(i))2 = SSB + SSW. (2.37)

The F -statistic in this case becomes

F =
∑n
i=1(ȳc(i) − ȳ)2/(C − 1)∑n
i=1(yi − ȳc(i))2/(n− C) = SSB/(C − 1)

SSW/(n− C) , (2.38)

with null distribution FC−1,n−C .

2.3 Power
See also Agresti 3.2.5

So far we’ve been focused on finding the null distributions of various test statistics in order to
construct tests with Type-I error control. Now let’s shift our attention to examining the power of
these tests.

The power of a t-test. Consider the t-test of the null hypothesis H0 : βj = 0. Suppose that, in
reality, βj 6= 0. What is the probability the t-test will reject the null hypothesis? To answer this
question, recall that β̂j ∼ N(βj , σ2/s2

j ). Therefore,

t = β̂j
SEj

= βj
SEj

+ β̂j − βj
SEj

·∼ N
(
βjsj
σ

, 1
)
. (2.39)

Here we have made the approximation SEj ≈ σ
sj
, which is pretty good when n−p is large. Therefore,

the power of the two-sided t-test is

E[φt] = P[φt = 1] ≈ P[|t| > z1−α/2] ≈ P
[∣∣∣∣N (

βjsj
σ

, 1
)∣∣∣∣ > z1−α/2

]
. (2.40)

Therefore, the quantity βjsj

σ determines the power of the t-test. To understand sj a little better, let’s
assume that the rows xi∗ of the model matrix are drawn i.i.d. from some distribution (x0, . . . , xp−1).
Then we have roughly

x⊥∗j ≈ x∗j − E[x∗j |X∗,-j ], (2.41)
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so x⊥ij ≈ xij − E[xij |xi,-j ]. Hence,

s2
j ≡ ‖x⊥∗j‖2 ≈ nE[(xj − E[xj |x-j ])2] = nE[Var[xj |x-j ]]. (2.42)

Hence, we can rewrite the alternative distribution (2.39) as

t
·∼ N

βj · √n ·
√
E[Var[xj |x-j ]]
σ

, 1

 . (2.43)

We can see clearly now how the power of the t-test varies with the effect size βj , the sample size n,
the degree of collinearity E[Var[xj |x-j ]], and the noise standard deviation σ.

The power of an F -test. Now let’s turn our attention to computing the power of the F -test.
We have

F = ‖Xβ̂ −X∗,-Sβ̂−S‖
2/|S|

‖y −Xβ̂‖2/|n− p|
= ‖(H −H-S)y‖2/|S|
‖(I −H)y‖2/|n− p| ≈

‖(H −H-S)y‖2/|S|
σ2 . (2.44)

To calculate the distribution of the numerator, we need to introduce the notion of a non-central
chi-squared random variable.

Definition 2.3.1. For some vector µ ∈ Rd, suppose z ∼ N(µ, Id). Then, we define the distribution
of ‖z‖2 as the non-central chi-square random variable with d degrees of freedom and noncentrality
parameter ‖µ‖2 and denote this distribution by χ2

d(‖µ‖2).

It can be shown that if P is a projection matrix and y = µ+ ε, then 1
σ2 ‖Py‖2 ∼ χ2

tr(P )(
1
σ2 ‖Pµ‖2).

It therefore follows that

F ≈ ‖(H −H-S)y‖2/|S|
σ2 ∼ 1

|S|
χ2
|S|(‖(H −H-S)Xβ‖2) = 1

|S|
χ2
|S|

( 1
σ2 ‖X

⊥
∗,SβS‖2

)
. (2.45)

Assuming as before that the rows of X are samples from a joint distribution, we can write

‖X⊥∗,SβS‖2 ≈ nβTSE[Var[xS |x-S ]]βS . (2.46)

Therefore,

F
·∼ 1
|S|

χ2
|S|

(
nβTSE[Var[xS |x-S ]]βS

σ2

)
, (2.47)

which is similar in spirit to equation (2.43).

Power when predictors are added to the model. As we know, the outcome of a regression
is a function of the predictors that are used. What happens to the t-test p-value for H0 : βj = 0
when a predictor is added to the model? To keep things simple, let’s consider the

true underlying model: y = β0x0 + β1x1 + ε. (2.48)

Let’s consider the power of testing H0 : β0 = 0 in the regression models

model 0: y = β0x0 + ε versus model 1: y = β0x0 + β1x1 + ε. (2.49)

There are four cases based on cor[x∗0,x∗1] and the value of β1 in the true model:
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1. cor[x∗0,x∗1] 6= 0 and β1 6= 0. In this case, in model 0 we have omitted an important variable
that is correlated with x∗0. Therefore, the meaning of β0 differs between model 0 and model
1, so it may not be meaningful to compare the p-values arising from these two models.

2. cor[x∗0,x∗1] 6= 0 and β1 = 0. In this case, we are adding a null predictor that is correlated with
x∗0. Recall that the power of the t-test hinges on the quantity βj ·

√
n·
√

E[Var[xj |x-j ]]
σ . Adding

the predictor x1 has the effect of reducing the conditional predictor variance E[Var[xj |x-j ]],
therefore reducing the power. This is a case of predictor competition.

3. cor[x∗0,x∗1] = 0 and β1 6= 0. In this case, we are adding a non-null predictor that is
orthogonal to x∗0. While the conditional predictor variance E[Var[xj |x-j ]] remains the same
due to orthogonality, the residual variance σ2 is reduced when going from model 0 to model
1. Therefore, in this case adding x1 to the model increases the power for testing H0 : β0 = 0.
This is a case of predictor collaboration.

4. cor[x∗0,x∗1] = 0 and β1 = 0. In this case, we are adding an orthogonal null variable, which
does not change the conditional predictor variance or the residual variance, and therefore
keeps the power of the test the same.

In conclusion, adding a predictor can either increase or decrease the power of a t-test. Similar
reasoning can be applied to the F -test.

2.4 Confidence and prediction intervals
See also Agresti 3.3

In addition to hypothesis testing, we often want to construct confidence intervals for the
coefficients.

Confidence interval for a coefficient. Under H0 : βj = 0, we showed that β̂j

σ̂/sj
∼ tn−p. The

same argument shows that for arbitrary βj , we have

β̂j − βj
σ̂/sj

∼ tn−p. (2.50)

We can use this relationship to construct a confidence interval for βj as follows:

1− α = P[|tn−p| ≤ tn−p(1− α/2)] = P
[∣∣∣∣∣ β̂j − βjσ̂/sj

∣∣∣∣∣ ≤ tn−p(1− α/2)
]

= P
[
βj ∈

[
β̂j −

σ̂

sj
tn−p(1− α/2), β̂j + σ̂

sj
tn−p(1− α/2)

]]
≡ P

[
βj ∈

[
β̂j − SE(β̂j)tn−p(1− α/2), β̂j + SE(β̂j)tn−p(1− α/2)

]]
≡ P[βj ∈ Ij ].

(2.51)

The confidence interval Ij defined above therefore has 1− α coverage.
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Confidence interval for E[y|x0]. Suppose now that we have a new predictor vector x0 ∈ Rp.
The mean of the response for this predictor vector is E[y|x0] = xT0 β. Plugging in x0 for c in the
relation (2.26), we obtain

xT0 β̂ − xT0 β

σ̂
√
xT0 (XTX)−1x0

∼ tn−p.

From this we can derive that

xT0 β̂ ± σ̂
√
xT0 (XTX)−1x0 · tn−p(1− α/2) ≡ xT0 β̂ ± SE(xT0 β̂) · tn−p(1− α/2) (2.52)

is a 1− α confidence interval for xT0 β. We see that the width of this confidence interval depends on
x0 through the quantity xT0 (XTX)−1x0. Let’s give this quantity a closer look, in the case when
the regression contains an intercept, i.e. x∗,0 = 1. Then, we have x0 = (1,xT0,-0). Then, defining
x̄ ∈ Rp−1 as the vector of column-wise means of X∗,-0, we can rewrite the regression as

y = β0 + xT-0β-0 + ε ≡ β′0 + (x-0 − x̄)Tβ-0 + ε. (2.53)

Therefore, we seek a prediction interval for xT0 β = β′0 + (x0,-0 − x̄)Tβ-0. With this reformulation,
we can compute

xT0 (XTX)−1x0 = (1 (x0,-0 − x̄)T )
(

1T1 0
0 XT

∗,-0X∗,-0

)−1( 1
x0,-0 − x̄

)

= 1
n

+ (x0,-0 − x̄)T (XT
∗,-0X∗,-0)−1(x0,-0 − x̄).

(2.54)

Hence, we see that this quantity grows larger as x0,-0 − x̄ grows larger, and achieves its minimum
when x0,-0 = x̄. Let’s look at the special case when p = 2, so there is just one predictor except the
intercept. Then, we have X∗,-0 = x∗,1 − x̄1, so

xT0 (XTX)−1x0 = 1
n

+ (x01 − x̄1)2

‖x∗,1 − x̄1‖2
. (2.55)

Prediction interval for y|x0. Instead of creating a confidence interval for a point on the
regression line, we may want to create a confidence interval for a new draw y0 of y for x = x0, i.e. a
prediction interval. Note that

y0 − xT0 β̂ = xT0 β + ε0 − xT0 β̂ = ε0 + xT0 (β − β̂) ∼ N(0, σ2 + σ2xT0 (XTX)−1x0). (2.56)

Therefore, we have
y0 − xT0 β̂

σ̂
√

1 + xT0 (XTX)−1x0
∼ tn−p, (2.57)

which leads to the 1− α prediction interval

xT0 β̂ ± σ̂
√

1 + xT0 (XTX)−1x0 · tn−p(1− α/2) ≡ xT0 β̂ ± SE(xT0 β̂) · tn−p(1− α/2). (2.58)
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Simultaneous intervals. Note that the intervals in the preceding sections have pointwise coverage.
For example, we have

P[βj ∈ CI(βj)] ≥ 1− α for each j. (2.59)
or

P[xT0 β ∈ CI(xT0 β)] ≥ 1− α for each x0. (2.60)
Sometimes a stronger simultaneous coverage guarantee is desired, e.g.

P[βj ∈ CI(βj) for each j] ≥ 1− α (2.61)
or

P[xT0 β ∈ CI(xT0 β) for each x0] ≥ 1− α. (2.62)
Simultaneous confidence intervals are possible to construct as well. As a starting point, note that

1
p‖Xβ̂ −Xβ‖

2

σ̂2 ∼ Fp,n−p. (2.63)

Hence, we have
P[‖Xβ̂ −Xβ‖2 ≤ pσ̂2Fp,n−p(1− α)] ≥ 1− α. (2.64)

Hence, the region
CR(β) ≡ {β : (β̂ − β)TXTX(β̂ − β) ≤ pσ̂2Fp,n−p(1− α)} ⊆ Rp (2.65)

is a 1− α confidence region for the vector β:
P[β ∈ CR(β)] ≥ 1− α. (2.66)

It’s easy to see that CR(β) is an ellipse centered at β̂. Since the confidence region is for the entire
vector β, we can define simultaneous confidence intervals for each coordinate as follows:

CI(βj) ≡ {βj : β ∈ CR(β)}. (2.67)
Then, these confidence intervals will satisfy the simultaneous coverage property (2.61). We will
obtain a more explicit expression for CI(βj) shortly.

Similarly, we may define the simultaneous confidence regions
CI(xT0 β) ≡ {xT0 β : β ∈ CR(β)}. (2.68)

Let us find a more explicit expression for the latter interval. For notational ease, let us define
Σ ≡XTX. Then, note that if β ∈ CR(β), then by the Cauchy-Schwarz inequality we have

(xT0 β̂ − xT0 β)2 = ‖xT0 (β̂ − β)‖2 = ‖(Σ−1/2x0)TΣ1/2(β̂ − β)‖2

≤ ‖(Σ−1/2x0)‖2‖Σ1/2(β̂ − β)‖2 ≤ xT0 Σ−1x0pσ̂
2Fp,n−p(1− α),

(2.69)
i.e.
xT0 β ∈ xT0 β̂ ± σ̂

√
xT0 (XTX)−1x0

√
pFp,n−p(1− α) ≡ xT0 β̂ ± SE(xT0 β̂) ·

√
pFp,n−p(1− α). (2.70)

Defining the above interval as CI(xT0 β) gives us the simultaneous coverage property (2.62). Compar-
ing to equation (2.58), we see that the simultaneous interval is the pointwise interval expanded by a
factor of

√
pFp,n−p(1− α)/tn−p(1−α/2). Specializing to the case x0 ≡ ej , we get an expression for

the simultaneous intervals for each coordinate:
CI(βj) ≡ β̂j ± σ̂

√
(XTX)−1

jj

√
pFp,n−p(1− α) ≡ SE(β̂j)

√
pFp,n−p(1− α), (2.71)

which again is the pointwise interval (2.51) expanded by a factor of
√
pFp,n−p(1− α)/tn−p(1−α/2).

These simultaneous intervals are called Working-Hotelling intervals.
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2.5 Practical considerations
Practical versus statistical significance. You can have a statistically significant effect that is
not practically significant. The hypothesis testing framework is most useful in the case when the
signal to noise ratio is relatively small. Otherwise, constructing a confidence interval for the effect
size is a more meaningful approach.

Correlation versus causation, and Simpson’s paradox. We need to be very careful when
interpreting linear regression coefficients, which can be sensitive to the choice of other predictors to
include. You can get misleading conclusions if you omit important variables from the regression. A
special case of this is Simpson’s paradox, where an important discrete variable is omitted. Consider
the example in Figure 2.2.

Figure 2.2: An example of Simpson’s paradox (source: Wikipedia).

Dealing with correlated predictors. It depends on the goal. If we’re trying to tease apart
effects of correlated predictors, then we have no choice but to proceed as usual despite lower power.
Otherwise, we can test predictors in groups via the F -test to get higher power at the cost of lower
“resolution.”

Model selection. We need to ask ourselves: Why do we want to do model selection? It can
either be for prediction purposes or for inferential purposes. If it is for prediction purposes, then we
can apply cross-validation to select a model and we don’t need to think very hard about statistical
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significance. If it is for inference, then we need to be more careful. There are various classical
model selection criteria (e.g. AIC, BIC), but it is not entirely clear what statistical guarantee we
are getting for the resulting models. A simpler approach is to apply a t-test for each variable in the
model, apply a multiple testing correction to the resulting p-values, and report the set of significant
variables and the associated guarantee. Re-fitting the linear regression after model selection leads
us into some dicey inferential territory due to selection bias. This is the subject of ongoing research
and the jury is still out on the best way of doing this.

2.6 R demo
See also Agresti 3.4.1, 3.4.3

Let’s put into practice what we’ve learned in this chapter by analyzing data about house prices.

library(tidyverse)
library(GGally)

houses_data <- read_tsv("data/Houses.dat")
houses_data

## # A tibble: 100 x 7
## case taxes beds baths new price size
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 3104 4 2 0 280. 2048
## 2 2 1173 2 1 0 146. 912
## 3 3 3076 4 2 0 238. 1654
## 4 4 1608 3 2 0 200 2068
## 5 5 1454 3 3 0 160. 1477
## 6 6 2997 3 2 1 500. 3153
## 7 7 4054 3 2 0 266. 1355
## 8 8 3002 3 2 1 290. 2075
## 9 9 6627 5 4 0 587 3990
## 10 10 320 3 2 0 70 1160
## # ... with 90 more rows

Exploration. Let’s first do a bit of exploration:

# visualize distribution of housing prices, superimposing the mean
houses_data %>%

ggplot(aes(x = price)) +
geom_histogram(color = "black", bins = 30) +
geom_vline(aes(xintercept = mean(price)),

colour = "red",
linetype = "dashed"

)
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# compare median and mean price
houses_data %>%

summarise(
mean_price = mean(price),
median_price = median(price)

)

## # A tibble: 1 x 2
## mean_price median_price
## <dbl> <dbl>
## 1 155. 133.

# create a pairs plot of continuous variables
houses_data %>%

select(price, size, taxes) %>%
ggpairs()
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# see how price relates to beds
houses_data %>%

ggplot(aes(x = factor(beds), y = price)) +
geom_boxplot(fill = "dodgerblue")

0

200

400

600

2 3 4 5
factor(beds)

pr
ic

e

# see how price relates to baths
houses_data %>%

ggplot(aes(x = factor(baths), y = price)) +
geom_boxplot(fill = "dodgerblue")
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# see how price relates to new
houses_data %>%

ggplot(aes(x = factor(new), y = price)) +
geom_boxplot(fill = "dodgerblue")
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Hypothesis testing. Let’s run a linear regression and interpret the summary. But first, we must
decide whether to model beds/baths as categorical or continuous? We should probably model these
as categorical, given the potentially nonlinear trend observed in the box plots.

lm_fit <- lm(price ~ factor(beds) + factor(baths) + new + size,
data = houses_data

)
summary(lm_fit)

##
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## Call:
## lm(formula = price ~ factor(beds) + factor(baths) + new + size,
## data = houses_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -179.306 -32.037 -2.899 19.115 152.718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19.26307 18.01344 -1.069 0.287730
## factor(beds)3 -16.46430 15.04669 -1.094 0.276749
## factor(beds)4 -12.48561 21.12357 -0.591 0.555936
## factor(beds)5 -101.14581 55.83607 -1.811 0.073366 .
## factor(baths)2 2.39872 15.44014 0.155 0.876885
## factor(baths)3 -0.70410 26.45512 -0.027 0.978825
## factor(baths)4 273.20079 83.65764 3.266 0.001540 **
## new 66.94940 18.50445 3.618 0.000487 ***
## size 0.10882 0.01234 8.822 7.46e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 51.17 on 91 degrees of freedom
## Multiple R-squared: 0.7653,Adjusted R-squared: 0.7446
## F-statistic: 37.08 on 8 and 91 DF, p-value: < 2.2e-16

We can read off the test statistics and p-values for each variable from the regression summary, as
well as for the F -test against the constant model from the bottom of the summary.

Let’s use an F -test to assess whether the categorical baths variable is important.

lm_fit_partial <- lm(price ~ factor(beds) + new + size,
data = houses_data

)
anova(lm_fit_partial, lm_fit)

## Analysis of Variance Table
##
## Model 1: price ~ factor(beds) + new + size
## Model 2: price ~ factor(beds) + factor(baths) + new + size
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 94 273722
## 2 91 238289 3 35433 4.5104 0.005374 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What if we had not coded baths as a factor?

lm_fit_not_factor <- lm(price ~ factor(beds) + baths + new + size,
data = houses_data
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)
anova(lm_fit_partial, lm_fit_not_factor)

## Analysis of Variance Table
##
## Model 1: price ~ factor(beds) + new + size
## Model 2: price ~ factor(beds) + baths + new + size
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 94 273722
## 2 93 273628 1 94.33 0.0321 0.8583

If we want to test for the equality of means across groups of a categorical predictor, without
adjust for other variables, we can use the ANOVA F -test. There are several equivalent ways of
doing so:

# just use the summary function
lm_fit_baths <- lm(price ~ factor(baths), data = houses_data)
summary(lm_fit_baths)

##
## Call:
## lm(formula = price ~ factor(baths), data = houses_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -146.44 -45.88 -7.89 22.22 352.01
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.21 19.51 4.624 1.17e-05 ***
## factor(baths)2 57.68 21.72 2.656 0.00927 **
## factor(baths)3 174.52 31.13 5.607 1.97e-07 ***
## factor(baths)4 496.79 82.77 6.002 3.45e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 80.44 on 96 degrees of freedom
## Multiple R-squared: 0.3881,Adjusted R-squared: 0.369
## F-statistic: 20.3 on 3 and 96 DF, p-value: 2.865e-10

# use the anova function as before
lm_fit_const <- lm(price ~ 1, data = houses_data)
anova(lm_fit_const, lm_fit_baths)

## Analysis of Variance Table
##
## Model 1: price ~ 1
## Model 2: price ~ factor(baths)
## Res.Df RSS Df Sum of Sq F Pr(>F)
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## 1 99 1015150
## 2 96 621130 3 394020 20.299 2.865e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# use the aov function
aov_fit <- aov(price ~ factor(baths), data = houses_data)
summary(aov_fit)

## Df Sum Sq Mean Sq F value Pr(>F)
## factor(baths) 3 394020 131340 20.3 2.86e-10 ***
## Residuals 96 621130 6470
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can also use an F -test to test for the presence of an interaction with a multi-class categorical
predictor.

lm_fit_interaction <- lm(price ~ size * factor(beds), data = houses_data)
summary(lm_fit_interaction)

##
## Call:
## lm(formula = price ~ size * factor(beds), data = houses_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -232.643 -25.938 -0.942 19.172 155.517
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 50.12619 48.22282 1.039 0.301310
## size 0.05037 0.04210 1.197 0.234565
## factor(beds)3 -103.85734 52.20373 -1.989 0.049620 *
## factor(beds)4 -143.90213 67.31359 -2.138 0.035185 *
## factor(beds)5 -507.88205 144.10191 -3.524 0.000663 ***
## size:factor(beds)3 0.07589 0.04368 1.738 0.085633 .
## size:factor(beds)4 0.09234 0.04704 1.963 0.052638 .
## size:factor(beds)5 0.21147 0.05957 3.550 0.000609 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 53.35 on 92 degrees of freedom
## Multiple R-squared: 0.7421,Adjusted R-squared: 0.7225
## F-statistic: 37.81 on 7 and 92 DF, p-value: < 2.2e-16

lm_fit_size <- lm(price ~ size + factor(beds), data = houses_data)
anova(lm_fit_size, lm_fit_interaction)
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## Analysis of Variance Table
##
## Model 1: price ~ size + factor(beds)
## Model 2: price ~ size * factor(beds)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 95 300953
## 2 92 261832 3 39121 4.5819 0.004905 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Contrasts of regression coefficients can be tested using the glht() function from the multcomp
package.

Confidence intervals. We can construct pointwise confidence intervals for each coefficient using
confint():

confint(lm_fit)

## 2.5 % 97.5 %
## (Intercept) -55.04455734 16.5184161
## factor(beds)3 -46.35270691 13.4241025
## factor(beds)4 -54.44498235 29.4737689
## factor(beds)5 -212.05730801 9.7656895
## factor(baths)2 -28.27123130 33.0686620
## factor(baths)3 -53.25394742 51.8457394
## factor(baths)4 107.02516067 439.3764122
## new 30.19258305 103.7062177
## size 0.08431972 0.1333284

To create simultaneous confidence intervals, we need a somewhat more manual approach. We
start with the coefficients and standard errors

coef(summary(lm_fit))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19.2630706 18.01344052 -1.06937209 2.877304e-01
## factor(beds)3 -16.4643022 15.04669172 -1.09421410 2.767490e-01
## factor(beds)4 -12.4856067 21.12356937 -0.59107467 5.559357e-01
## factor(beds)5 -101.1458092 55.83607248 -1.81147786 7.336590e-02
## factor(baths)2 2.3987153 15.44014266 0.15535578 8.768849e-01
## factor(baths)3 -0.7041040 26.45511871 -0.02661504 9.788251e-01
## factor(baths)4 273.2007864 83.65764044 3.26570036 1.540093e-03
## new 66.9494004 18.50445029 3.61801617 4.872475e-04
## size 0.1088241 0.01233621 8.82151661 7.460814e-14

Then we add lower and upper confidence interval endpoints based on the formula (2.71):

alpha <- 0.05
n <- nrow(houses_data)
p <- length(coef(lm_fit))
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f_quantile <- qf(1 - alpha, df1 = p, df2 = n - p)
coef(summary(lm_fit)) %>%

as.data.frame() %>%
rownames_to_column(var = "Variable") %>%
select(Variable, Estimate, `Std. Error`) %>%
mutate(

CI_lower = Estimate - `Std. Error` * sqrt(p * f_quantile),
CI_upper = Estimate + `Std. Error` * sqrt(p * f_quantile)

)

## Variable Estimate Std. Error CI_lower CI_upper
## 1 (Intercept) -19.2630706 18.01344052 -95.38917389 56.8630327
## 2 factor(beds)3 -16.4643022 15.04669172 -80.05271036 47.1241059
## 3 factor(beds)4 -12.4856067 21.12356937 -101.75533960 76.7841262
## 4 factor(beds)5 -101.1458092 55.83607248 -337.11309238 134.8214739
## 5 factor(baths)2 2.3987153 15.44014266 -62.85244495 67.6498756
## 6 factor(baths)3 -0.7041040 26.45511871 -112.50535022 111.0971422
## 7 factor(baths)4 273.2007864 83.65764044 -80.34245635 626.7440292
## 8 new 66.9494004 18.50445029 -11.25174573 145.1505465
## 9 size 0.1088241 0.01233621 0.05669037 0.1609578

Note that the simultaneous intervals are substantially larger.
To construct pointwise confidence intervals for the fit, we can use the predict() function:

predict(lm_fit, newdata = houses_data, interval = "confidence") %>% head()

## fit lwr upr
## 1 193.52176 165.22213 221.8214
## 2 79.98449 51.91430 108.0547
## 3 150.64507 122.28397 179.0062
## 4 191.71955 172.27396 211.1651
## 5 124.30169 81.34488 167.2585
## 6 376.74308 333.44559 420.0406

To get pointwise prediction intervals, we switch "confidence" to "prediction":

predict(lm_fit, newdata = houses_data, interval = "prediction") %>% head()

## fit lwr upr
## 1 193.52176 88.00908 299.0344
## 2 79.98449 -25.46688 185.4359
## 3 150.64507 45.11589 256.1743
## 4 191.71955 88.22951 295.2096
## 5 124.30169 13.95069 234.6527
## 6 376.74308 266.25901 487.2271

To construct simultaneous confidence intervals for the fit or predictions, we again need a slightly
more manual approach. We call predict() again, but this time asking it for the standard errors
rather than the confidence intervals
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predictions <- predict(lm_fit, newdata = houses_data, se.fit = TRUE)
head(predictions$fit)

## 1 2 3 4 5 6
## 193.52176 79.98449 150.64507 191.71955 124.30169 376.74308

head(predictions$se.fit)

## 1 2 3 4 5 6
## 14.246855 14.131352 14.277804 9.789472 21.625709 21.797212

Now we can construct the simultaneous confidence intervals via the formula (2.70):

f_quantile <- qf(1 - alpha, df1 = p, df2 = n - p)
tibble(

lower = predictions$fit - predictions$se.fit * sqrt(p * f_quantile),
upper = predictions$fit + predictions$se.fit * sqrt(p * f_quantile)

)

## # A tibble: 100 x 2
## lower upper
## <dbl> <dbl>
## 1 133. 254.
## 2 20.3 140.
## 3 90.3 211.
## 4 150. 233.
## 5 32.9 216.
## 6 285. 469.
## 7 82.8 145.
## 8 188. 331.
## 9 371. 803.
## 10 57.3 128.
## # ... with 90 more rows

In the case of simple linear regression, we can plot these pointwise and simultaneous confidence
intervals as bands:

# to produce confidence intervals for fits in general, use the predict() function
n <- nrow(houses_data)
p <- 2
alpha <- 0.05
lm_fit <- lm(price ~ size, data = houses_data)
predictions <- predict(lm_fit, se.fit = TRUE)
t_quantile <- qt(1 - alpha / 2, df = n - p)
f_quantile <- qf(1 - alpha, df1 = p, df2 = n - p)
houses_data %>%

mutate(
fit = predictions$fit,
se = predictions$se.fit,
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ptwise_width = t_quantile * se,
simultaneous_width = sqrt(p * f_quantile) * se

) %>%
ggplot(aes(x = size)) +
geom_point(aes(y = price)) +
geom_line(aes(y = fit), color = "blue") +
geom_line(aes(y = fit + ptwise_width, color = "Pointwise")) +
geom_line(aes(y = fit - ptwise_width, color = "Pointwise")) +
geom_line(aes(y = fit + simultaneous_width, color = "Simultaneous")) +
geom_line(aes(y = fit - simultaneous_width, color = "Simultaneous")) +
theme(legend.title = element_blank(), legend.position = "bottom")
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Predictor competition and collaboration. Let’s look at the power of detecting the association
between price and beds. We can imagine that beds and baths are correlated:

houses_data %>%
ggplot(aes(x = beds, y = baths)) +
geom_count()



Page 45

1

2

3

4

2 3 4 5
beds

ba
th

s

n

10

20

30

40

50

So let’s see how significant beds is, with and without baths in the model:

lm_fit_only_beds <- lm(price ~ factor(beds), data = houses_data)
summary(lm_fit_only_beds)

##
## Call:
## lm(formula = price ~ factor(beds), data = houses_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -234.35 -50.63 -15.69 24.56 365.86
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 105.94 21.48 4.931 3.43e-06 ***
## factor(beds)3 44.69 24.47 1.827 0.070849 .
## factor(beds)4 105.70 32.35 3.268 0.001504 **
## factor(beds)5 246.71 69.62 3.544 0.000611 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 93.65 on 96 degrees of freedom
## Multiple R-squared: 0.1706,Adjusted R-squared: 0.1447
## F-statistic: 6.583 on 3 and 96 DF, p-value: 0.0004294

lm_fit_only_baths <- lm(price ~ factor(baths), data = houses_data)
lm_fit_beds_baths <- lm(price ~ factor(beds) + factor(baths), data = houses_data)
anova(lm_fit_only_baths, lm_fit_beds_baths)

## Analysis of Variance Table
##
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## Model 1: price ~ factor(baths)
## Model 2: price ~ factor(beds) + factor(baths)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 96 621130
## 2 93 572436 3 48693 2.637 0.05424 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that the significance of beds dropped by two orders of magnitude. This is an example of
predictor competition.

On the other hand, note that the variable new is not very correlated with beds:

lm_fit <- lm(new ~ beds, data = houses_data)
summary(lm_fit)

##
## Call:
## lm(formula = new ~ beds, data = houses_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15762 -0.11000 -0.11000 -0.08619 0.91381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03857 0.14950 0.258 0.797
## beds 0.02381 0.04871 0.489 0.626
##
## Residual standard error: 0.3157 on 98 degrees of freedom
## Multiple R-squared: 0.002432,Adjusted R-squared: -0.007747
## F-statistic: 0.2389 on 1 and 98 DF, p-value: 0.6261

but we know has a substantial impact on price. Let’s look at the significance of the test that beds
is not important when we add new to the model.

lm_fit_only_new <- lm(price ~ new, data = houses_data)
lm_fit_beds_new <- lm(price ~ new + factor(beds), data = houses_data)
anova(lm_fit_only_new, lm_fit_beds_new)

## Analysis of Variance Table
##
## Model 1: price ~ new
## Model 2: price ~ new + factor(beds)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 98 787781
## 2 95 619845 3 167936 8.5795 4.251e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Adding new to the model made the p-value more significant by a factor of 10. This is an example
of predictor collaboration.



Chapter 3

Linear models: Misspecification

In our discussion of linear model inference in Chapter 2, we assumed the normal linear model
throughout:

y = Xβ + ε, where ε ∼ N(0, σ2In). (3.1)

In this unit, we will discuss what happens when this model is misspecified:

• Non-normality (Section 3.1): ε ∼ (0, σ2In) but not N(0, σ2In).
• Heteroskedastic and/or correlated errors (Section 3.2): ε ∼ (0,Σ), where Σ 6= σ2I. This

includes the case of heteroskedastic errors (Σ is diagonal but not a constant multiple of the
identity) and correlated errors (Σ is not diagonal).

• Model bias (Section 3.3): It is not the case that E[y] = Xβ for some β ∈ Rp.
• Outliers (Section 3.4): For one or more i, it is not the case that yi ∼ N(xTi∗β, σ2).

For each type of misspecification, we will discuss its origins, consequences, detection, and fixes
(Sections 3.1-3.4). We conclude with an R demo (Section 3.5).

3.1 Non-normality

3.1.1 Origin

Non-normality occurs when the distribution of y|x is either skewed or has heavier tails than the
normal distribution. This may happen, for example, if there is some discreteness in y.

3.1.2 Consequences

Non-normality is the most benign of linear model misspecifications. While we derived linear model
inferences under the normality assumption, all the corresponding statements hold asymptotically
without this assumption. Recall Homework 2 Question 1, or take for example the simpler problem
of estimating the mean µ of a distribution based on n samples from it: We can test H0 : µ = 0
and build a confidence interval for µ even if the underlying distribution is not normal. So if n is
relatively large and p is relatively small, you need not worry too much. If n is small and the errors
are highly skewed or heavy-tailed, we may have issues with incorrect standard errors.

48
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3.1.3 Detection

Non-normality is a property of the error-terms εi. We do not observe these directly, but we can
approximate these using the residuals

ε̂i = yi − xTi∗β̂. (3.2)

Recall from Chapter 2 that Var[ε̂] = σ2(I −H). Letting hi be the ith diagonal entry of H, it
follows that ε̂i ∼ (0, σ2(1− hi)). The standardized residuals are defined as

ri = ε̂i

σ̂
√

1− hi
. (3.3)

Under normality, we would expect ri ·∼ N(0, 1). We can therefore assess normality by producing a
histogram or normal QQ-plot of these residuals (see Figure 3.1).

Figure 3.1: Histogram and normal QQ plot of standardized residuals.

3.1.4 Fixes

As mentioned in Section 3.1.2, non-normality is not necessarily a problem that needs to be fixed,
except in small samples. In small samples (but not too small!), we can apply the residual bootstrap
for robust standard error computation and/or robust hypothesis testing.

Standard errors via the residual bootstrap. The bootstrap is one way of carrying out robust
inference. The core idea of the bootstrap is to use the data to construct an approximation to the
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data-generating distribution, and then to approximate the sampling distribution of any test statistic
by simulating from this approximate data-generating distribution. This approach, pioneered by Brad
Efron in 1979, replaces mathematical derivations with computation. The bootstrap is extremely
flexible, and can be adapted to apply in a variety of settings.

Suppose that yi = xTi∗β + εi, where εi i.i.d.∼ F for some distribution F . Then, the data-generating
distribution is specified by (β, F ), which we approximate by substituting β̂ for β and the empirical
distribution of the residuals ε̂i (call it F̂ ) for F . We can then sample new response vectors based on
this approximate data-generating distribution:

ybi = xTi∗β̂ + εbi , εbi
i.i.d.∼ F̂ for b = 1, . . . , B. (3.4)

Note that i.i.d. sampling εbi from F̂ amounts to sampling (εb1, . . . , εbn) with replacement from
(ε̂1, . . . , ε̂n). Then, as with the parametric bootstrap, we fit a least squares coefficient vector β̂b to
(X,yb) for each b and obtain standard errors by treating {β̂b}Bb=1 as though it were the sampling
distribution of β̂.

Hypothesis testing via the residual bootstrap. While the bootstrap is commonly associated
with the construction of standard errors, it can also be used directly for hypothesis testing. Suppose
we wish to test the linear regression null hypothesis H0 : βS = 0 for some S ⊆ {1, . . . , p − 1}
(which recall we cannot do using a permutation test). We compute some test statistic T (X,y)
measuring the significance of βS (e.g. an F -statistic but it could be anything else). Then, we can
use a variant of the residual bootstrap. We fit the least squares estimate β̂ as usual and extract the
residuals ε̂i ≡ yi − xTi∗β̂ and their empirical distribution F̂ . Then, placing ourselves under the null
hypothesis, we generate new samples yb from the null distribution analogously to the usual residual
bootstrap (3.4):

ybi = xTi,-Sβ̂-S + εbi , εbi
i.i.d.∼ F̂ for b = 1, . . . , B. (3.5)

We can then build a null distribution by recomputing T (X,yb) for each b and then define the
bootstrap-based p-value

pboot ≡ 1
B + 1

(
1 +

B∑
b=1

1(T (X,yb) ≥ T (X,y))
)
. (3.6)

3.2 Heteroskedastic and correlated errors

3.2.1 Origin

Origins of heteroskedasticity. Suppose each observation yi is actually the average of ni under-
lying observations, each with variance σ2. Then, the variance of yi is σ2/ni, which will differ across i
if ni differ. It is also common to see the variance of a distribution increase as the mean increases (as
in Figure 3.2), whereas for a linear model the variance of y stays constant as the mean of y varies.

Origins of correlated errors. Correlated errors can arise when observations have group, spatial,
or temporal structure. Below are examples:

• Group/clustered structure: We have 10 samples (xi∗, yi) each from 100 schools.
• Spatial structure: We have 100 soil samples from a 10×10 grid on a 1km×1km field.
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• Temporal structure: We have 366 COVID positivity rate measurements, one from each day of
the year 2020.

The issue arises because there are common sources of variation among sample that are in the same
group or spatially/temporally close to one another.

3.2.2 Consequences

All normal linear model inference from Chapter 2 hinges on the assumption that ε ∼ N(0, σ2I).
If instead of σ2I we have Var[ε] = Σ for some matrix Σ, then we may suffer two consequences:
wrong inference (in terms of confidence interval coverage and hypothesis test levels) and inefficient
inference (in terms of confidence interval width and hypothesis test power). One way of seeing
the consequence of heteroskedasticity for confidence interval coverage is the width of prediction
intervals; see Figure 3.2 for intuition.

Figure 3.2: Heteroskedasticity in a simple bivariate linear model (image source).

Like with heteroskedastic errors, correlated errors can cause invalid standard errors. In particular,
positively correlated errors typically cause standard errors to be smaller than they should be, leading
to inflated Type-I error rates. For intuition, consider estimating the mean of a distribution based
on n samples. Consider the cases when these samples are independent, compared to when they are
perfectly correlated. The effective sample size in the former case is n and in the latter case is 1.

3.2.3 Detection

Heteroskedasticity is usually assessed via the residual plot (Figure 3.3). In this plot, the standardized
residuals ri (3.3) are plotted against the fitted values µ̂i. In the absence of heteroskedasticity, the
spread of the points around the origin should be roughly constant as a function of µ̂ (Figure 3.3(a)).
A common sign of heteroskedasticity is the fan shape where variance increases as a function of µ̂
(Figure 3.3(c)).

Residual plots once again come in handy to detect correlated errors. Instead of plotting the
standardized residuals against the fitted values, we should plot the residuals against whatever
variables we think might explain variation in the response that the regression does not account
for. In the presence of group structures, we can plot residuals versus group (via a boxplot); in the

http://www3.wabash.edu/econometrics/EconometricsBook/chap19.htm
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Figure 3.3: Residuals plotted against linear-model fitted values that reflect (a) model ade-
quacy, (b) quadratic rather than linear relationship, and (c) nonconstant variance(image
source: Agresti Figure 2.8).

presence of spatial or temporal structure, we can plot residuals as a function of space or time. If the
residuals show a dependency on these variables, this suggests they are correlated. This dependency
can be checked via formal means as well, e.g. via an ANOVA test in the case of groups or by
estimating the autocorrelation function in the case of temporal structure.

3.2.4 Fixes

Broadly speaking, approaches to fixing heteroskedastic or correlated errors can be divided into (1)
those based on estimating Σ and (2) those based on resampling. Methods based on estimating Σ
can use this estimate to either (i) build a better estimate β̂ or (ii) build better standard errors for
the least squares estimate. Resampling methods include the bootstrap (for estimation) and the
permutation test (for testing).

3.2.4.1 Methods based on estimating Σ

Methods that build a better estimate of β̂. Suppose y ∼ N(Xβ,Σ). This is a generalized
least squares problem for which inference can be carried out. The generalized least squares estimate
is β̂ = (XTΣ−1X)−1XTΣ−1y, which is distributed as β̂ ∼ N(β, (XTΣ−1X)−1). This is the best
linear unbiased estimate of β, recovering efficiency. We can carry out inference based on the latter
distributional result analogously to how we did so in Chapter 2. The issue, of course, is that we
usually do not know Σ. Therefore, we can consider the following approach: (1) estimate β̂ using
OLS, (2) use this estimate to get an estimate Σ̂ of Σ, (3) use Σ̂ to get a (hopefully) more efficient
estimator

β̂FGLS ≡ (XT Σ̂−1X)−1XT Σ̂−1y. (3.7)

This is called the feasible generalized least squares estimate (FGLS), to contrast it with the infeasible
estimate that assumes Σ is known exactly. The procedure above can be iterated until convergence.
To estimate Σ̂, we usually need to make some parametric assumptions. For example, in the case of
grouped structure, we might assume a random effects model. In the case of a temporal structure,
we might assume an AR(1) model.
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Methods that build better standard errors for OLS estimate. Sometimes we don’t feel
comfortable enough with our estimate of Σ to actually modify the least squares estimator. So we want
to keep using our least squares estimator, but still get standard errors robust to heteroskedastic or
correlated errors. There are several strategies to computing valid standard errors in such situations.

Let’s say that y = Xβ + ε, where ε ∼ N(0,Σ). Then, we can compute that the covariance
matrix of the least squares estimate β̂ is

Var[β̂] = (XTX)−1(XTΣX)(XTX)−1. (3.8)

Note that this expression reduces to the usual σ2(XTX)−1 when Σ = σ2I. It is called the sandwich
variance between we have the (XTΣX) term sandwiched between two (XTX)−1 terms. If we have
some estimate Σ̂ of the covariance matrix, we can construct

V̂ar[β̂] ≡ (XTX)−1(XT Σ̂X)(XTX)−1. (3.9)

Different estimates Σ̂ are appropriate in different situations. Below we consider three of the most
common choices: one for heteroskedasticity (due to Huber-White), one for group-correlated errors
(due to Liang-Zeger), and one for temporally-correlated errors (due to Newey-West).

Huber-White standard errors. Now, suppose Σ = diag(σ2
1, . . . , σ

2
n) for some variances σ2

1, . . . , σ
2
n >

0. The Huber-White sandwich estimator is defined by (3.8), with

Σ̂ ≡ diag(σ̂2
1, . . . , σ̂

2
n), where σ̂2

i = (yi − xTi∗β̂)2. (3.10)

While each estimator σ̂2
i is very poor, Huber and White’s insight was that the resulting estimate of

the (averaged) quantity XT Σ̂X is not bad.

Liang-Zeger standard errors. Next, let’s consider the case of group-correlated errors. Suppose
that the observations are clustered, with correlated errors among clusters but not between clusters.
Suppose there are C clusters of observations, with the ith observation belonging to cluster c(i) ∈
{1, . . . , C}. Suppose for the sake of simplicity that the observations are ordered so that clusters
are contiguous. Let ε̂c be the vector of residuals in cluster c, so that ε̂ = (ε̂1, . . . , ε̂C). Then, the
true covariance matrix is Σ = block-diag(Σ1, . . . ,ΣC) for some positive definite Σ1, . . . ,ΣC . The
Liang-Zeger estimator is then defined by (3.8), with

Σ̂ ≡ block-diag(Σ̂1, . . . , Σ̂C), where Σ̂c ≡ ε̂cε̂Tc . (3.11)

Note that the Liang-Zeger estimator is a generalization of the Huber-White estimator. Its justification
is similar as well: while each Σ̂c is a poor estimator, the resulting estimate of the (averaged) quantity
XT Σ̂X is not bad as long as the number of clusters is large. Liang-Zeger standard errors are
sometimes referred to as “clustered standard errors.”

Newey-West standard errors. Finally, consider the case when our observations i have a
temporal structure, and we believe there to be nontrivial correlations between εi1 and εi2 for
|i1 − i2| ≤ L. Then, a natural extension of the Huber-White estimate of Σ is Σ̂i1,i2 = ε̂i1ε̂i2 for
each pair (i1, i2) such that |i1− i2| ≤ L. Unfortunately, this is not guaranteed to give a positive
semidefinite matrix Σ̂. Therefore, Newey and West proposed a slightly modified estimator:

Σ̂i1,i2 = max
(

0, 1− |i1− i2|
L

)
ε̂i1ε̂i2.

This estimator shrinks the off-diagonal estimates ε̂i1ε̂i2 based on their distance to the diagonal. It
can be shown that this modification restores positive semidefiniteness of Σ̂.
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3.2.4.2 Resampling methods

Pairs bootstrap. The residual bootstrap corrects for non-normality, but not heteroskedasticity
or correlated errors, since it assumes that the noise terms are i.i.d. from some distribution.

Weakening the assumptions further, let’s assume only that (xi∗, yi) i.i.d.∼ F for some joint
distribution F . We then resample our observations by sampling with replacement from the original
observations.

Note that, unlike the parametric or residual bootstrap, the pairs bootstrap treats the predictors
X as random rather than fixed. The benefit of the pairs bootstrap is that it does not assume
homoskedasticity, since the error variance is allowed to depend on xi∗. Therefore, the pairs bootstrap
addresses both non-normality and heteroskedasticity, though it does not address correlated errors
(though variants of the pairs bootstrap do; see below). Note that the pairs bootstrap does not even
assume that E[yi] = xTi∗β for some β. However, in the presence of model bias, it is unclear for what
parameters we are even doing inference. While the pairs bootstrap assumes less than the residual
bootstrap, it may be somewhat less efficient in the case when the assumptions of the latter are met.

The pairs bootstrap has several variants that help it overcome correlated errors, in addition
to heteroskedasticity. The cluster bootstrap is applicable in the case when errors have a clus-
tered/grouped structure. In this case, we sample entire clusters of observations, with replacement,
from the original set of clusters. The moving blocks bootstrap is applicable in the case of spatially
or temporally structured errors. In this variant of the pairs bootstrap, we resample spatially or
temporally adjacent blocks of observations together to preserve their joint correlation structure.

Permutation tests. Unlike the residual bootstrap, the pairs bootstrap cannot accommodate
hypothesis testing. If we would like resampling-based hypothesis tests in the presence of het-
eroskedasticity, we can consider permutation tests instead. Permutation tests are an easy way of
testing the null hypothesis of independence between two random variables (or vectors). For our
purposes, suppose that (xi∗, yi) are drawn i.i.d. from some joint distribution F (as opposed to the
usual assumption that X is fixed). Then, consider the null hypothesis

H0 : x ⊥⊥ y. (3.12)

This null hypothesis is related to the null hypothesis H0 : β-0 = 0 in a linear regression, as formalized
by the following lemma.

Lemma 3.2.1. Suppose x ∈ Rp−1 has a nondegenerate distribution Fx in the sense that there does
not exist a vector c ∈ Rp−1 such that cTx is deterministic. Suppose also that Fy|x is a distribution
such that E[y|x] = β0 + xTβ-0 and that the distribution Fy|x is specified by its mean. Then,

x ⊥⊥ y ⇐⇒ β-0 = 0. (3.13)

Proof. If β-0 = 0, then E[y|x] = β0. Therefore, the mean of y does not depend on x. By the
assumption on Fy|x, it follows that the entire distribution Fy|x does not depend on x, i.e. y ⊥⊥ x. If
β-0 6= 0, then E[y|x] = β0 + xTβ-0, which by assumption is non-constant. Since E[y|x] depends on
x, it follows that y is not independent of x.

Therefore, any valid independence test automatically gives a non-normality-robust and heteroskedasticity-
robust test of H0 : β-0 = 0 in a linear regression.

Now, suppose we have n i.i.d. samples (xi∗, yi) from F . Under the independence null hypothe-
sis (3.12), the distribution of the data is unchanged if we permute the response variables yi. Formally,
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let y() be the order statistics of the response variable, let Sn be the permutation group on {1, . . . , n},
and let yτ denote the permutation of y by τ ∈ Sn. Then,

y|X,y() ∼
1
n!
∑
τ∈Sn

δ(yτ ). (3.14)

Now, let T (X,y) be any test statistic measuring the association between y and X, e.g. a linear
regression F -statistic. Then, the above distributional result implies that

T (X,y)|X,y() ∼
1
n!
∑
τ∈Sn

δ(T (X,yτ )). (3.15)

Hence, we can compute the null distribution of T by repeatedly permuting the response y and
recomputing T (X,yτ ). This gives rise to the permutation p-value

pperm ≡ 1
n!
∑
τ∈Sn

1(T (X,yτ ) ≥ T (X,y)). (3.16)

The uniform distribution of T (X,y)|X,y() implies that

P[pperm ≤ t|X,y()] ≤ t =⇒ P[pperm ≤ t] = E[P[pperm ≤ t|X,y()]] ≤ t for all t ∈ [0, 1]..
(3.17)

In practice, pperm is approximated by independently sampling B permutations τ1, . . . , τB from the
uniform distribution over Sn. Letting τ0 be the identity permutation, it follows that

y|X,y ∈ {yτ0 , . . . ,yτB} ∼
1

B + 1

B∑
b=0

δ(yτb
). (3.18)

Similar logic as above leads to the approximate permutation p-value

p̂perm ≡ 1
B + 1

B∑
b=0

1(T (X,yτb
) ≥ T (X,y)) = 1

B + 1

(
1 +

B∑
b=1

1(T (X,yτb
) ≥ T (X,y))

)
. (3.19)

Although p̂perm can be viewed as an approximation to pperm, it is also stochastically larger than the
uniform distribution in finite samples:

P[p̂perm ≤ t] ≤ t for all t ∈ [0, 1]. (3.20)

Warning: A common mistake is to omit the “1+” in the numerator and denominator of the
definition (3.19). The resulting p-value is not valid in the sense of equation (3.20).

Example. A common application of the permutation test is testing for equality of distributions
in the two-sample problem, where the permutation test amounts to generating a null distribution
for any test statistic (e.g. a difference in means) by pooling together the two samples and randomly
reassigning the classes of the samples.

Strengths and weaknesses. The strength of the permutation test is that it is valid under almost
no assumptions on the data-generating process. Its main weakness is that it is not applicable to the
hypothesis H0 : βS = 0 for any group of predictors S 6= {1, . . . , p− 1}. Intuitively, this would require
a fancy kind of permutation that breaks the association between y and X∗,S while preserving the
association between X∗,S and X∗,-S . This amounts to a test of conditional independence, which
requires more assumptions on the joint distribution Fx,y than an independence test. Another
weakness of a permutation test is that it is computationally expensive, although in the 21st century
this is not a huge issue.
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3.3 Model bias

3.3.1 Origin

Model bias arises when predictors are left out of the regression model:

assumed model: y = Xβ + ε; actual model: y = Xβ +Zγ + ε. (3.21)

We may not always know about or measure all the variables that impact a response y.
Model bias can also arise when the predictors do not impact the response on the linear scale.

For example:
assumed model: E[y] = Xβ; actual model: g(E[y]) = Xβ. (3.22)

3.3.2 Consequences

In cases of model bias, the parameters β in the assumed linear model lose their meanings. The
least squares estimate β̂ will be a biased estimate for the parameter we probably actually want to
estimate. In the case (3.21) when predictors are left out of the regression model, these additional
predictors Z will act as confounders and create bias in β̂ as an estimate of the β parameters in the
true model, unless XTZ = 0. As discussed in Chapter 2, this can lead to misleading conclusions.

3.3.3 Detection

Similarly to the detection of correlated errors, we can try to identify model bias by plotting the
standardized residuals against predictors that may have been left out of the model. A good place
to start is to plot standardized residuals against the predictors X (one at a time) that are in the
model, since nonlinear transformations of these might have been left out. In this case, you would
see something like Figure 3.3(b).

It is possible to formally test for model bias in cases when we have repeated observations of the
response for each value of the predictor vector. In particular, suppose that xi∗ = xc for c = c(i)
and predictor vectors x1, . . . ,xC ∈ Rp. Then, consider testing the following hypothesis:

H0 : yi = xTi∗β + εi versus H1 : yi = βc(i) + εi. (3.23)

The model under H0 (the linear model) is nested in the model for H1 (the saturated model), and
we can test this hypothesis using an F -test called the lack of fit F -test.

3.3.4 Fixes

To fix model bias in the case (3.21), ideally we would identify the missing predictors Z and add
them to the regression model. This may not always be feasible or possible. To fix model bias in the
case (3.22), it is sometimes advocated to find a transformation g (e.g. a square root or a logarithm)
of y such that E[g(y)] = Xβ. However, a better solution is to use a generalized linear model, which
we will discuss starting in Chapter 4.

3.4 Outliers

3.4.1 Origin

Outliers often arise due to measurement or data entry errors. An observation can be an outlier in x,
in y, or both.
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3.4.2 Consequences

An outlier can have the effect of biasing the estimate β̂. This occurs when an observation has
outlying x as well as outlying y.

3.4.3 Detection

There are a few measures associated to an observation that can be used to detect outliers, though
none are perfect. The first quantity is called the leverage, defined as

leverage of observation i ≡ corr2(yi, µ̂i)2. (3.24)

This quantity measures the extent to which the fitted value µ̂i is sensitive to the (noise in the)
observation yi. It can be derived that

leverage of observation i = hii, (3.25)

which is the ith diagonal element of the hat matrix H. This is related to the fact that Var[ε̂i] =
σ2(1− hii). The larger the leverage, the smaller the variance of the residual, so the closer the line
passes to the ith observation. The leverage of an observation is larger to the extent that xi∗ is far
from x̄. For example, in the bivariate linear model yi = β0 + β1xi + εi,

hii = 1
n

+ (xi − x̄)2∑n
i′=1(xi′ − x̄)2 .

Note that the leverage is not a function of yi, so a high-leverage point might or might not be an
outlier in yi and therefore might or might not have a strong impact on the regression. To assess
more directly whether an observation is influential, we can compare the least squares fits with and
without that observation. To this end, we define the Cook’s distance

Di =
∑n
i′=1(µ̂i′ − µ̂-i

i′)2

pσ̂2 , (3.26)

where µ̂-i
i′ = xTi∗β̂

-i and β̂-i is the least squares estimate based on (X-i,∗,y-i). An observation is
considered influential if it has Cooks distance greater than one.

There is a connection between Cook’s distance and leverage:

Di =
(

yi − µ̂i
σ̂
√

1− hii

)2
· hii
p(1− hii)

. (3.27)

We recognize the first term as the standardized residual; therefore a point is influential if its residual
and leverage are large.

Note that Cook’s distance may not successfully identify outliers. For example, if there are groups
of outliers, then they will mask each other in the calculation of Cook’s distance.

3.4.4 Fixes

If outliers can be detected, then the fix is to remove them from the regression. But, we need
to be careful. Definitively determining whether observations are outliers can be tricky. Outlier
detection can even be used as a way to commit fraud with data, as now-defunct blood testing
start-up Theranos is alleged to have done.

As an alternative to removing outliers, we can fit estimators β̂ that are less sensitive to outliers;
see Section 3.4.4.1.

https://arstechnica.com/tech-policy/2021/09/cherry-picking-data-was-routine-practice-at-theranos-former-lab-worker-says/
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3.4.4.1 Robust estimation

The squared error loss ∑n
i=1(yi − xTi∗β)2 is sensitive to outliers in the sense that a large value of

yi − xTi∗β can have a significant impact on the loss function. The least squares estimate, as the
minimizer of this loss function, is therefore sensitive to outliers. One way of addressing this challenge
is to replace the squared error loss by a different loss that does not grow so quickly in yi − xTi∗β. A
popular choice for such a loss function is the Huber loss:

Lδ(yi − xTi∗β) =
{1

2(yi − xTi∗β)2, if |yi − xTi∗β| ≤ δ;
δ(|yi − xTi∗β| − δ), if |yi − xTi∗β| > δ.

(3.28)

This function is differentiable, like the squared error loss, but grows linearly as opposed to quadrati-
cally. We can then define

β̂Huber ≡ arg min
β

n∑
i=1

Lδ(yi − xTi∗β).

This is an M-estimator ; it is consistent and has an asymptotic normal distribution that can be used
for inference.

3.5 R demo
We illustrate how to deal with heteroskedasticity, group-correlated errors, autocorrelated errors,
and outliers in the following sections.

3.5.1 Heteroskedasticity

Next let’s look at another dataset, from the Current Population Survey (CPS).

library(tidyverse)
cps_data <- read_tsv("data/cps2.tsv")
cps_data

## # A tibble: 1,000 x 10
## wage educ exper female black married union south fulltime metro
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2.03 13 2 1 0 0 0 1 0 0
## 2 2.07 12 7 0 0 0 0 0 0 1
## 3 2.12 12 35 0 0 0 0 1 1 1
## 4 2.54 16 20 1 0 0 0 1 1 1
## 5 2.68 12 24 1 0 1 0 1 0 1
## 6 3.09 13 4 0 0 0 0 1 0 1
## 7 3.16 13 1 0 0 0 0 0 0 0
## 8 3.17 12 22 1 0 1 0 1 0 1
## 9 3.2 12 23 0 0 1 0 1 1 1
## 10 3.27 12 4 1 0 0 0 0 1 1
## # ... with 990 more rows

Suppose we want to regress wage on educ, exper, and metro.
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lm_fit <- lm(wage ~ educ + exper + metro, data = cps_data)

3.5.1.1 Diagnostics

Let’s take a look at the standard linear model diagnostic plots built into R.

# residuals versus fitted
plot(lm_fit, which = 1)
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# residual QQ plot
plot(lm_fit, which = 2)
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# residuals versus leverage (with Cook's distance)
plot(lm_fit, which = 5)

0.000 0.010 0.020

−
2

0
2

4
6

8

Leverage

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(wage ~ educ + exper + metro)

Cook's distance

0.5

Residuals vs Leverage

1000

999

978

The residuals versus fitted plot suggests significant heteroskedasticity, with variance growing as
a function of the fitted value.
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3.5.1.2 Sandwich standard errors

To get standard errors robust to this heteroskedasticity, we can use one of the robust estimators
discussed in Section 3.2. Most of the robust standard error constructions discussed in that section
are implemented in the R package sandwich.

library(sandwich)

For example, Huber-White’s heteroskedasticity-consistent estimate V̂ar[β̂] can be obtain via
vcovHC:

HW_cov <- vcovHC(lm_fit)
HW_cov

## (Intercept) educ exper metro
## (Intercept) 1.484328645 -0.0967891868 -0.0096871141 -0.1218518012
## educ -0.096789187 0.0070467982 0.0004037764 0.0018334348
## exper -0.009687114 0.0004037764 0.0002517826 0.0008369831
## metro -0.121851801 0.0018334348 0.0008369831 0.1197713348

Compare this to the traditional estimate:

usual_cov <- vcovHC(lm_fit, type = "const")
usual_cov

## (Intercept) educ exper metro
## (Intercept) 1.157049852 -0.0671656102 -0.0070323974 -0.1287058354
## educ -0.067165610 0.0048945781 0.0001924359 -0.0018227782
## exper -0.007032397 0.0001924359 0.0002320022 0.0001471354
## metro -0.128705835 -0.0018227782 0.0001471354 0.1858394060

# extract the variance estimates from the diagonal
tibble(

variable = rownames(usual_cov),
usual_variance = sqrt(diag(usual_cov)),
HW_variance = sqrt(diag(HW_cov))

)

## # A tibble: 4 x 3
## variable usual_variance HW_variance
## <chr> <dbl> <dbl>
## 1 (Intercept) 1.08 1.22
## 2 educ 0.0700 0.0839
## 3 exper 0.0152 0.0159
## 4 metro 0.431 0.346

Bootstrap standard errors are also implemented in sandwich:

# pairs bootstrap
bootstrap_cov <- vcovBS(lm_fit, type = "xy")
tibble(
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variable = rownames(usual_cov),
usual_variance = diag(usual_cov),
HW_variance = diag(HW_cov),
boostrap_variance = diag(bootstrap_cov)

)

## # A tibble: 4 x 4
## variable usual_variance HW_variance boostrap_variance
## <chr> <dbl> <dbl> <dbl>
## 1 (Intercept) 1.16 1.48 1.34
## 2 educ 0.00489 0.00705 0.00596
## 3 exper 0.000232 0.000252 0.000245
## 4 metro 0.186 0.120 0.124

Note that the bootstrap standard errors are closer to the HW ones than the standard ones.
The covariance estimate produced by sandwich can be easily integrated into linear model

inference using the package lmtest.

library(lmtest)

## Loading required package: zoo
##
## Attaching package: ’zoo’
## The following objects are masked from ’package:base’:
##
## as.Date, as.Date.numeric

# fit linear model as usual
lm_fit <- lm(wage ~ educ + exper + metro, data = cps_data)

# robust t-tests for coefficients
coeftest(lm_fit, vcov. = vcovHC)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.913984 1.218330 -8.1374 1.197e-15 ***
## educ 1.233964 0.083945 14.6996 < 2.2e-16 ***
## exper 0.133244 0.015868 8.3972 < 2.2e-16 ***
## metro 1.524104 0.346080 4.4039 1.178e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# robust confidence intervals for coefficients
coefci(lm_fit, vcov. = vcovHC)

## 2.5 % 97.5 %
## (Intercept) -12.3047729 -7.5231954
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## educ 1.0692342 1.3986938
## exper 0.1021058 0.1643816
## metro 0.8449747 2.2032337

# robust F-test
lm_fit_partial <- lm(wage ~ educ, data = cps_data) # a partial model
waldtest(lm_fit_partial, lm_fit, vcov = vcovHC)

## Wald test
##
## Model 1: wage ~ educ
## Model 2: wage ~ educ + exper + metro
## Res.Df Df F Pr(>F)
## 1 998
## 2 996 2 40.252 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.5.1.3 Bootstrap confidence intervals

One R package for performing bootstrap inference is simpleboot. Let’s see how to get pairs
bootstrap distributions for the coefficient estimates.

library(simpleboot)
boot_out <- lm.boot(

lm.object = lm_fit, # input the fit object from lm()
R = 1000

) # R is the number of bootstrap replicates
perc(boot_out) # get the percentile 95% confidence intervals

## (Intercept) educ exper metro
## 2.5% -12.402014 1.075425 0.1061925 0.8229787
## 97.5% -7.623951 1.402054 0.1649488 2.1808994

# Note: lm.boot implements the residual bootstrap as well. For this option, set rows = FALSE.

We can extract the resampling distributions for the coefficient estimates using the samples function:

samples(boot_out, name = "coef")[, 1:5]

## 1 2 3 4 5
## (Intercept) -7.8607649 -10.8830664 -9.983998 -9.2859532 -9.839665
## educ 1.0730422 1.2926975 1.208323 1.1587949 1.233057
## exper 0.1227519 0.1412297 0.147260 0.1244842 0.129010
## metro 1.3091946 1.5626078 1.653429 1.8491848 1.576849

We can plot these as follows:
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boot_pctiles <- boot_out %>%
perc() %>%
t() %>%
as.data.frame() %>%
rownames_to_column(var = "var") %>%
filter(var != "(Intercept)")

samples(boot_out, name = "coef") %>%
as.data.frame() %>%
rownames_to_column(var = "var") %>%
filter(var != "(Intercept)") %>%
pivot_longer(-var, names_to = "resample", values_to = "coefficient") %>%
group_by(var) %>%
ggplot(aes(x = coefficient)) +
geom_histogram(bins = 30, colour = "black") +
geom_vline(aes(xintercept = `2.5%`), data = boot_pctiles, linetype = "dashed") +
geom_vline(aes(xintercept = `97.5%`), data = boot_pctiles, linetype = "dashed") +
facet_wrap(~var, scales = "free")
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In this case, the bootstrap sampling distributions look roughly normal.

3.5.2 Group-correlated errors

Credit for this data example: https://www.r-bloggers.com/2021/05/clustered-standard-errors-with-r/.
Let’s consider the nslwork data from the webuse package:

library(webuse)
nlswork_orig <- webuse("nlswork")
nlswork <- filter(nlswork_orig, idcode <= 100) %>%

select(idcode, year, ln_wage, age, tenure, union) %>%
filter(complete.cases(.)) %>%
mutate(

union = as.integer(union),
idcode = as.factor(idcode)

)
nlswork

https://www.r-bloggers.com/2021/05/clustered-standard-errors-with-r/
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## # A tibble: 386 x 6
## idcode year ln_wage age tenure union
## <fct> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 72 1.59 20 0.917 1
## 2 1 77 1.78 25 1.5 0
## 3 1 80 2.55 28 1.83 1
## 4 1 83 2.42 31 0.667 1
## 5 1 85 2.61 33 1.92 1
## 6 1 87 2.54 35 3.92 1
## 7 1 88 2.46 37 5.33 1
## 8 2 71 1.36 19 0.25 0
## 9 2 77 1.73 25 2.67 1
## 10 2 78 1.69 26 3.67 1
## # ... with 376 more rows

The data comes from the US National Longitudinal Survey (NLS) and contains information
about more than 4,000 young working women. We’re interested in the relationship between wage
(here as log-scaled GNP-adjusted wage) ln_wage and survey participant’s current age, job tenure in
years and union membership as independent variables. It’s a longitudinal survey, so subjects were
asked repeatedly between 1968 and 1988 and each subject is identified by an unique idcode idcode.
Here we restrict attention to the first 100 subjects, and remove any rows with missing data.

Let’s start by fitting a linear regression of the log wage on age, tenure, union, and the interaction
between tenure and union:

lm_fit <- lm(ln_wage ~ age + tenure + union + tenure:union,
data = nlswork

)
summary(lm_fit)

##
## Call:
## lm(formula = ln_wage ~ age + tenure + union + tenure:union, data = nlswork)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.42570 -0.28330 0.01694 0.27303 1.65052
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.379103 0.099658 13.838 < 2e-16 ***
## age 0.013553 0.003388 4.000 7.60e-05 ***
## tenure 0.022175 0.008051 2.754 0.00617 **
## union 0.309936 0.070344 4.406 1.37e-05 ***
## tenure:union -0.009629 0.012049 -0.799 0.42473
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4099 on 381 degrees of freedom
## Multiple R-squared: 0.1811,Adjusted R-squared: 0.1725
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## F-statistic: 21.07 on 4 and 381 DF, p-value: 1.047e-15

Let’s plot the residuals against the individuals:

nlswork |>
mutate(resid = lm_fit$residuals) |>
ggplot(aes(x = idcode, y = resid)) +
geom_boxplot() +
labs(

x = "Subject",
y = "Residual"

) +
theme(axis.text.x = element_blank())

−1

0

1

Subject

R
es

id
ua

l

Clearly, there is dependency among the residuals within subjects. Therefore, we have either
model bias, or correlated errors, or both. To help assess whether we have model bias or not, we
must check whether the variables of interest are correlated with the grouping variable idcode. We
can check this with a plot, e.g. for the tenure variable:

nlswork |>
ggplot(aes(x = idcode, y = tenure)) +
geom_boxplot() +
labs(

x = "Subject",
y = "Tenure"

) +
theme(axis.text.x = element_blank())
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Again, there seems to be nontrivial association between tenure and idcode. We can check this
more formally with an ANOVA test:

summary(aov(tenure ~ idcode, data = nlswork))

## Df Sum Sq Mean Sq F value Pr(>F)
## idcode 81 2529 31.220 3.558 8.83e-16 ***
## Residuals 304 2668 8.775
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So in this case we do have model bias on our hands. We can address this using fixed effects for
each subject.

lm_fit_FE <- lm(ln_wage ~ age + tenure + union + tenure:union + idcode,
data = nlswork

)
lm_fit_FE %>%

summary() %>%
coef() %>%
as.data.frame() %>%
rownames_to_column(var = "var") %>%
filter(!grepl("idcode", var)) %>% # remove coefficients for fixed effects
column_to_rownames(var = "var")

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.882478232 0.131411504 14.325064 8.022367e-36
## age 0.005630809 0.003109803 1.810664 7.119315e-02
## tenure 0.020756426 0.006964417 2.980353 3.114742e-03
## union 0.174619394 0.060646038 2.879321 4.272027e-03
## tenure:union 0.014974113 0.009548509 1.568215 1.178851e-01

Note the changes in the standard errors and p-values. Sometimes, we may have remaining
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correlation among residuals even after adding cluster fixed effects. Therefore, it is common practice
to compute clustered (i.e. Liang-Zeger) standard errors in conjunction with cluster fixed effects. We
can get clustered standard errors via the vcovCL function from sandwich:

LZ_cov <- vcovCL(lm_fit_FE, cluster = nlswork$idcode)
coeftest(lm_fit_FE, vcov. = LZ_cov)[, ] %>%

as.data.frame() %>%
rownames_to_column(var = "var") %>%
filter(!grepl("idcode", var)) %>% # remove coefficients for fixed effects
column_to_rownames(var = "var")

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.882478232 0.157611390 11.9437956 3.667970e-27
## age 0.005630809 0.006339777 0.8881715 3.751601e-01
## tenure 0.020756426 0.011149190 1.8616981 6.362342e-02
## union 0.174619394 0.101970509 1.7124500 8.784708e-02
## tenure:union 0.014974113 0.009646023 1.5523613 1.216301e-01

Again, note the changes in the standard errors and p-values.

3.5.3 Autocorrelated errors

Let’s take a look at the EuStockMarkets data built into R, containing the daily closing prices of
major European stock indices: Germany DAX (Ibis), Switzerland SMI, France CAC, and UK FTSE.
Let’s regress DAX on FTSE and take a look at the residuals:

lm_fit <- lm(DAX ~ FTSE, data = EuStockMarkets)
summary(lm_fit)

##
## Call:
## lm(formula = DAX ~ FTSE, data = EuStockMarkets)
##
## Residuals:
## Min 1Q Median 3Q Max
## -408.43 -172.53 -45.71 137.68 989.96
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.331e+03 2.109e+01 -63.12 <2e-16 ***
## FTSE 1.083e+00 5.705e-03 189.84 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 240.3 on 1858 degrees of freedom
## Multiple R-squared: 0.951,Adjusted R-squared: 0.9509
## F-statistic: 3.604e+04 on 1 and 1858 DF, p-value: < 2.2e-16

We find an extremely significant association between the two stock indices. But let’s examine
the residuals for autocorrelation:



Page 69

EuStockMarkets %>%
as.data.frame() %>%
mutate(

date = row_number(),
resid = lm_fit$residuals

) %>%
ggplot(aes(x = date, y = resid)) +
geom_line() +
labs(

x = "Day",
y = "Residual"

)
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There is clearly some autocorrelation in the residuals. Let’s quantify it using the autocorrelation
function (acf() in R):

acf(lm_fit$residuals, lag.max = 1000)
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We see that the autocorrelation gets into a reasonably low range around lag 200. We can then
construct Newey-West standard errors based on this lag:

NW_cov <- NeweyWest(lm_fit)
coeftest(lm_fit, vcov. = NW_cov)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1331.2374 4398.3722 -0.3027 0.7622
## FTSE 1.0831 1.4645 0.7396 0.4597

We see that the p-value for the association goes from 2e-16 to 0.46, after accounting for
autocorrelation.

3.5.4 Outliers

Let’s take a look at the crime data from HW2:

# read crime data
crime_data <- read_tsv("data/Statewide_crime.dat")

# read and transform population data
population_data <- read_csv("data/state-populations.csv")
population_data <- population_data %>%

filter(State != "Puerto Rico") %>%
select(State, Pop) %>%
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rename(state_name = State, state_pop = Pop)

# collate state abbreviations
state_abbreviations <- tibble(

state_name = state.name,
state_abbrev = state.abb

) %>%
add_row(state_name = "District of Columbia", state_abbrev = "DC")

# add CrimeRate to crime_data
crime_data <- crime_data %>%

mutate(STATE = ifelse(STATE == "IO", "IA", STATE)) %>%
rename(state_abbrev = STATE) %>%
left_join(state_abbreviations, by = "state_abbrev") %>%
left_join(population_data, by = "state_name") %>%
mutate(CrimeRate = Violent / state_pop) %>%
select(state_abbrev, CrimeRate, Metro, HighSchool, Poverty)

crime_data

## # A tibble: 51 x 5
## state_abbrev CrimeRate Metro HighSchool Poverty
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 AK 0.000819 65.6 90.2 8
## 2 AL 0.0000871 55.4 82.4 13.7
## 3 AR 0.000150 52.5 79.2 12.1
## 4 AZ 0.0000682 88.2 84.4 11.9
## 5 CA 0.0000146 94.4 81.3 10.5
## 6 CO 0.0000585 84.5 88.3 7.3
## 7 CT 0.0000867 87.7 88.8 6.4
## 8 DE 0.000664 80.1 86.5 5.8
## 9 FL 0.0000333 89.3 85.9 9.7
## 10 GA 0.0000419 71.6 85.2 10.8
## # ... with 41 more rows

Let’s fit the linear regression:

# note: we make the state abbreviations row names for better diagnostic plots
lm_fit <- lm(CrimeRate ~ Metro + HighSchool + Poverty,

data = crime_data %>% column_to_rownames(var = "state_abbrev")
)

We can get the standard linear regression diagnostic plots as follows:

# residuals versus fitted
plot(lm_fit, which = 1)
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plot(lm_fit, which = 2)

−2 −1 0 1 2

0
2

4
6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(CrimeRate ~ Metro + HighSchool + Poverty)

Normal Q−Q

DC

DE
AK



Page 73

# residuals versus leverage (with Cook's distance)
plot(lm_fit, which = 5)
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The information underlying these diagnostic plots can be extracted as follows:

tibble(
state = crime_data$state_abbrev,
std_residual = rstandard(lm_fit),
fitted_value = fitted.values(lm_fit),
leverage = hatvalues(lm_fit),
cooks_dist = cooks.distance(lm_fit)

)

## # A tibble: 51 x 5
## state std_residual fitted_value leverage cooks_dist
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 AK 2.17 0.000227 0.0463 0.0574
## 2 AL -0.422 0.000200 0.0769 0.00371
## 3 AR 1.10 -0.000132 0.153 0.0547
## 4 AZ -1.02 0.000344 0.0568 0.0156
## 5 CA -0.264 0.0000839 0.114 0.00224
## 6 CO -0.383 0.000163 0.0405 0.00155
## 7 CT -0.175 0.000134 0.0561 0.000456
## 8 DE 2.81 -0.0000888 0.0754 0.161
## 9 FL -0.804 0.000252 0.0452 0.00764
## 10 GA -0.599 0.000207 0.0232 0.00213
## # ... with 41 more rows
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Clearly DC is an outlier. We can either run a robust estimation procedure or we can redo the
analysis without DC. Let’s try both. First, we try robust regression using rlm() from the MASS
package:

rlm_fit <- MASS::rlm(CrimeRate ~ Metro + HighSchool + Poverty, data = crime_data)
summary(rlm_fit)

##
## Call: rlm(formula = CrimeRate ~ Metro + HighSchool + Poverty, data = crime_data)
## Residuals:
## Min 1Q Median 3Q Max
## -8.297e-05 -3.787e-05 -2.249e-05 4.407e-05 2.063e-03
##
## Coefficients:
## Value Std. Error t value
## (Intercept) -0.0009 0.0004 -2.2562
## Metro 0.0000 0.0000 -1.2963
## HighSchool 0.0000 0.0000 2.6506
## Poverty 0.0000 0.0000 2.7546
##
## Residual standard error: 6.048e-05 on 47 degrees of freedom

For some reason, the p-values are not computed automatically. We can compute them ourselves
instead:

summary(rlm_fit)$coef %>%
as.data.frame() %>%
rename(Estimate = Value) %>%
mutate(`p value` = 2 * dnorm(-abs(`t value`)))

## Estimate Std. Error t value p value
## (Intercept) -8.538466e-04 3.784466e-04 -2.256188 0.06260042
## Metro -8.639252e-07 6.664623e-07 -1.296285 0.34439400
## HighSchool 1.037849e-05 3.915573e-06 2.650568 0.02378865
## Poverty 1.252839e-05 4.548172e-06 2.754600 0.01795833

To see the robust estimation action visually, let’s consider a univariate example:

lm_fit <- lm(CrimeRate ~ Metro, data = crime_data)
rlm_fit <- MASS::rlm(CrimeRate ~ Metro, data = crime_data)

# collate the fits into a tibble
line_fits <- tibble(

method = c("Usual", "Robust"),
intercept = c(

coef(lm_fit)["(Intercept)"],
coef(rlm_fit)["(Intercept)"]

),
slope = c(

coef(lm_fit)["Metro"],
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coef(rlm_fit)["Metro"]
)

)

# usual and robust univariate fits
# plot the fits
crime_data %>%

ggplot() +
geom_point(aes(x = Metro, y = CrimeRate)) +
geom_abline(aes(intercept = intercept, slope = slope, colour = method),

data = line_fits
)

0.0000

0.0005

0.0010

0.0015

0.0020

40 60 80 100
Metro

C
rim

eR
at

e method

Robust

Usual

Next, let’s try removing DC and running a usual linear regression.

lm_fit_no_dc <- lm(CrimeRate ~ Metro + HighSchool + Poverty,
data = crime_data %>%

filter(state_abbrev != "DC") %>%
column_to_rownames(var = "state_abbrev")

)

# residuals versus fitted
plot(lm_fit_no_dc, which = 1)
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# residual QQ plot
plot(lm_fit_no_dc, which = 2)
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# residuals versus leverage (with Cook's distance)
plot(lm_fit_no_dc, which = 5)
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Chapter 4

Generalized linear models: General
theory

Chapters 1-3 focused on the most common class of models used in applications: linear models.
Despite their versatility, linear models do not apply in all situations. In particular, they are not
designed to deal with binary or count responses. In Chapter 4, we introduce generalized linear
models (GLMs), a generalization of linear models that encompasses a wide variety of incredibly
useful models including logistic regression and Poisson regression.

We’ll start Chapter 4 by introducing exponential dispersion models (Section 4.1), a generalization
of the Gaussian distribution that serves as the backbone of GLMs. Then we formally define a GLM,
demonstrating logistic regression and Poisson regression as special cases (Section 4.2). Next we
discuss maximum likelihood inference in GLMs (Section 4.3). Finally, we discuss how to carry out
statistical inference in GLMs (Section 4.4).

4.1 Exponential dispersion model (EDM) distributions

4.1.1 Definition

Let’s start with the Gaussian distribution. If y ∼ N(µ, σ2), then it has the following density with
respect to the Lebesgue measure ν on R:

fµ,σ2(y) = 1√
2πσ2

exp
(
− 1

2σ2 (y − µ)2
)

= exp
(
µy − 1

2µ
2

σ2

)
· 1√

2πσ2
exp

(
− 1

2σ2 y
2
)
. (4.1)

We can consider a more general class of densities with respect to any measure ν:

fθ,φ(y) ≡ exp
(
θy − ψ(θ)

φ

)
h(y, φ), θ ∈ Θ ⊆ R, φ > 0. (4.2)

Here θ is called the natural parameter, ψ is called the log-partition function, Θ ≡ {θ : ψ(θ) <∞}
is called the natural parameter space, φ > 0 is called the dispersion parameter, and h is called
the base density. The distribution with density fθ,φ with respect to a measure ν on R is called an
exponential dispersion model (EDM). Sometimes, we parameterize this distribution using its mean
and dispersion, writing

y ∼ EDM(µ, φ). (4.3)
When φ = 1, the distribution becomes a one-parameter natural exponential family. The support of
an EDM distribution remains fixed as (θ, φ) vary.

78
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4.1.2 Examples

Normal distribution. As derived above, y ∼ N(µ, σ2) is an EDM with

θ = µ, ψ(θ) = −1
2θ

2, φ = σ2, h(y, φ) = 1√
2πσ2

exp
(
− 1

2σ2 y
2
)
. (4.4)

Bernoulli distribution. Suppose y ∼ Ber(µ). Then, we have

f(y) = µy(1− µ)1−y = exp
(
y log µ

1− µ + log(1− µ)
)
. (4.5)

Therefore, we have θ = log µ
1−µ , so that log(1− µ) = − log(1 + eθ). It follows that

θ = log µ

1− µ, ψ(θ) = log(1 + eθ), φ = 1, h(y) = 1. (4.6)

Hence, the Bernoulli distribution is an EDM, as well as a one-parameter exponential family. Note
that Ber(0) and Ber(1) are not included in this class of EDMs, because there is no θ ∈ Θ = R that
gives rise to µ = 0 or µ = 1. Hence, µ ∈ (0, 1), and the support of any Bernoulli EDM is {0, 1}.

Binomial distribution. Consider the binomial proportion y: my ∼ Bin(m,µ). We have

f(y) =
(
m

my

)
µmy(1− µ)m(1−y) = exp

(
m

(
y log µ

1− µ + log(1− µ)
))(

m

my

)
, (4.7)

so
θ = log µ

1− µ, ψ(θ) = eθ

1 + eθ
, φ = 1/m, h(y, φ) =

(
m

my

)
. (4.8)

Note that Bin(m, 0) and Bin(m, 1) are not included in this class of EDMs, for the same reason as
above. Hence, µ ∈ (0, 1), and the support of any binomial EDM is {0, 1

m ,
2
m , . . . , 1}.

Poisson distribution. Suppose y ∼ Poi(µ). We have

f(y) = e−µ
µy

y! = exp(y logµ− µ) 1
y! . (4.9)

Therefore, we have θ = logµ, so that µ = eθ. It follows that

θ = logµ, ψ(θ) = eθ, φ = 1, h(y) = 1
y! . (4.10)

Hence, the Poisson distribution is an EDM, as well as a one-parameter exponential family. Note
that Poi(0)is not included in this class of EDMs, because there is no θ ∈ Θ = R that gives rise to
µ = 0. Hence, µ ∈ (0,∞), and the support of any Poisson EDM is N.

Many other examples fall into this class, including the negative binomial, gamma, and inverse-
Gaussian distributions. We will see at least some of these in the next chapter.
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4.1.3 Moments of exponential dispersion model distributions.

It turns out that the derivatives of the log-partition function ψ give the moments of y. Indeed, let’s
start with the relationship∫

fθ,φ(y)dν(y) =
∫

exp
(
θy − ψ(θ)

φ

)
h(y, φ)dν(y) = 1. (4.11)

Differentiating in θ and interchanging the derivative and the integral, we obtain

0 = d

dθ

∫
fθ,φ(y)dy =

∫
y − ψ̇(θ)

φ
fθ,φ(y)dy, (4.12)

from which it follows that

ψ̇(θ) =
∫
ψ̇(θ)fθ,φ(y)dy =

∫
yfθ,φ(y)dy = E[y] ≡ µ. (4.13)

Thus, the first derivative of the log partition function is the mean of y. Differentiating again, we get

φ ·ψ̈(θ) = φ

∫
ψ̈(θ)fθ,φ(y)dν(y) =

∫
(y−ψ̇(θ))2fθ,φ(y)dy =

∫
(y−µ)2fθ,φ(y)dν(y) = Var[y]. (4.14)

Thus, the second derivative of the log-partition function multiplied by the dispersion parameter is
the variance of y.

4.1.4 Relationships among the mean, variance, and natural parameter

Relationship between the mean and the natural parameter. The log-partition function ψ
induces a connection (4.13) between the natural parameter θ and the mean µ. Because

dµ

dθ
= d

dθ
ψ̇(θ) = ψ̈(θ) = 1

φ
Var[y] > 0, (4.15)

it follows that µ is a strictly increasing function of θ, so in particular the mapping between µ and θ
is bijective. Therefore, we can think of equivalently parameterizing the distribution via µ or θ.

Relationship between the mean and variance. Note that the mean of an EDM, together
with the dispersion parameter, determines its variance (since it determines the natural parameter
θ). Define

V (µ) ≡ dµ

dθ
, (4.16)

so that Var[y] = φV (µ). For example, a Poisson random variable with mean µ has variance µ and
a Bernoulli random variable with mean µ has V (µ) = µ(1− µ). The mean-variance relationship
turns out to characterize the EDM, i.e. an EDM with mean equal to its variance is the Poisson
distribution. For all EDMs except the normal distribution, the variance depends nontrivially on the
mean. Therefore, heteroskedasticity is a natural feature of EDMs (rather than a pathology that
needs to be corrected for).
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4.1.5 The unit deviance and the saddlepoint approximation

The unit deviance. It’s possible to rewrite the EDM distribution in terms of µ rather than in
terms of θ. Take the quantity in the numerator of the exponential in the EDM density (4.2) and
call it t(y, µ):

t(y, µ) ≡ θy − ψ(θ). (4.17)

Let’s consider the shape of this function by taking the first two derivatives with respect to θ:

∂

∂θ
t(y, µ) = y − µ (4.18)

and
∂2

∂θ2 t(y, µ) = −V (µ) < 0. (4.19)

Hence, t(y, µ) has a unique global maximum at µ = y. For instance, in the normal case, we have
t(y, µ) = −1

2(y − µ)2. We can then define the unit deviance d(y, µ) as twice the distance between
the value t(y, µ) and the optimal value t(y, y):

d(y, µ) ≡ 2(t(y, y)− t(y, µ)). (4.20)

The unit deviance is nonnegative, and minimized by µ = y. For the normal distribution, the unit
deviance is d(y, µ) = (y − µ)2. The unit deviance can therefore be viewed as a “distance” between
the mean µ and the observation y.

Example. For the Poisson distribution, we have t(y, µ) = y logµ− µ, so

d(y, µ) ≡ 2(t(y, y)− t(y, µ)) = 2(y log y − y − y logµ+ µ) = 2
(
y log y

µ
− (y − µ)

)
. (4.21)

See Figure 4.1 for an example of the shape of this function.

0

3

6

9

0 2 4 6 8 10
µ

d(
y,

 µ
)

Figure 4.1: The Poisson unit deviance for y = 4.
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The saddlepoint approximation. We have

fθ,φ(y) ≡ exp
(
θy − ψ(θ)

φ

)
h(y, φ)

= exp
(
t(y, µ)
φ

)
h(y, φ)

= exp
(−2(t(y, y)− t(y, µ)) + 2t(y, y)

2φ

)
h(y, φ)

= exp
(
−d(y, µ)

2φ

)
h̃(y, φ).

(4.22)

As it turns out, in certain cases we have the approximation

h̃(y, φ) ≈ 1√
2πφV (y)

, so that fθ,φ(y) ≈ 1√
2πφV (y)

exp
(
−d(y, µ)

2φ

)
. (4.23)

This is called the saddlepoint approximation. For example, if y ∼ Poi(µ), then the saddlepoint
approximation is fθ(y) ≈ 1√

2πy exp(−y log y
µ + (y − µ)). The significance of this approximation is

that it implies that
d(y, µ)
φ

·∼ χ2
1. (4.24)

This approximation (which follows from the saddle approximation but is not immediately obvious)
underlies small dispersion asymptotics, which will be useful for inferential purposes. As this name
suggests, the saddlepoint approximation is accurate in cases when the dispersion φ is small, e.g. for
binomial EDMs with large m. The saddlepoint approximation is also accurate for Poisson EDMs
with large µ. As a rule of thumb, the approximation is good when min(my,m(1 − y)) ≥ 3 for
binomial proportions y or when y ≥ 3 for Poisson-distributed y.

4.2 Generalized linear models and examples
In this class, the focus is on building models that tie a vector of predictors (xi∗) to a response yi.
For linear regression, the mean of y was modeled as a linear combination of the predictors xTi∗β:
µi = xTi∗β. More generally, we might want to model a function of the mean ηi = g(µi) as a linear
combination of the predictors; g is called the link function and ηi the linear predictor. Pairing a
link function with an EDM gives us a generalized linear model (GLM):

Definition. We define {(yi,xi∗)}ni=1 as following a generalized linear model based on the expo-
nential dispersion model fθ,φ, monotonic and differentiable link function g, and observation weights
wi if

yi
ind∼ EDM(µi, φ0/wi), ηi ≡ g(µi) = oi + xTi∗β. (4.25)

The offset terms oi and observation weights wi are both known in advance. The free parameters in
a GLM are the coefficients β and, possibly, the parameter φ0 controlling the dispersion. We will see
examples where φ0 is known (e.g. Poisson regression) and those where φ0 is unknown (e.g. linear
regression).

The “default” choice for the link function g is the canonical link function

g(µ) = ψ̇−1(µ), (4.26)
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which, given the relationship (4.13), gives η = ψ̇−1(µ) = θ, i.e. the linear predictor coincides with
the natural parameter. As discussed in the context of equation (4.15), ψ̇−1 is a valid link function
because it is monotonic and differentiable. Canonical link functions are very commonly used with
EDMs because they lead to various nice properties that general EDMs do not enjoy (e.g. concave
log-likelihood).

Example: Linear regression model. The linear regression models is a special case of a GLM,
with φ0 = σ2 (unknown), wi = 1, oi = 0, and identity (canonical) link function:

yi
ind∼ N(µi, σ2); ηi = µi = xTi∗β. (4.27)

Example: Weighted linear regression model. If each observation yi is the mean of mi

independent repeated observations, then we get a weighted linear regression model, with φ0 = σ2

(unknown), wi = mi, oi = 0, and identity (canonical) link function:

yi
ind∼ N(µi, σ

2

mi
); ηi = µi = xTi∗β. (4.28)

Example: Ungrouped logistic regression model. The (ungrouped) logistic regression model
is the GLM based on the Bernoulli EDM with φ0 = 1 (known), wi = 1, oi = 0, and the canonical
link function:

yi
ind∼ Ber(µi); ηi = θi = log µi

1− µi
= xTi∗β. (4.29)

Thus the canonical link function for logistic regression is the logistic link function g(µ) = log µ
1−µ .

Example: Grouped logistic regression model. Suppose yi is a binomial proportion based on
mi trials. The (grouped) logistic regression model is the GLM based on the binomial EDM with
φ0 = 1 (known), wi = 1/mi, oi = 0, and the canonical link function:

miyi ∼ Bin(mi, µi); ηi = log µi
1− µi

= oi + xTi∗β. (4.30)

Note that a binomial proportion yi based on on mi trials and a success probability of µi can be
equivalently represented as mi independent Bernoulli draws with the same success probability µi.
Therefore, any grouped logistic regression model can be equivalently represented as an ungrouped
logistic regression model with ∑n

i=1mi observations. We will see that, despite this equivalence,
grouped logistic regression models have some useful properties that ungrouped logistic regression
models do not.

Example: Poisson regression model. Poisson regression is the Poisson EDM with φ0 = 1
(known), wi = 1, oi = 0, and the canonical link function:

yi
ind∼ Poi(µi); ηi = θi = logµi = xTi∗β. (4.31)

Thus the canonical link function for Poisson regression is the log link function g(µ) = logµ.
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4.3 Parameter estimation in GLMs

4.3.1 The GLM likelihood, score, and Fisher information

The log-likelihood of a GLM is

logL(β) =
n∑
i=1

θiyi − ψ(θi)
φ0/wi

+
n∑
i=1

log h(yi, φ0/wi). (4.32)

Let’s differentiate this with respect to β, using the chain rule:

∂ logL(β)
∂β

= ∂ logL(β)
∂θ

∂θ

∂µ

∂µ

∂η

∂η

∂β

= (y − µ)Tdiag(φ0/wi)−1 · diag(ψ̈(θi))−1 · diag
(
∂µi
∂ηi

)
·X

= 1
φ0

(y − µ)Tdiag
(

wi
V (µi)(dηi/dµi)2

)
· diag

(
∂ηi
∂µi

)
·X

≡ 1
φ0

(y − µ)TWMX.

(4.33)

Here, W ≡ diag(Wi) is a diagonal matrix of working weights and M ≡ diag
(
∂ηi
∂µi

)
= diag(g′(µi)) is

a diagonal matrix of link derivatives. Transposing, we get the score vector

U(β) = 1
φ0
XTMW (y − µ). (4.34)

To get the Fisher information matrix, note first that

Var[y] = diag
(
φ0
V (µi)
wi

)
= φ0W

−1M−2 (4.35)

we can compute the covariance matrix of the score vector:

I(β) = Var[U(β)] = 1
φ2

0
XTMWVar[y]MWX

= 1
φ2

0
XTMWφ0W

−1M−2MWX

= 1
φ0
XTWX.

(4.36)

4.3.2 Maximum likelihood estimation of β

To estimate β, we can set the score vector to zero:

1
φ0
XTM̂Ŵ (y − µ̂) = 0 ⇐⇒ XTdiag

(
wi

V (µ̂i)g′(µ̂i)

)
(y − µ̂) = 0. (4.37)

These equations are called the normal equations. Unfortunately, unlike least squares, the normal
equations cannot be solved analytically for β̂. They are solved numerically instead; see Section 4.3.3.
Note that φ0 cancels from the normal equations, and therefore the coefficients β can be estimated
without estimating the dispersion. Recall that we have seen this phenomenon for least squares. Also
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note that the normal equations simplify when the canonical link function is used, so that ηi = θi.
Assuming additionally that wi = 1, we get

M̂Ŵ = diag

 ̂∂µi/∂θi
V (µ̂i)

 = ψ̈(θ̂i)
ψ̈(θ̂i)

= 1, (4.38)

so the normal equations reduce to
XT (y − µ̂) = 0. (4.39)

We recognize these as the normal equation for linear regression. Since both ungrouped logistic
regression and Poisson regression also use canonical links and have unit weights, the simplified
normal equations (4.39) apply to the latter regressions as well.

In the linear regression case, we interpreted the normal equations (4.39) as an orthogonality
statement: y − µ̂ ⊥ C(X). In the case of GLMs, the C(X) ≡ {µ = E[y] : β ∈ Rp} is no longer a
linear space. In fact, it is a nonlinear transformation of the column space of X (a p-dimensional
manifold in Rn):

C(X) ≡ {µ = E[y] : β ∈ Rp} = {g−1(Xβ) : β ∈ Rp}. (4.40)

Therefore, we cannot view the mapping y 7→ µ̂ as a linear projection. Nevertheless, it is possible to
interpret µ̂ as the “closest” point (in some sense) to y in C(X). To see this, recall the deviance
form of the EDM density (4.22). Taking a logarithm and summing over i = 1, . . . , n, we find the
following expression for the negative log likelihood:

− logL(β) = 1
2φ

n∑
i=1

d(yi, µi) =
∑n
i=1wid(yi, µi)

2φ0
≡ D(y,µ)

2φ0
≡ 1

2D
∗(y,µ). (4.41)

D(y,µ) is called the deviance or the total deviance, and it can be interpreted as a kind of distance
between the mean vector µ and the observation vector y. For example, in the linear model case,
D(y,µ) = ‖y −µ‖2. Therefore, maximizing the GLM log likelihood is equivalent to minimizing the
deviance:

β̂ = arg min
β

D(y,µ(β)), so that µ̂ = arg min
µ∈C(X)

D(y,µ). (4.42)

4.3.3 Iteratively reweighted least squares

Log-concavity of GLM likelihood. Before talking about maximizing the GLM log-likelihood,
we investigate the concavity of this function. We claim that, in the case when the canonical link is
used, logL(β) is a concave function of β, which implies that this function is “easy to optimize”, i.e.
has no local maxima.

Proposition 4.3.1. If g is the canonical link function, then the function logL(β) defined in (4.32)
is concave in β.

Proof. It suffices to show that ψ is a convex function, since then logL(β) would be the sum of a
linear function of β and the composition of a concave function with a linear function. To verify that
ψ is convex, it suffices to recall that ψ̈(θ) = 1

φVarθ[y] > 0.

Proposition (4.3.1) gives us confidence that an iterative algorithm will converge to the global
maximum of the likelihood. We present such an iterative algorithm next.
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Newton-Raphson. We can maximize the log-likelihood (4.32) via the Newton Raphson algorithm,
which involves the gradient and Hessian of the function we’d like to maximize. The gradient is
the score vector (4.34), while the Hessian is the Fisher information (4.36). The Newton-Raphson
iteration is therefore

β̂(t+1) = β̂(t) − (∇2
β logL(β̂(t)))−1∇β logL(β̂(t))

= β̂(t) + (XTŴ (t)X)−1XTŴ (t)M̂ (t)(y − µ̂(t)).
(4.43)

See Figure 4.2.

Figure 4.2: Newton-Raphson iteratively approximates the log likelihood via a quadratic
function and maximizing that function.

Iteratively reweighted least squares (IRLS). A nice interpretation of the Newton-Raphson
algorithm is as a sequence of weighted least squares fits, known as the iteratively reweighted least
squares (IRLS) algorithm. Suppose that we have a current estimate β̂(t), and suppose we are looking
for a vector β near β̂(t) that fits the model even better. We have

Eβ[y] = g−1(Xβ) ≈ g−1(Xβ̂(t)) + diag(∂µi/∂ηi)(Xβ −Xβ̂(t)) = µ̂(t) + (M̂ (t))−1(Xβ −Xβ̂(t))

and
Varβ[y] ≈ φ0(Ŵ (t))−1(M̂ (t))−2,

recalling equation (4.35). Thus, up to the first two moments, near β = β̂(t) the distribution of y is
approximately

y = µ̂(t) + (M̂ (t))−1(Xβ −Xβ̂(t)) + ε, ε ∼ N
(
0, φ0(Ŵ (t))−1(M̂ (t))−2

)
, (4.44)
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or, equivalently,

z(t) ≡ M̂ (t)(y − µ̂(t)) +Xβ̂(t) = Xβ + ε′, ε′ ∼ N(0, φ0(Ŵ (t))−1). (4.45)

The regression of the adjusted response variable z(t) on X leaves us with a weighted linear regression
(hence the name working weights for Wi), whose maximum likelihood estimate is

β̂(t+1) = (XTŴ (t)X)−1XTŴ (t)z(t), (4.46)

which we define as our next iterate. It’s easy to verify that the IRLS iteration (4.46) is equivalent
to the Newton-Raphson iteration (4.43).

Estimation of φ0 and GLM residuals. While sometimes the parameter φ0 is known (e.g. for
binomial or Poisson GLMs), in other cases φ0 must be estimated (e.g. for the normal linear model).
Recall from the linear model that we estimated σ2 = φ0 by taking the sum of the squares of the
residuals: σ̂2 = 1

n−p‖y − µ̂‖
2. However, it’s unclear in the GLM context exactly how to define a

residual. In fact, there are two common ways of doing so, called deviance residuals and Pearson
residuals. Deviance residuals are defined in terms of the unit deviance:

rDi ≡ sign(yi − µ̂i)
√
wid(yi, µ̂i). (4.47)

On the other hand, Pearson residuals are defined as variance-normalized residuals:

rPi ≡
yi − µ̂i√
V (µ̂i)/wi

. (4.48)

These residuals can be viewed as residuals from the (converged) weighted linear regression model (4.45).
In the normal case, these residuals coincide, but in the general case they do not. Based on these two
notions of GLM residuals, we can define two estimators of φ0. One, based on the deviance residuals,
is the mean deviance estimator of dispersion

φ̃D0 ≡
1

n− p
‖rD‖2 ≡ 1

n− p

n∑
i=1

wid(yi, µ̂i) ≡
1

n− p
D(y; µ̂); (4.49)

recall that the total deviance D(y; µ̂) is a generalization of the residual sum of squares. The other,
based on the Pearson residuals, is called the Pearson estimator of dispersion:

φ̃P0 ≡
1

n− p
X2 ≡ 1

n− p
‖rP ‖2 ≡ 1

n− p

n∑
i=1

wi
(yi − µ̂i)2

V (µi)
. (4.50)

X2 is known as the Pearson X2 statistic. The deviance estimator can be more accurate when the
EDM model is well-specified; the Pearson estimator can be more robust when only the first two
moments of the EDM model are correct.

4.4 Inference in GLMs
Inferential goals. There are two types of inferential goals: hypothesis testing and confidence
interval construction. Within hypothesis testing, we can test H0 : βj = 0 (importance of a single
coefficient), H0 : βS = 0 for some S ⊂ {0, . . . , p − 1} (importance of a group of coefficients), or
H0 : η = Xβ (goodness of fit). To elaborate on the latter, we would like to test

H0 : yi ind∼ EDM(g−1(oi + xTi∗β), φ0/wi), β ∈ Rp versus H1 : yi ind∼ EDM(µi, φ0/wi), µ ∈ Rn.

Within confidence intervals, we may want to construct intervals for the coefficients βj or for fitted
values ηi or µi.
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Inferential tools. Inference in GLMs is based on asymptotic likelihood theory. Hypothesis tests
(and, by inversion, confidence intervals) can be constructed in three asymptotically equivalent ways:
Wald tests, likelihood ratio tests (LRT), and score tests. Despite their asymptotic equivalence, in
finite samples some tests may be preferable to others (though for normal linear models, these tests
are equivalent in finite samples as well). See Figure 4.3.

Figure 4.3: A comparison of the three asymptotic methods for GLM inference.

4.4.1 Wald inference

Wald inference is based on the following asymptotic normality statement:

β̂
·∼ N(β, I−1(β)) = N(β, φ0(XTW (β)X)−1), (4.51)

recalling our derivation of the Fisher information from equation (4.36). This is a large-sample
approximation. Wald inference is easy to carry out, and for this reason is considered the default
type of inference. However, as we’ll see in Unit 5, it also tends to be the least accurate in small
samples. Furthermore, Wald tests are usually not applied for testing goodness of fit.

Wald test for βj = β0
j (known φ0). Based on the Wald approximation (4.51), under the null

hypothesis, we have

β̂j
·∼ N(β0

j , φ0[(XTW (β)X)−1]jj) ≈ N(β0
j , φ0[(XTW (β̂)X)−1]jj) ≡ N(0, SE(βj)2), (4.52)

where we have used a plug-in estimator of the variance. This leaves us with the Wald z-test

φ(X,y) ≡ 1

(∣∣∣∣∣ β̂j − β
0
j

SE(βj)

∣∣∣∣∣ > z1−α/2

)
. (4.53)

Wald test for βS = β0
S (known φ0). Extending the reasoning above, we have under the null

hypothesis that

β̂S
·∼ N(β0

S , φ0[(XTW (β)X)−1]S,S) ≈ N(β0
j , φ0[(XTW (β̂)X)−1]S,S), (4.54)
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and therefore
1
φ0

(β̂S − β0
S)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − β0

S) ·∼ χ2
|S|. (4.55)

Hence we have the Wald χ2 test

φ(X,y) ≡ 1

( 1
φ0

(β̂S − β0
S)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − β0

S) > χ2
|S|(1− α)

)
. (4.56)

Wald interval for βj (known φ0). Inverting the Wald test for βj , we get a Wald confidence
interval:

CI(β̂j) ≡ β̂j ± z1−α/2 · SE(βj), where SE(βj) ≡
√
φ0[(XTW (β̂)X)−1]jj . (4.57)

Wald intervals for ηi and µi (known φ0). Given the Wald approximation (4.51), we have

η̂i ≡ oi + xTi∗β̂
·∼ N(ηi, φ0 · xTi∗(XTW (β̂)X)−1xi∗) ≡ N(ηi,SE(ηi)2).

Hence, the Wald interval for ηi is

CI(ηi) ≡ oi + xTi∗β̂ ± z1−α/2 · SE(ηi), where SE(ηi) ≡
√
φ0xTi∗(XTW (β̂)X)−1xi∗. (4.58)

A confidence interval for µi ≡ Eβ[yi] = g−1(ηi) can be obtained by applying the strictly increasing
function g−1 to the endpoints of the confidence interval for ηi. Note that the resulting confidence
interval may be asymmetric. We can get a symmetric interval by applying the delta method, but
this interval would be less accurate because it involves the delta method approximation in addition
to the Wald approximation.

Wald inference when φ0 is unknown. When φ0 is unknown, we need to plug in an estimate
φ̃0 (e.g. the deviance-based or Pearson-based estimate). Now our standard errors are SE(βj) ≡√
φ̃0 · [(XTW (β̂)X)−1]jj , and our test statistic for H0 : βj = β0

j is

β̂j − β0
j√

φ̃0

√
[(XTW (β̂)X)−1]jj

. (4.59)

Unlike linear regression, it is not the case in general that β̂ and φ̃0 are independent. Nevertheless,
they are asymptotically independent. Therefore, the above statistic is approximately distributed as
tn−p. Hence the test for H0 : βj = β0

j is

φ(X,y) ≡ 1

(∣∣∣∣∣ β̂j − β
0
j

SE(βj)

∣∣∣∣∣ > tn−p(1− α/2)
)
. (4.60)

Likewise, we would replace z1−α by tn−p(1− α/2) for all tests and confidence intervals concerning
univariate quantities. For multivariate quantities, we will get approximate F distributions instead
of approximate χ2 distributions. For example,

1
|S|(β̂S − β

0
S)T

(
[(XTW (β̂)X)−1]S,S

)−1
(β̂S − β0

S)

φ̃0

·∼ F|S|,n−p.
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4.4.2 Likelihood ratio inference

Let `(y,µ) = −D(y,µ)
2φ0

+ C be the GLM log-likelihood. Let H0 : βS = β0
S be a null hypothesis

about some subset of variables S ⊂ {0, 1, . . . , p− 1}, and µ̂-S be the maximum likelihood estimate
under the null hypothesis. Likelihood ratio inference is based on the following asymptotic chi square
distribution:

2(`(y, µ̂)− `(y, µ̂-S)) = D(y, µ̂-S)−D(y, µ̂)
φ0

·∼ χ2
|S|. (4.61)

This approximation holds either in large samples (large sample asymptotics), or in small samples
but with small dispersion (small dispersion asymptotics). The latter has to do with the fact that
under small dispersion asymptotics,

d(yi, µi)
φ0/wi

·∼ χ2
1, (4.62)

so
D(y,µ)
φ0

=
n∑
i=1

d(yi, µi)
φ0/wi

·∼ χ2
n. (4.63)

Testing one or more coefficients (φ0 known). Suppose we wish to test the null hypothesis
H0 : βS = β0

S . Then, based on the approximation (4.61) we can define the likelihood ratio test

φ(X,y) ≡ 1

(
D(y, µ̂-S)−D(y, µ̂)

φ0
> χ2

|S|(1− α)
)
. (4.64)

Confidence interval for a single coefficient. We can obtain a confidence interval for βj by
inverting the likelihood ratio test. Let µ̂-j(β0

j ) be the fitted mean vector under the constraint
βj = β0

j . Then, inverting the likelihood ratio test gives us the confidence interval

CI(βj) ≡
{
βj : D(y, µ̂-j(βj))−D(y, µ̂)

φ0
≤ χ2

|S|(1− α)
}
. (4.65)

Likelihood ratio based confidence intervals tend to be more accurate than Wald intervals (especially
when the parameter is near the edge of the parameter space), but they require more computation
because µ̂-j(βj) must be computed on a large grid of βj values. If we wanted to create confidence
regions for groups of parameters, this would get computationally out of hand due to the curse of
dimensionality.

Goodness of fit testing (φ0 known). For φ0 known, we can also construct a goodness of fit
test: This includes comparing the GLM to a saturated model, to get a goodness of fit test via

D(y, µ̂)−D(y,y)
φ0

= D(y; µ̂)
φ0

·∼ χ2
n−p, (4.66)

assuming the saturated model can be estimated relatively well (small dispersion asymptotics).

Likelihood ratio inference for φ0 unknown. If φ0 is unknown, we can estimate it as discussed
above, and construct an F -statistic as follows:

F ≡ (D(y; µ̂-S)−D(y; µ̂))/|S|
φ̃0

. (4.67)
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In normal linear model theory, the null distribution of F is exactly F|S|,n−p. For GLMs, the null
distribution of F is approximately F|S|,n−p. We can use this F distribution to construction hypothesis
tests for groups of coefficients, or invert it to get a confidence interval for a single coefficient. We
cannot construct a goodness of fit test in the case that φ0 is unknown, because the residual degrees
of freedom would be used up to estimate φ0 rather than to carry out inference.

4.4.3 Score-based inference

Score-based inference can be used for the same set of inferential tasks as likelihood ratio inference,
but in practice it is primarily applied in the context of goodness of fit testing. Consider the model

yi
ind∼ EDM(µi, φ0/wi).

Now, consider the hypothesis testing problem

H0 : θ = ψ̇−1(g(o+Xβ)), β ∈ Rp versus H1 : θ ∈ Rn.

Score-based-inference is based on the approximation

U(θ) ·∼ N(0, I(θ)). (4.68)

Plugging in a consistent estimate of θ under the null hypothesis, θ̂ from fitting the GLM, we get

U(θ̂)T I(θ̂)−1U(θ̂) ·∼ χ2
n−p. (4.69)

Based on the model parameterized by θ, we compute that

U(θ) = 1
φ0

diag(wi)(y − µ) and I(θ) = 1
φ0

diag(wiV (µi)). (4.70)

Hence,

U(θ̂)T I(θ̂)−1U(θ̂) = 1
φ0

(y − µ̂)Tdiag(wi/V (µ̂i))(y − µ̂) = 1
φ0

n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)
≡ 1
φ0
X2, (4.71)

where X2 is the Pearson chi-square statistic, which he proposed in 1900. It was only pointed out
many decades later that this is a score test.

4.5 R demo

4.5.1 Crime data

Let’s revisit the crime data from Homework 2, this time fitting a logistic regression to it.

# read crime data
crime_data <- read_tsv("data/Statewide_crime.dat")

# read and transform population data
population_data <- read_csv("data/state-populations.csv")
population_data <- population_data %>%

filter(State != "Puerto Rico") %>%
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select(State, Pop) %>%
rename(state_name = State, state_pop = Pop)

# collate state abbreviations
state_abbreviations <- tibble(

state_name = state.name,
state_abbrev = state.abb

) %>%
add_row(state_name = "District of Columbia", state_abbrev = "DC")

# add CrimeRate to crime_data
crime_data <- crime_data %>%

mutate(STATE = ifelse(STATE == "IO", "IA", STATE)) %>%
rename(state_abbrev = STATE) %>%
filter(state_abbrev != "DC") %>% # remove outlier
left_join(state_abbreviations, by = "state_abbrev") %>%
left_join(population_data, by = "state_name") %>%
mutate(CrimeRate = Violent / state_pop) %>%
select(state_abbrev, CrimeRate, Metro, HighSchool, Poverty, state_pop)

crime_data

## # A tibble: 50 x 6
## state_abbrev CrimeRate Metro HighSchool Poverty state_pop
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AK 0.000819 65.6 90.2 8 724357
## 2 AL 0.0000871 55.4 82.4 13.7 4934193
## 3 AR 0.000150 52.5 79.2 12.1 3033946
## 4 AZ 0.0000682 88.2 84.4 11.9 7520103
## 5 CA 0.0000146 94.4 81.3 10.5 39613493
## 6 CO 0.0000585 84.5 88.3 7.3 5893634
## 7 CT 0.0000867 87.7 88.8 6.4 3552821
## 8 DE 0.000664 80.1 86.5 5.8 990334
## 9 FL 0.0000333 89.3 85.9 9.7 21944577
## 10 GA 0.0000419 71.6 85.2 10.8 10830007
## # ... with 40 more rows

We can fit a GLM using the glm command, specifying as additional arguments the observation
weights as well as the exponential dispersion model. In this case, the weights are the state populations
and the family is binomial:

glm_fit <- glm(CrimeRate ~ Metro + HighSchool + Poverty,
weights = state_pop,
family = "binomial",
data = crime_data

)

We can print the summary table as usual:
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summary(glm_fit)

##
## Call:
## glm(formula = CrimeRate ~ Metro + HighSchool + Poverty, family = "binomial",
## data = crime_data, weights = state_pop)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.043 -9.176 0.418 9.053 47.174
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.609e+01 3.520e-01 -45.72 <2e-16 ***
## Metro -2.586e-02 5.727e-04 -45.15 <2e-16 ***
## HighSchool 9.106e-02 3.450e-03 26.39 <2e-16 ***
## Poverty 6.077e-02 4.852e-03 12.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 15590 on 49 degrees of freedom
## Residual deviance: 11742 on 46 degrees of freedom
## AIC: 12136
##
## Number of Fisher Scoring iterations: 5

Amazingly, everything is very significant! This is because the weights for each observation (the
state populations) are very high, effectively making the sample size very high. But frankly this is a
bit suspicious. Glancing at the bottom of the regression summary, we see a residual deviance of
11742 on 46 degrees of freedom. This part of the summary refers to the deviance-based goodness of
fit test. Under the null hypothesis that the model fits well, we expect that the residual deviance has
a distribution of χ2

46, which has mean 46.
Let’s formally check the goodness of fit. We can extract the residual deviance and residual

degrees of freedom from the GLM fit:

glm_fit$deviance

## [1] 11742.28

glm_fit$df.residual

## [1] 46

We can then compute the chi-square p-value:

# compute based on residual deviance from fit object
pchisq(glm_fit$deviance,
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df = glm_fit$df.residual,
lower.tail = FALSE

)

## [1] 0

# compute residual deviance as sum of squares of residuals
pchisq(sum(resid(glm_fit, "deviance")^2),

df = glm_fit$df.residual,
lower.tail = FALSE

)

## [1] 0

Wow, we get a p-value of zero! Let’s try doing a score-based (i.e. Pearson) goodness of fit test:

pchisq(sum(resid(glm_fit, "pearson")^2),
df = glm_fit$df.residual,
lower.tail = FALSE

)

## [1] 0

Also zero. So we need to immediately stop using this model for inference about these data, since it
fits the data very poorly. We will discuss how to build a better model for the crime data in the next
unit. For now, we turn to analyzing a different data set.

4.5.2 Noisy miner data

Credit: Generalized Linear Models With Examples in R textbook.
Let’s consider the noisy miner dataset. Noisy miners are a small but aggressive native Australian

bird. We want to know how the number of these birds observed in a patch of land depends on
various factors of that patch of land.

library(GLMsData)
data("nminer")
nminer %>% as_tibble()

## # A tibble: 31 x 8
## Miners Eucs Area Grazed Shrubs Bulokes Timber Minerab
## <int> <int> <int> <int> <int> <int> <int> <int>
## 1 0 2 22 0 1 120 16 0
## 2 0 10 11 0 1 67 25 0
## 3 1 16 51 0 1 85 13 3
## 4 1 20 22 0 1 45 12 2
## 5 1 19 4 0 1 160 14 8
## 6 1 18 61 0 1 75 6 1
## 7 1 12 16 0 1 100 12 8
## 8 1 16 14 0 1 321 15 5
## 9 0 3 5 0 1 275 8 0
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## 10 1 12 6 1 0 227 10 4
## # ... with 21 more rows

Since the response is a count, we can model it as a Poisson random variable. Let’s fit that GLM:

glm_fit <- glm(Minerab ~ . - Miners, family = "poisson", data = nminer)
summary(glm_fit)

##
## Call:
## glm(formula = Minerab ~ . - Miners, family = "poisson", data = nminer)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2826 -1.1220 -0.8011 0.4159 3.3511
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.886345 0.875737 -1.012 0.311
## Eucs 0.129309 0.021757 5.943 2.79e-09 ***
## Area -0.028736 0.013241 -2.170 0.030 *
## Grazed 0.140831 0.364622 0.386 0.699
## Shrubs 0.335828 0.375059 0.895 0.371
## Bulokes 0.001469 0.001773 0.828 0.408
## Timber -0.006781 0.009074 -0.747 0.455
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 150.545 on 30 degrees of freedom
## Residual deviance: 54.254 on 24 degrees of freedom
## AIC: 122.41
##
## Number of Fisher Scoring iterations: 6

We exclude Miners because this is just a binarized version of the response variable. Things look a
bit better on the GOF front:

pchisq(sum(resid(glm_fit, "deviance")^2),
df = glm_fit$df.residual,
lower.tail = FALSE

)

## [1] 0.000394186

pchisq(sum(resid(glm_fit, "pearson")^2),
df = glm_fit$df.residual,
lower.tail = FALSE
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)

## [1] 0.0001185197

Still there is some model misspecification, but for now we still proceed with the rest of the
analysis.

The standard errors shown in the summary are based on the Wald test. We can get Wald
confidence intervals based on these standard errors by using the formula:

glm_fit %>%
summary() %>%
coef() %>%
as.data.frame() %>%
transmute(`2.5 %` = Estimate + qnorm(0.025)*`Std. Error`,

`97.5 %` = Estimate + qnorm(0.025)*`Std. Error`)

## 2.5 % 97.5 %
## (Intercept) -2.602757559 -2.602757559
## Eucs 0.086666177 0.086666177
## Area -0.054686818 -0.054686818
## Grazed -0.573814583 -0.573814583
## Shrubs -0.399274191 -0.399274191
## Bulokes -0.002007061 -0.002007061
## Timber -0.024565751 -0.024565751

Or, we can simply use confint.default():

confint.default(glm_fit)

## 2.5 % 97.5 %
## (Intercept) -2.602757559 0.830066560
## Eucs 0.086666177 0.171951888
## Area -0.054686818 -0.002784651
## Grazed -0.573814583 0.855476296
## Shrubs -0.399274191 1.070929206
## Bulokes -0.002007061 0.004944760
## Timber -0.024565751 0.011002885

Or, we might want LRT-based confidence intervals, which are given by confint():

confint(glm_fit)

## Waiting for profiling to be done...

## 2.5 % 97.5 %
## (Intercept) -2.63176754 0.812111327
## Eucs 0.08782624 0.173336323
## Area -0.05658079 -0.004456166
## Grazed -0.57858596 0.855903871
## Shrubs -0.38600748 1.090319407
## Bulokes -0.00214123 0.004838901
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## Timber -0.02483241 0.010820749

In this case, the two sets of confidence intervals seem fairly similar.
Now, we can get prediction intervals, either on the linear predictor scale or on the mean scale:

pred_linear <- predict(glm_fit, newdata = nminer[31,], se.fit = TRUE)
pred_mean <- predict(glm_fit, newdata = nminer[31,], type = "response", se.fit = TRUE)

pred_linear

## $fit
## 31
## 0.6556799
##
## $se.fit
## [1] 0.2635664
##
## $residual.scale
## [1] 1

pred_mean

## $fit
## 31
## 1.926452
##
## $se.fit
## 31
## 0.5077481
##
## $residual.scale
## [1] 1

log(pred_mean$fit)

## 31
## 0.6556799

We see that the prediction on the linear predictor scale is exactly the logarithm of the prediction
on the mean scale. However, the standard error given on the mean scale uses the delta method.
We prefer to directly transform the confidence interval from the linear scale using the inverse link
function (in this case, the exponential):

# using delta method
c(pred_mean$fit + qnorm(0.025)*pred_mean$se.fit,

pred_mean$fit + qnorm(0.975)*pred_mean$se.fit)

## 31 31
## 0.9312839 2.9216197

# using transformation
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exp(c(pred_linear$fit + qnorm(0.025)*pred_linear$se.fit,
pred_linear$fit + qnorm(0.975)*pred_linear$se.fit))

## 31 31
## 1.149238 3.229285

In this case the intervals obtained are somewhat different. We can plot confidence intervals for
the fit in a univariate case (e.g. regressing Minerab on Eucs) using geom_smooth():

nminer %>%
ggplot(aes(x = Eucs, y = Minerab)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "glm",

method.args = list(family = "poisson"))

## ‘geom_smooth()‘ using formula = ’y ~ x’
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We can also test the coefficients in the model. The Wald tests for individual coefficients were
already given by the regression summary above. We might want to carry out likelihood ratio tests
for individual coefficients instead. For example, let’s do this for Eucs

glm_fit_partial <- glm(Minerab ~ . - Miners - Eucs, family = "poisson", data = nminer)
anova(glm_fit_partial, glm_fit, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: Minerab ~ (Miners + Eucs + Area + Grazed + Shrubs + Bulokes +
## Timber) - Miners - Eucs
## Model 2: Minerab ~ (Miners + Eucs + Area + Grazed + Shrubs + Bulokes +
## Timber) - Miners
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 25 95.513
## 2 24 54.254 1 41.259 1.333e-10 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Eucs variable is quite significant! We can manually carry out the LRT as a sanity check:

deviance_partial <- glm_fit_partial$deviance
deviance_full <- glm_fit$deviance
lrt_stat <- deviance_partial - deviance_full
p_value <- pchisq(lrt_stat, df = 1, lower.tail = FALSE)
tibble(lrt_stat, p_value)

## # A tibble: 1 x 2
## lrt_stat p_value
## <dbl> <dbl>
## 1 41.3 1.33e-10

We can test groups of variables using the likelihood ratio test as well.



Chapter 5

Generalized linear models: Special
cases

Chapter 4 developed a general theory for GLMs. In Chapter 5, we specialize this theory to several
important cases, including logistic regression and Poisson regression.

5.1 Logistic regression

5.1.1 Model definition and interpretation

Model definition. Recall from Chapter 4 that the logistic regression model is

miyi
ind∼ Bin(mi, πi); logit(πi) = log πi

1− πi
= xTi∗β. (5.1)

Here we use the canonical logit link function, although other link functions are possible. We also
set the offsets to 0. The interpretation of the parameter βj is that a unit increase in xj—other
predictors held constant—is associated with an (additive) increase of βj on the log-odds scale or
a multiplicative increase of eβj on the odds scale. Note that logistic regression data come in two
formats: ungrouped and grouped. For ungrouped data, we have m1 = · · · = mn = 1, so yi ∈ {0, 1}
are Bernoulli random variables. For grouped data, we can have several independent Bernoulli
observations per predictor xi∗, which give rise to binomial proportions yi ∈ [0, 1]. This happens most
often when all the predictors are discrete. You can always convert grouped data into ungrouped data,
but not necessarily vice versa. We’ll discuss below that the grouped and ungrouped formulations of
logistic regression have the same MLE and standard errors but different deviances.

Generative model equivalent. Consider the following generative model for (x, y) ∈ Rp−1 ×
{0, 1}:

y ∼ Ber(π); x|y ∼
{
N(µ0,V ) if y = 0
N(µ1,V ) if y = 1

. (5.2)

100
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Then, we can derive that y|x follows a logistic regression model (called a discriminative model
because it conditions on x). Indeed,

logit(p(y = 1|x)) = log p(y = 1)p(x|y = 1)
p(y = 0)p(x|y = 0)

= log
π exp

(
−1

2(x− µ1)TV −1(x− µ1)
)

(1− π) exp
(
−1

2(x− µ0)TV −1(x− µ0)
)

= β0 + xTV −1(µ1 − µ0)
≡ β0 + xTβ-0.

(5.3)

This is another natural route to motivating the logistic regression model.

Special case: 2 × 2 contingency table. Suppose that x ∈ {0, 1}, and consider the logistic
regression model logit(πi) = β0 + β1xi. For example, suppose that x ∈ {0, 1} encodes treatment (1)
and control (0) in a clinical trial, and yi ∈ {0, 1} encodes success (1) and failure (0). We make n
observations of (xi, yi) in this ungrouped setup. The parameter eβ1 can be interpreted as the odds
ratio:

eβ1 = P[y = 1|x = 1]/P[y = 0|x = 1]
P[y = 1|x = 0]/P[y = 0|x = 0] . (5.4)

This parameter is the multiple by which the odds of success increase when going from control to
treatment. We can summarize such data via the 2× 2 contingency table (Table 5.1). A grouped
version of this data would be {(x1, y1) = (0, 7/24), (x2, y2) = (1, 9/21)}. The null hypothesis
H0 : β1 = 0 ⇐⇒ H0 : eβ1 = 1 states that the success probability in both rows of the table is the
same.

Success Failure Total
Treatment 9 12 21
Control 7 17 24
Total 16 29 45

Table 5.1: An example of a 2× 2 contingency table.

Logistic regression with case-control studies. In a prospective study (e.g. a clinical trial),
we assign treatment or control (i.e., x) to individuals, and then observe a binary outcome (i.e., y).
Sometimes, the outcome y takes a long time to measure or has highly imbalanced distribution in
the population (e.g. the development of lung cancer). In this case, an appealing study design is the
retrospective study, where individuals are sampled based on their response values (e.g. presence of
lung cancer) rather than their treatment/exposure status (e.g. smoking). It turns out that a logistic
regression model is appropriate for such retrospective study designs as well. Indeed, suppose that y|x
follows a logistic regression model. Let’s try to figure out the distribution of y|x in the retrospectively
gathered sample. Letting z ∈ {0, 1} denote the indicator that an observation is sampled, define
ρ1 ≡ P[z = 1|y = 1] and ρ0 ≡ P[z = 1|y = 0], and assume that P[z = 1, y,x] = P[z = 1|y]. The
latter assumption states that the predictors x were not used in the retrospective sampling process.
Then,

logit(P[y = 1|z = 1,x]) = log ρ1P[y = 1|x]
ρ0P[y = 0|x] = log ρ1

ρ0
+ logit(P[y = 1|x]) =

(
log ρ1

ρ0
+ β0

)
+ xTβ-0.
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Thus, conditioning on retrospective sampling changes only the intercept term, but preserves the
coefficients of x. Therefore, we can carry out inference for β-0 in the same way regardless of whether
the study design is prospective or retrospective.

5.1.2 Estimation and inference

Score and Fisher information. Recall from Chapter 4 that

U(β) = 1
φ0
XTMW (y − µ) and I(β) = 1

φ0
XTWX, (5.5)

where

W ≡ diag
(

wi
V (µi)(dηi/dµi)2

)
and M ≡ diag

(
∂ηi
∂µi

)
. (5.6)

Since logistic regression uses a canonical link function, we get the following simplifications:

W ≡ diag (wiV (µi)) and M ≡ diag
( 1
V (µi)

)
. (5.7)

We substitute the notation π for µ, and recall that for logistic regression, φ0 = 1, wi = mi and
V (πi) = πi(1− πi). Therefore, the score equations for logistic regression are

0 = XTdiag (mi) (y − µ̂) ⇐⇒
n∑
i=1

mixij(yi − π̂i) = 0, j = 0, . . . , p− 1. (5.8)

We can solve these equations using IRLS. The Fisher information is

I(β) = XTdiag (miπi(1− πi))X. (5.9)

Wald inference. Using the results in the previous paragraph, we can carry out Wald inference
based on the normal approximation

β̂
·∼ N

(
β,
(
XTdiag(miπ̂i(1− π̂i))X

)−1
)
. (5.10)

This approximation holds for ∑n
i=1mi → ∞. Unfortunately, Wald inference in finite samples

does not always perform very well. The Wald test above is known to be conservative due to the
Hauck-Donner effect. As an example, consider testing H0 : β0 = 0.5 in the intercept-only model

my ∼ Bin(m,π); logit(π) = β0. (5.11)

The Wald test statistic is z ≡ β̂/SE = logit(y)
√
my(1− y). This test statistic actually tends to

decrease as y → 1 (Figure 5.1), since the standard error grows faster than the estimate itself. So the
test statistic becomes less significant as we go further away from the null!

Perfect separability. If we have a situation where a hyperplane in covariate space separates
observations with yi = 0 from those with yi = 1, we have perfect separability. It turns out that some
of the maximum likelihood estimates are infinite in this case. The Wald test completely fails in this
case, since it uses the parameter estimates as test statistics.



Page 103

0

1

2

3

0.5 0.6 0.7 0.8 0.9 1.0
Binomial proportion

W
al

d 
st

at
is

tic

Figure 5.1: The Hauck-Donner effect: The Wald statistic for testing H0 : π = 0.5 within
the model my ∼ Bin(m,π) decreases as the proportion y approaches 1. Here, m = 25.

Likelihood ratio inference. Let’s first compute the deviance of a logistic regression model. The
unit deviance is

t(y, π) = y log π + (1− y) log(1− π). (5.12)

Hence, we have
t(y, y) = y log y + (1− y) log(1− y). (5.13)

In particular, for y ∈ {0, 1}, by taking the limit we find that t(0, 0) = t(1, 1) = 0. Hence, the unit
deviance is

d(y, µ) ≡ 2(t(y, y)− t(y, π)) = 2
(
y log y

π
+ (1− y) log 1− y

1− π

)
. (5.14)

The total deviance, therefore, is

D(y,π) ≡
n∑
i=1

wid(yi, π̂i) = 2
n∑
i=1

(
miyi log yi

π̂i
+mi(1− yi) log 1− yi

1− π̂i

)
. (5.15)

Letting π̂0 and π̂1 be the MLEs from two nested models, we can then express the likelihood
ratio statistic as

D(y, π̂0)−D(y, π̂1) = 2
n∑
i=1

(
miyi log π̂i1

π̂i0
+mi(1− yi) log 1− π̂i1

1− π̂i0

)
. (5.16)

We can then construct a likelihood ratio test in the usual way. Likelihood ratio inference can give
nontrivial conclusions in cases when Wald inference cannot, e.g. in the case of perfect separability.
Indeed, suppose that

miyi ∼ Bin(mi, πi), logit(πi) = β0 + β1xi, i = 1, 2. (5.17)

We would like to test H0 : β1 = 0. Suppose that we observe (x1, y1) = (0, 0), (x2, y2) = (1, 1), giving
us complete separability. Can we still get a meaningful test of H0? We can write out the likelihood
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ratio test statistic, which is

D(y; π̂) = 2
(
m1 log 1

1− m2
m1+m2

+m2 log 1
m2

m1+m2

)
= 2

(
m1 log m1 +m2

m1
+m2 log m1 +m2

m2

)
.

This is a number that we can compare to the χ2
1 distribution to get a p-value, as usual.

Goodness of fit tests. We can test goodness of fit in the grouped logistic regression model
by comparing the deviance statistic (5.15) to the asymptotic null distribution χ2

n−p. We can
alternatively use the score test, which gives us Pearson’s X2 statistic:

X2 =
n∑
i=1

wi(yi − µ̂i)2

V (µ̂i)
=

n∑
i=1

mi(yi − π̂i)2

π̂i(1− π̂i)
. (5.18)

Fisher’s exact test. As an alternative to asymptotic tests for logistic regression, in the case of
2× 2 tables there is an exact test of H0 : β1 = 0. Suppose we have

s1 = m1y1 ∼ Bin(m1, π1) and s2 = m2y2 ∼ Bin(m2, π2). (5.19)

The trick is to conduct inference conditional on s1 + s2. Note that under H0 : π1 = π2, we have

P[s1 = t|s1 + s2 = v] = P[s1 = t|s1 + s2 = v]

= P[s1 = t, s2 = v − t]
P[s1 + s2 = v]

=
(m1
t

)
πt(1− π)m1−t

(m2
v−t
)
πv−t(1− π)m2−(v−t)(m1+m2

v

)
πv(1− π)m1+m2−v

=
(m1
t

)(m2
v−t
)(m1+m2

v

) .
(5.20)

Therefore, a finite-sample p-value to test H0 : π1 = π2 versus H1 : π1 > π2 is P[s1 ≥ t|s1 + s2], which
can be computed exactly based on the formula above.

5.2 Poisson regression
The Poisson regression model (with offsets) is

yi
ind∼ Poi(µi); logµi = oi + xTi∗β. (5.21)

Because the log of the mean is linear in the predictors, Poisson regression models are often called
loglinear models. We have seen in Chapter 4 how to carry out inference for this model based on the
Wald, likelihood ratio, and score tests. Recall, for example, that the deviance of this model is

D(y; µ̂) =
n∑
i=1

yi log yi
µ̂i
. (5.22)
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5.2.1 Modeling rates

One cool feature of the Poisson model is that rates can be easily modeled with the help of offsets.
Let’s say that the count yi is collected over the course of a time interval of length ti, or a spatial
region with area ti, or a population of size ti, etc. Then, it is meaningful to model

yi
ind∼ Poi(πiti), log πi = xTi∗β, (5.23)

where πi represents the rate of events per day / per square mile / per capita, etc. In other words,

yi
ind∼ Poi(µi), logµi = log ti + xTi∗β, (5.24)

which is exactly equation (5.21) with offsets oi = log ti. For example, in single cell RNA-sequencing,
yi is the number of reads aligning to a gene in cell i and ti is the total number of reads measured in
the cell, a quantity called the sequencing depth. We might use a Poisson regression model to carry
out a differential expression analysis between two cell types.

5.2.2 Relationship between Poisson and multinomial distributions

Suppose that yi ind∼ Poi(µi) for i = 1, . . . , n. Then,

P
[
y1 = m1, . . . , yn = mn

∣∣∣∣∣∑
i

yi = m

]
= P[y1 = m1, . . . , yn = mn]

P[∑i yi = m]

=
∏n
i=1 e

−µi
µ

yi
i
yi!

e−
∑

i
µi

(
∑

i
µi)m

m!

=
(

m

m1, . . . ,mn

)
n∏
i=1

πyi
i ; πi ≡

µi∑n
i′=1 µi′

.

(5.25)

We recognize the last expression as the probability mass function of the multinomial distribution
with parameters (π1, . . . , πn) summing to one. In words, the joint distribution of a set of independent
Poisson distributions conditional on their sum is a multinomial distribution.

5.2.3 Poisson model for 2× 2 contingency tables

Let’s say that we have two binary random variables x1, x2 ∈ {0, 1} with joint distribution P(x1 =
j, x2 = k) = πjk for j, k ∈ {0, 1}. We collect a total of n samples from this joint distribution and
summarize the counts in a 2×2 table, where yjk is the number of times we observed (x1, x2) = (j, k),
so that

(y00, y01, y10, y11)|n ∼ Mult(n, (π00, π01, π10, π11)). (5.26)
Our primary question is whether these two random variables are independent, i.e.

πjk = πj+π+k, where πj+ ≡ P[x1 = j] = πj1 + πj2; π+k ≡ P[x2 = k] = π1k + π2k. (5.27)

We can express this equivalently as

π00(π00+π01+π10+π11) = π00 = π0+π+0 = (π00+π01)(π00+π10) ⇐⇒ π00π11 = π01π10. (5.28)

In other words, we can express the independence hypothesis concisely as

H0 : π11π00
π10π01

= 1. (5.29)
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Let’s arbitrarily assume that, additionally, n ∼ Poi(µ++). Then,

(y00, y01, y10, y11) ∼ Poi(µ++π00)× Poi(µ++π01)× Poi(µ++π10)× Poi(µ++π11). (5.30)

Let i ∈ 1, 2, 3, 4 index the four pairs (x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, so that

yi
ind∼ Poi(µi); logµi = β0 + β1xi1 + β2xi2 + β12xi1xi2, i = 1, . . . , 4, (5.31)

where
β0 = logµ++ + log π00; β1 = log π10

π00
; β2 = log π01

π00
; β12 = log π11π00

π10π01
. (5.32)

Note that the independence hypothesis (5.29) reduces to the hypothesis H0 : β12 = 0:

H0 : π11π00
π10π01

= 1 ⇐⇒ H0 : β12 = 0. (5.33)

So the presence of an interaction in the Poisson regression is equivalent to a lack of independence
between x1 and x2. We can test the latter hypothesis using our standard tools for Poisson regression.
For example, we can use the Pearson X2 goodness of fit test. To apply this test, we must find the
fitted means under the null hypothesis. The normal equations state that the observed cell counts
equal those that would have been expected under the null hypothesis. Using the formulation (5.27),
we obtain

yjk = E[yjk] = µ̂++π̂j+π̂+k, (5.34)
so that

µ̂ = y++; µ̂++π̂j+ = yj+; µ̂++π̂+k = y+k, (5.35)
from which it follows that

µ̂jk = µ̂++π̂j+π̂+k = y++
yj+
y++

y+k
y++

= yj+y+k
y++

. (5.36)

Hence, we have

X2 =
1∑

j,k=0

(yjk − µ̂jk)2

µ̂jk
. (5.37)

Alternatively, we can use the likelihood ratio test, which gives

G2 =
1∑

j,k=0
yjk log yjk

µ̂jk
. (5.38)

5.2.4 Inference is the same regardless of conditioning on margins

Now, our data might actually have been collected such that n ∼ Poi(µ), or maybe n was fixed in
advance. Is the Poisson inference proposed above actually valid in the latter case? In fact, it is! To
see this, we claim that the likelihood ratio statistic is the same for the Poisson and multinomial
models. Indeed, let’s write the Poisson likelihood as follows:

pµ(y) = pµ++(y++ = n)pπ(y|y++ = n). (5.39)

Note that the fitted parameter µ̂++ is the same under the null and alternative hypotheses: µ̂0
++ =

µ̂1
++, so we have

pµ̂1(y)
pµ̂0(y) =

pµ̂1
++

(y++ = n)pπ̂1(y|y++ = n)
pµ̂0

++
(y++ = n)pπ̂0(y|y++ = n) = pπ̂1(y|y++ = n)

pπ̂0(y|y++ = n) . (5.40)
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The latter expression is the likelihood ratio statistic for the multinomial model. The same argument
shows that conditioning on the row or column totals (as opposed to the overall total) also yields the
same exact inference. Therefore, regardless of the sampling mechanism, we can always conduct an
independence test in a 2× 2 table via a Poisson regression.

5.2.5 Equivalence among Poisson and logistic regressions

We’ve talked above two ways to view a 2× 2 contingency table. In the logistic regression view, we
thought about one variable as a predictor and the other as a response, seeking to test whether the
predictor has an impact on the response. In the Poisson regression view, we thought about the two
variables symmetrically, seeking to test independence. It turns out that these two perspectives are
equivalent. Note that under the Poisson model, we have

logit P[x2 = 1|x1 = 0] = log π01
π00

= β2 (5.41)

and
logit P[x2 = 1|x1 = 1] = log π11

π10
= log π01

π00
+ log π11π00

π10π01
= β2 + β12. (5.42)

In other words,
logit P[x2 = 1|x1] = β2 + β12x1. (5.43)

Therefore, the β12 parameter for the Poisson regression (5.31) is the same as it is for the logistic
regression (5.43).

5.2.6 Poisson models for J ×K contingency tables

Suppose now that x1 ∈ {1, . . . , J} and x2 ∈ {1, . . . ,K}. Then, we denote P[x1 = j, x2 = k] = πjk.
We still are interested in testing for independence between j and k, which amounts to a goodness-of-fit
test for the Poisson model

yjk
ind∼ Poi(µjk); logµjk = β0 + β1

j + β2
k. (5.44)

The Pearson statistic for this test is
J∑
j=1

K∑
k=1

(yij − µ̂ij)2

µ̂ij
; µ̂ij = ŷ++

yi+
y++

y+j
y++

. (5.45)

Like with the 2× 2 case, the test is the same regardless if we condition on the row sums, column
sums, total count, or if we do not condition at all. The degrees of freedom in the full model is JK,
while the degrees of freedom in the partial model is J +K − 1, so the degrees of freedom for the
goodness-of-fit test is JK − J −K + 1 = (J − 1)(K − 1). Pearson erroneously concluded that the
test had JK − 1 degrees of freedom, which when Fisher corrected created a lot of animosity between
these two statisticians.

5.2.7 Poisson models for J ×K × L contingency tables

These ideas can be extended to multi-way tables, for example three-way tables. If we have
x1 ∈ {1, . . . , J}, x2 ∈ {1, . . . ,K}, x3 ∈ {1, . . . , L}, then we might be interested in testing several
kinds of null hypotheses:

• Mutual independence: H0 : x1 ⊥⊥ x2 ⊥⊥ x3.
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• Joint independence: H0 : x1 ⊥⊥ (x2, x3).
• Conditional independence: H0 : x1 ⊥⊥ x2 | x3.

These three null hypotheses can be shown to be equivalent to the Poisson regression model

yjkl
ind∼ Poi(µjkl), (5.46)

where
logµijk = β0 + β1

j + β2
k + β3

l (mutual independence); (5.47)

logµijk = β0 + β1
j + β2

k + β3
l + β2,3

kl (joint independence); (5.48)

logµijk = β0 + β1
j + β2

k + β3
l + β1,2

jk + β1,3
jl (mutual independence). (5.49)

5.3 Negative binomial regression
Overdispersion. A pervasive issue with Poisson regression is overdispersion: that the variances
of observations are greater than the corresponding means. A common cause of overdispersion is
omitted variable bias. Suppose that y ∼ Poi(µ), where logµ = β0 + β1x1 + β2x2. However, we
omitted variable x2 and are considering the GLM based on logµ = β0 + β1x1. If β2 6= 0 and x2 is
correlated with x1, then we have a confounding issue. Let’s consider the more benign situation that
x2 is independent of x1. Then, we have

E[y|x1] = E[E[y|x1, x2]|x1] = E[eβ0+β1x1+β2x2 |x1] = eβ0+β1x1E[eβ2x2 ] = eβ
′
0+β1x1 . (5.50)

So in the model for the mean of y, the impact of omitted variable x2 seems only to have impacted
the intercept. Let’s consider the variance of y:

Var[y|x1] = E[Var[y|x1, x2]|x1]+Var[E[y|x1, x2]|x1] = eβ
′
0+β1x1+e2(β′0+β1x1)Var[eβ2x2 ] > eβ

′
0+β1x1 = E[y|x1].

(5.51)
So indeed, the variance is larger than what we would have expected under the Poisson model.

Hierarchical Poisson regression. Let’s say that y|x ∼ Poi(λ), where λ|x is random due to the
fluctuations of the omitted variables. A common distribution used to model nonnegative random
variables is the gamma distribution Γ(µ, k), parameterized by a mean µ > 0 and a shape k > 0.
This distribution has probability density function

f(λ; k, µ) = (k/µ)k
Γ(k) e−kλ/µλk−1, (5.52)

with mean and variance given by

E[λ] = µ; Var[λ] = µ2/k. (5.53)

Therefore, it makes sense to augment the Poisson regression model as follows:

λ|x ∼ Γ(µ, k), logµ = xTβ, y|λ ∼ Poi(λ). (5.54)
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Negative binomial distribution. A simpler way to write the hierarchical model (5.54) would
be to marginalize out λ. Doing so leaves us with a count distribution called the negative binomial
distribution:

λ ∼ Γ(µ, k), y|λ ∼ Poi(λ) =⇒ y ∼ NegBin(µ, k). (5.55)

The negative binomial probability mass function is

p(y;µ, k) =
∫ ∞

0

(k/µ)k
Γ(k) e−kλ/µλk−1e−λ

λy

y! dλ = Γ(y + k)
Γ(k)Γ(y + 1)

(
µ

µ+ k

)y ( k

µ+ k

)k
. (5.56)

This random variable has mean and variance given by

E[y] = E[λ] = µ and Var[y] = E[λ] + Var[λ] = µ+ µ2

k
. (5.57)

Negative binomial as exponential dispersion model. If we treat k as known, then the
negative binomial distribution is in the exponential family:

p(y;µ, k) = exp
(
y log µ

µ+ k
− k log µ+ k

k

) Γ(y + k)
Γ(k)Γ(y + 1) . (5.58)

We can read off that

θ = log µ

µ+ k
, ψ(θ) = k log µ+ k

k
= −k log(1− eθ). (5.59)

This is a regular exponential family model, and not an exponential dispersion model. Given the
extra parameter k controlling the variance, we may have been expecting to see an EDM. We can
arrive at the EDM form by putting 1/k in the denominator:

p(y;µ, k) = exp

 y
k log µ

µ+k − log µ+k
k

1/k

 Γ(y + k)
Γ(k)Γ(y + 1) . (5.60)

Note that the “normalized” variable y/k has the EDM distribution rather than the count variable y;
this parallels our modeling of the binomial proportion (rather than the binomial count) as an EDM.
We then see that y/k has the dispersion parameter φ = 1/k. An alternate parameterization of the
negative binomial model is via γ = φ = 1/k. Here, γ is called the negative binomial dispersion.

Negative binomial regression. Let’s revisit the hierarchical model (5.54), writing it more
succinctly in terms of the negative binomial distribution:

yi
ind∼ NegBin(µi, γ), logµi = xTβ. (5.61)

Notice that we typically assume that all observations share the same dispersion parameter γ.
Reading off from equation (5.59), we see that the canonical link function for the negative binomial
distribution is µ 7→ log µ

µ+k . However, typically for negative binomial regression we use the log link
g(µ) = logµ instead. This is our first example of a non-canonical link!
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Score and Fisher information. Recall from Chapter 4 that

U(β) = 1
φ0
XTMW (y − µ) and I(β) = 1

φ0
XTWX, (5.62)

where

W ≡ diag
(

wi
V (µi)(dηi/dµi)2

)
and M ≡ diag

(
∂ηi
∂µi

)
. (5.63)

In our case, we have
wi = 1; V (µi) = µi + γµ2

i ;
∂ηi
∂µi

= 1
µi
. (5.64)

Putting this together, we find that

W = diag
(

µi
1 + γµi

)
; M = diag

( 1
1 + γµi

)
. (5.65)

Estimation in negative binomial regression. Negative binomial regression is an EDM when
γ is known, but typically the dispersion parameter is unknown. Note that there is a dependency
in ψ on k (i.e. on γ), which complicates things. It means that the estimate β̂ depends on the
parameter γ (this does not happen, for example, in the normal linear model case).1 Therefore,
estimation in negative binomial regression is typically an iterative procedure, where at each step β
is estimated for the current value of γ and then γ is estimated based on the updated value of β.
Let’s discuss each of these tasks in turn. Given a value of γ̂, we have the normal equations

XTdiag
( 1

1 + γ̂µ̂i

)
(y − µ̂) = 0. (5.66)

This reduces to the Poisson normal equations when γ̂ = 0. Solving these equations for a fixed value
of γ̂ can be done via IRLS, as usual. Estimating γ for a fixed value of β̂ can be done in several
ways, including setting to zero the derivative of the likelihood with respect to γ. This results in a
nonlinear equation (not given here) that can be solved iteratively.

Wald inference. Wald inference is based on

V̂ar[β̂] = (XTŴX)−1, where Ŵ = diag
(

µ̂i
1 + γ̂µ̂i

)
. (5.67)

Likelihood ratio test inference. The negative binomial deviance is

D(y; µ̂) = 2
n∑
i=1

(
yi log yi

µ̂i
−
(
yi + 1

γ̂

)
log 1 + γ̂yi

1 + γ̂µ̂i

)
. (5.68)

We can use this for comparing nested models, but not for goodness of fit testing! The issue is
that we have estimated the parameter γ, whereas goodness of fit tests are applicable only when the
dispersion parameter is known.

1Having said that, the dependency between β̂ and γ̂ is weak, as the two are asymptotically independent parameters.
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Testing for overdispersion. It is reasonable to want to test for overdispersion, i.e. to test the
null hypothesis H0 : γ = 0. This is somewhat of a tricky task, because γ = 0 is at the edge of the
parameter space. We can do so using a likelihood ratio test. As it turns out, the likelihood ratio
statistic TLRT has asymptotic null distribution

TLRT ≡ 2(`NB − `Poi) ·∼ 1
2δ0 + 1

2χ
2
1.

Here, δ0 is the delta mass at zero. Therefore, the likelihood ratio test for H0 : γ = 0 rejects when

TLRT > χ2
1(1− 2α). (5.69)

Note that the above test for overdispersion can be viewed as a goodness of fit test for the Poisson
GLM. It is different from the usual GLM goodness of fit tests, because the saturated model against
which the latter tests stays in the Poisson family. Nevertheless, significant results in standard
goodness of fit tests for Poisson GLMs are often an indication of overdispersion. Or, they may
indicate omitted variable bias (e.g. you forgot to include an interaction), so it’s somewhat tricky.

Overdispersion in logistic regression. Note that overdispersion is potentially an issue not only
in Poisson regression models, but in logistic regression models as well. Dealing with overdispersion
in the latter case is more tricky, because the analog of the negative binomial model (the beta-
binomial model) is not an exponential family. An alternate route to dealing with overdispersion is
quasi-likelihood modeling, but this topic is beyond the scope of the course.

5.4 R demo

5.4.1 Contingency table analysis

Let’s take a look at the UC Berkeley admissions data:

ucb_data <- UCBAdmissions %>% as_tibble()
ucb_data

## # A tibble: 24 x 4
## Admit Gender Dept n
## <chr> <chr> <chr> <dbl>
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
## 7 Admitted Female B 17
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Rejected Male C 205
## # ... with 14 more rows

It contains data on applicants to graduate school at Berkeley for the six largest departments in
1973 classified by admission and sex. Let’s see whether there is an association between Gender and
Admit. Let’s first aggregate over department:
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ucb_data_agg <- ucb_data %>%
group_by(Admit, Gender) %>%
summarise(n = sum(n), .groups = "drop")

ucb_data_agg

## # A tibble: 4 x 3
## Admit Gender n
## <chr> <chr> <dbl>
## 1 Admitted Female 557
## 2 Admitted Male 1198
## 3 Rejected Female 1278
## 4 Rejected Male 1493

Let’s see what the admissions rates are by gender:

ucb_data_agg %>%
group_by(Gender) %>%
summarise(`Admission rate` = sum(n*(Admit == "Admitted"))/sum(n))

## # A tibble: 2 x 2
## Gender `Admission rate`
## <chr> <dbl>
## 1 Female 0.304
## 2 Male 0.445

This suggests that men have substantially higher admission rates than women. Let’s see if we
can confirm this using either a Fisher’s exact test or a Pearson chi-square test.

# first convert to 2x2 table format
admit_vs_gender <- ucb_data_agg %>%

pivot_wider(names_from = Gender, values_from = n) %>%
column_to_rownames(var = "Admit")

admit_vs_gender

## Female Male
## Admitted 557 1198
## Rejected 1278 1493

# Fisher exact test (note that the direction of the effect can be deduced)
fisher.test(admit_vs_gender)

##
## Fisher's Exact Test for Count Data
##
## data: admit_vs_gender
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.4781839 0.6167675
## sample estimates:
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## odds ratio
## 0.5432254

# Chi-square test
chisq.test(admit_vs_gender)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: admit_vs_gender
## X-squared = 91.61, df = 1, p-value < 2.2e-16

As a sanity check, let’s run the Poisson regression underlying the chi-square test above.

pois_fit <- glm(n ~ Admit + Gender + Admit*Gender,
family = "poisson",
data = ucb_data_agg)

summary(pois_fit)

##
## Call:
## glm(formula = n ~ Admit + Gender + Admit * Gender, family = "poisson",
## data = ucb_data_agg)
##
## Deviance Residuals:
## [1] 0 0 0 0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.32257 0.04237 149.218 <2e-16 ***
## AdmitRejected 0.83049 0.05077 16.357 <2e-16 ***
## GenderMale 0.76584 0.05128 14.933 <2e-16 ***
## AdmitRejected:GenderMale -0.61035 0.06389 -9.553 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 4.8635e+02 on 3 degrees of freedom
## Residual deviance: 4.4853e-14 on 0 degrees of freedom
## AIC: 43.225
##
## Number of Fisher Scoring iterations: 2

Based on all of these tests, there seems to be a very substantial difference in admissions rates
based on gender. That is not good.

But perhaps, women tend to apply to more selective departments? Let’s look into this:
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ucb_data %>%
group_by(Dept) %>%
summarise(admissions_rate = sum(n*(Admit == "Admitted"))/sum(n),

prop_female_applicants = sum(n*(Gender == "Female"))/sum(n)) %>%
ggplot(aes(x = admissions_rate, y = prop_female_applicants)) +
geom_point() +
scale_x_continuous(limits = c(0, 1)) +
scale_y_continuous(limits = c(0, 1)) +
labs(x = "Admissions rate",

y = "Proportion female applicants")
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Indeed, it does seem that female applicants typically applied to more selective departments!
This suggests that it is very important to control for department when evaluating the association
between admissions and gender. To do this, we can run a test for conditional independence in the
J ×K × L table:

pois_fit <- glm(n ~ Admit + Dept + Gender + Admit:Dept + Gender:Dept ,
family = "poisson",
data = ucb_data)

pchisq(sum(resid(pois_fit, "pearson")^2),
df = pois_fit$df.residual,
lower.tail = FALSE

)

## [1] 0.002840164

Still we find a significant effect! But what is the direction of the effect? The chi square test does
not tell us. We can simply compute the admissions rates by department and plot them:

ucb_data %>%
group_by(Dept, Gender) %>%
summarise(`Admission rate` = sum(n*(Admit == "Admitted"))/sum(n),

.groups = "drop") %>%
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pivot_wider(names_from = Gender, values_from = `Admission rate`) %>%
ggplot(aes(x = Female, y = Male, label = Dept)) +
geom_point() +
ggrepel::geom_text_repel() +
geom_abline(color = "red", linetype = "dashed") +
scale_x_continuous(limits = c(0, 1)) +
scale_y_continuous(limits = c(0, 1)) +
labs(x = "Female admission rate",

y = "Male admission rate")
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Now the difference doesn’t seem so huge, with most departments close to even and with
department A heavily skewed towards admitting women!

5.4.2 Revisiting the crime data, again

library(tidyverse)

Here we are again, face to face with the crime data, with one last chance to get the analysis right.
Let’s load and preprocess it, as before.

# read crime data
crime_data <- read_tsv("data/Statewide_crime.dat")

# read and transform population data
population_data <- read_csv("data/state-populations.csv")
population_data <- population_data %>%

filter(State != "Puerto Rico") %>%
select(State, Pop) %>%
rename(state_name = State, state_pop = Pop)

# collate state abbreviations
state_abbreviations <- tibble(
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state_name = state.name,
state_abbrev = state.abb

) %>%
add_row(state_name = "District of Columbia", state_abbrev = "DC")

# add CrimeRate to crime_data
crime_data <- crime_data %>%

mutate(STATE = ifelse(STATE == "IO", "IA", STATE)) %>%
rename(state_abbrev = STATE) %>%
filter(state_abbrev != "DC") %>% # remove outlier
left_join(state_abbreviations, by = "state_abbrev") %>%
left_join(population_data, by = "state_name") %>%
select(state_abbrev, Violent, Metro, HighSchool, Poverty, state_pop)

crime_data

## # A tibble: 50 x 6
## state_abbrev Violent Metro HighSchool Poverty state_pop
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AK 593 65.6 90.2 8 724357
## 2 AL 430 55.4 82.4 13.7 4934193
## 3 AR 456 52.5 79.2 12.1 3033946
## 4 AZ 513 88.2 84.4 11.9 7520103
## 5 CA 579 94.4 81.3 10.5 39613493
## 6 CO 345 84.5 88.3 7.3 5893634
## 7 CT 308 87.7 88.8 6.4 3552821
## 8 DE 658 80.1 86.5 5.8 990334
## 9 FL 730 89.3 85.9 9.7 21944577
## 10 GA 454 71.6 85.2 10.8 10830007
## # ... with 40 more rows

Let’s recall the logistic regression we ran on these data in Chapter 4:

bin_fit <- glm(Violent / state_pop ~ Metro + HighSchool + Poverty,
weights = state_pop,
family = "binomial",
data = crime_data

)

We had found very poor results from the goodness of fit test for this model. We have therefore
omitted some important variables and/or we have serious overdispersion on our hands.
We haven’t discussed in any detail how to deal with overdispersion in logistic regression models, so
let’s try a Poisson model instead. The natural way to model rates using Poisson distributions is via
offsets:

pois_fit <- glm(Violent ~ Metro + HighSchool + Poverty + offset(log(state_pop)),
family = "poisson",
data = crime_data

)
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summary(pois_fit)

##
## Call:
## glm(formula = Violent ~ Metro + HighSchool + Poverty + offset(log(state_pop)),
## family = "poisson", data = crime_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -21.042 -9.176 0.418 9.051 47.170
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.609e+01 3.520e-01 -45.72 <2e-16 ***
## Metro -2.585e-02 5.727e-04 -45.15 <2e-16 ***
## HighSchool 9.106e-02 3.450e-03 26.39 <2e-16 ***
## Poverty 6.077e-02 4.852e-03 12.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 15589 on 49 degrees of freedom
## Residual deviance: 11741 on 46 degrees of freedom
## AIC: 12135
##
## Number of Fisher Scoring iterations: 5

Again, everything is significant, and again, the regression summary shows that we have a huge
residual deviance. This was to be expected, given that Bin(m,π) ≈ Poi(mπ) for large m and small
π. So, the natural thing to try is a negative binomial regression! Negative binomial regression is
not implemented in the regular glm package, but glm.nb() from the MASS package is a dedicated
function for this task. Let’s see what we get:

nb_fit <- MASS::glm.nb(Violent ~ Metro + HighSchool + Poverty + offset(log(state_pop)),
data = crime_data

)
summary(nb_fit)

##
## Call:
## MASS::glm.nb(formula = Violent ~ Metro + HighSchool + Poverty +
## offset(log(state_pop)), data = crime_data, init.theta = 1.467747388,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.62929 -1.02800 -0.54853 0.07234 2.71356
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##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.254088 5.273418 -1.944 0.0518 .
## Metro -0.012188 0.008518 -1.431 0.1525
## HighSchool 0.028052 0.052482 0.535 0.5930
## Poverty -0.026852 0.068449 -0.392 0.6948
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.4677) family taken to be 1)
##
## Null deviance: 59.516 on 49 degrees of freedom
## Residual deviance: 55.487 on 46 degrees of freedom
## AIC: 732.58
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 1.468
## Std. Err.: 0.268
##
## 2 x log-likelihood: -722.575

Aha! Things are not looking so significant anymore! And the residual deviance is not as huge!
Although, we must be careful! The residual deviance no longer has the usual χ2 distribution because
of the estimated dispersion parameter. So we don’t really have an easy goodness of fit test. The
estimated value of γ (confusingly called θ in the summary) is significantly different from zero,
indicating overdispersion. Let’s formally test for overdispersion using the nonstandard likelihood
ratio test discussed above:

T_LRT <- 2 * (as.numeric(logLik(nb_fit)) - as.numeric(logLik(pois_fit)))
p_LRT <- pchisq(T_LRT, df = 1, lower.tail = FALSE)/2
p_LRT

## [1] 0

So at the very least the NB model fits much better than the Poisson model. Let’s do some
inference based on this model. For example, we can get Wald confidence intervals:

confint.default(nb_fit)

## 2.5 % 97.5 %
## (Intercept) -20.58979658 0.081620714
## Metro -0.02888413 0.004507747
## HighSchool -0.07481066 0.130915138
## Poverty -0.16100973 0.107305015

Or we can get LRT-based (i.e. profile) confidence intervals:
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confint(nb_fit)

## Waiting for profiling to be done...

## 2.5 % 97.5 %
## (Intercept) -19.20209590 -0.860399348
## Metro -0.03153902 0.006365841
## HighSchool -0.06265118 0.115318303
## Poverty -0.13930110 0.085200541

Or we can get confidence intervals for the predicted means:

predict(nb_fit,
newdata = crime_data %>% column_to_rownames(var = "state_abbrev"),
type = "response",
se.fit = TRUE

)

## $fit
## AK AL AR AZ CA CO CT DE
## 116.1520 617.7064 375.4895 700.6931 3257.5300 725.1538 436.7863 127.2572
## FL GA HI ID IL IN IA KS
## 2232.2308 1301.2937 157.1416 263.8572 1379.1847 954.3366 546.5503 439.0649
## KY LA MA MD ME MI MN MO
## 541.5706 391.6745 747.7454 737.0032 274.2879 1322.9956 970.4078 871.2829
## MS MT NC ND NE NH NJ NM
## 380.6756 199.4947 1313.0904 134.8128 305.0634 261.1975 966.9940 204.3311
## NV NY OH OK OR PA RI SC
## 327.7316 1926.3861 1477.1713 495.9711 517.8397 1600.0813 96.3565 684.9102
## SD TN TX UT VA VT WA WI
## 160.9225 867.0224 2423.0647 416.6648 1244.5168 148.1635 1012.1932 892.0644
## WV WY
## 226.4515 100.1906
##
## $se.fit
## AK AL AR AZ CA CO CT DE
## 21.00552 143.65071 130.44272 165.08459 910.57769 121.34777 85.53768 32.15169
## FL GA HI ID IL IN IA KS
## 427.89514 173.04544 31.73873 40.28262 239.43324 147.21049 104.05752 68.82044
## KY LA MA MD ME MI MN MO
## 133.28938 129.40665 150.23524 158.93816 92.04222 171.28409 216.32477 110.88843
## MS MT NC ND NE NH NJ NM
## 138.28105 65.60335 379.90855 26.74061 69.62560 66.73731 220.88371 59.26953
## NV NY OH OK OR PA RI SC
## 64.30971 387.25204 241.24541 95.44911 81.97419 220.42078 33.97964 119.45174
## SD TN TX UT VA VT WA WI
## 41.50215 169.68896 738.95321 107.62725 209.14651 51.32810 191.75629 137.35158
## WV WY
## 71.55328 22.79279
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##
## $residual.scale
## [1] 1

We can carry out some hypothesis tests as well, e.g. to test H0 : βMetro = 0:

nb_fit_partial <- MASS::glm.nb(Violent ~ HighSchool + Poverty + offset(log(state_pop)),
data = crime_data

)
anova_fit <- anova(nb_fit_partial, nb_fit)
anova_fit

## Likelihood ratio tests of Negative Binomial Models
##
## Response: Violent
## Model theta Resid. df
## 1 HighSchool + Poverty + offset(log(state_pop)) 1.428675 47
## 2 Metro + HighSchool + Poverty + offset(log(state_pop)) 1.467747 46
## 2 x log-lik. Test df LR stat. Pr(Chi)
## 1 -724.1882
## 2 -722.5753 1 vs 2 1 1.612878 0.2040877



Chapter 6

Further Topics

Chapters 1-5 focused on estimation and inference in linear models and generalized linear models. In
Chapter 6, we explore further topics: multiple testing (Section 6.1) and high-dimensional inference
under the model-X assumption (Section 6.2).

6.1 Multiple testing
In this class, we have talked a lot about hypothesis testing, e.g. testing the significance of a
coefficient in a (generalized) linear model. But frequently, there are multiple hypotheses we care
about testing; let us denote these null hypotheses by H1, . . . ,Hm. After obtaining p-values for each
null hypothesis—denote these by p1, . . . , pm—we may want to answer questions about this entire
collection of hypotheses. In particular:

• Global testing: Test the global null hypothesis H0 : H1 ∩ · · · ∩Hm.
• Multiple testing: Find a subset S ⊆ {1, . . . ,m} of null hypotheses to reject so that the set S

satisfies some notion of Type-I error.

We discuss global testing in Section 6.1.1 and multiple testing in Section 6.1.2.

6.1.1 Global testing

Global testing problem setup. Here we want to test whether any of the null hypotheses
H1, . . . ,Hm is false. For example, suppose that Hj : βj = 0, where βj are the coefficients in a GLM.
Then, H0 : β1 = · · · = βm = 0. We recognize this hypothesis as something we would test using
an F -test or, more generally, a likelihood ratio test. Here we are concerned with the more general
problem of aggregating m p-values for individual hypotheses (whatever these hypotheses may be)
into one p-value (i.e. one test) for the global null. A level-α test φ(p1, . . . , pm) of the global null
must satisfy

EH0 [φ(p1, . . . , pm)] ≤ α. (6.1)

The multiplicity problem. A naive test would separately test the m hypotheses, and then
reject if any are significant:

φnaive(p1, . . . , pm) = 1 (pj ≤ α for some j = 1, . . . ,m) . (6.2)

121
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Figure 6.1: A spurious correlation resulting from data snooping.

This test does not control the Type-I error. In fact, assuming the input p-values are independent,
we have

EH0 [φnaive(p1, . . . , pm)] = 1− (1− α)m → 1 as m→∞. (6.3)
This is an illustration of the multiplicity problem: The more hypotheses we test, the more likely
one of them is going to appear significant just by chance. This is related to data-snooping and
the issue of selection bias. If we had chosen just one hypothesis a priori, then we can compare its
p-value to the nominal level of α. If we chose the hypothesis by looking (“snooping”) at the p-values
of m hypotheses and choosing the most significant, we have incurred selection bias that must be
corrected for. See Figure 6.1. There are several ways of properly correcting for this selection bias,
i.e. several valid global tests in the sense of definition (6.1). Here we highlight two:

• Fisher combination test: Powerful against many weak signals.
• Bonferroni test: Powerful against few strong signals.

6.1.1.1 Fisher combination test

Suppose that p1, . . . , pm are independent (though this is a strong assumption that is often violated).
Then, the Fisher combination test is

φ(p1, . . . , pm) ≡ 1

−2
m∑
j=1

log pj ≥ Q1−α[χ2
2m]

 . (6.4)

Type-I error control (6.1) is based on the fact that

if p1, . . . , pm
i.i.d.∼ U [0, 1], then − 2

m∑
j=1

log pj ∼ χ2
2m. (6.5)

The Fisher exact test has a similar flavor to another chi-squared test. Suppose Xj ∼ N(µj , 1), and
we would like to test Hj : µj = 0. Under the global null, we have

if X1, . . . , Xm
i.i.d.∼ N(0, 1), then

m∑
j=1

X2
j ∼ χ2

m. (6.6)
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It turns out that the tests based on equation (6.5) and (6.6) are quite similar. This helps us build
intuition for what the Fisher combination test is doing. It’s averaging the strengths of the signal
across hypotheses.

6.1.1.2 Bonferroni test

Instead of averaging the signal across p-values, we might want to find the strongest signal among
the p-values. It makes sense that such a strategy would be powerful against sparse alternatives. We
define the Bonferroni test via

φ(p1, . . . , pm) ≡ 1

(
min

1≤j≤m
pj ≤ α/m

)
. (6.7)

The Bonferroni global test rejects if any of the p-values crosses the multiplicity-adjusted or Bonferroni-
adjusted significance threshold of α/m. The more hypotheses we test, the more stringent the
significance threshold must be. We can verify the Type-I error control of the Bonferroni test via a
union bound:

PH0

[
min

1≤j≤m
pj ≤ α/m

]
≤

m∑
j=1

PH0 [pj ≤ α/m] = m · α/m = α. (6.8)

Importantly, while the Fisher combination test is valid only for independent p-values, the Bonferroni
test is valid for arbitrary p-value dependency structures. However, the Bonferroni bound derived
above is tightest for independent p-values. For example, if the p-values are perfectly dependent,
then no multiplicity correction is required at all.

6.1.2 Multiple testing

While global testing seeks to detect the presence of any signals, multiple testing seeks to localize
these signals, i.e. find a subset S of the null hypotheses that are false. Let {1, . . . ,m} = H0 ∪H1,
where H0,H1 are the sets of null hypotheses that are true and false, respectively. Ideally, we would
like to have S = H1, but of course we typically cannot do this. We design methods such outputting
sets S satisfying satisfying some Type-I error control criterion, and compare their performance
based on their power, e.g. as quantified by E[|S ∩H1|/|H1|]. There are several Type-I error control
criteria of interest, but we highlight the two most important ones:

• Family-wise error rate (FWER), defined

FWER ≡ P[S ∩H0 6= ∅]. (6.9)

• False discovery rate (FDR), defined

FDR ≡ E
[ |S ∩H0|
|S|

]
, where 0

0 ≡ 0. (6.10)

The random quantity |S∩H0|
|S| is called the false discovery proportion (FDP). Note that the FWER is

a stricter error rate than the FDR. Controlling the FWER at level α implies that, with probability
1− α, the set S contains no false discoveries at all. Controlling the FDR at level q means that, on
average, at most a proportion q of the set S can be false discoveries. Many methods have been
proposed to control each of these error rates, but we highlight one each.
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6.1.2.1 The Bonferroni procedure for FWER control

We discussed the Bonferroni test for the global null. This test can be extended to an FWER-
controlling procedure:

S ≡ {j : pj ≤ α/m}. (6.11)
Note that not all global tests can be extended to FWER-controlling procedures in this way. For
example, the Fisher combination test does not single out any of the hypotheses, as it only aggregates
the p-values. By contrast, the Bonferroni test searches for p-values that are individually very small,
allowing for it to double as an FWER-controlling procedure. It is easy to verify that the Bonferroni
procedure controls the FWER:

P[S ∩H0 6= ∅] = P
[

min
j∈H0

pj ≤ α/m
]
≤
∑
j∈H0

P[pj ≤ α/m] = |H0|
m

α ≤ α. (6.12)

Note that the FWER is actually controlled at the level |H0|
m α ≤ α, making the Bonferroni test

conservative to the extent that |H0| < m. The null proportion |H0|
m has such an effect on the

performance of many multiple testing procedures.

6.1.2.2 The Benjamini-Hochberg procedure for FDR control

Designing procedures with FDR control, as well as verifying the latter property, is typically harder
than for FWER control. It is harder to decouple the effects of the individual hypotheses, as the
denominator |S| in the FDR definition (6.10) couples them together. Both the FDR criterion and
the most popular FDR-controlling procedure were proposed by Benjamini and Hochberg in 1995.

Procedure. To define the BH procedure, consider thresholding the p-values at t ∈ [0, 1]. We
would expect E[|{j : pj ≤ t} ∩ H0|] = |H0|t false discoveries among {j : pj ≤ t}. Since |H0| is
unknown, we can bound it from above by mt. This leads to the FDP estimate

F̂DP(t) ≡ mt

|{j : pj ≤ t}|
. (6.13)

The BH procedure is then defined via

S ≡ {j : pj ≤ t̂}, where t̂ = max{t ∈ [0, 1] : F̂DP(t) ≤ q}. (6.14)

In words, we choose the most liberal p-value threshold for which the estimated FDP is below the
nominal level q. Note that the set over which the above maximum is taken is always nonempty
because it at least contains 0: F̂DP(0) = 0

0 ≡ 0.

FDR control under independence. Benjamini and Hochberg established that their procedure
controls the FDR if the p-values are independent. Here we present an alternative argument due to
Storey, Taylor, and Siegmund (2004).

Proof. We have

FDR = E
[
FDP(t̂)

]
= E

[
|{j ∈ H0 : pj ≤ t̂}|
|{j : pj ≤ t̂}|

]

= E
[
|{j ∈ H0 : pj ≤ t̂}|

mt̂
F̂DP(t̂)

]
≤ q · E

[
|{j ∈ H0 : pj ≤ t̂}|

mt̂

]
.

(6.15)
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To prove that the last expectation is bounded above by 1, note that

M(t) ≡ |{j ∈ H0 : pj ≤ t}|
mt

(6.16)

is a backwards martingale with respect to the filtration

Ft = σ({pj : j ∈ H1}, |{j ∈ H0 : pj ≤ t′}| for t′ ≥ t), (6.17)

with t running backwards from 1 to 0. Indeed, for s < t we have

E[M(s)|Ft] = E
[ |{j ∈ H0 : pj ≤ s}|

ms

∣∣∣∣Ft] =
s
t |{j ∈ H0 : pj ≤ t}|

ms
= |{j ∈ H0 : pj ≤ t}|

mt
= M(t).

(6.18)
The threshold t̂ is a stopping time with respect to this filtration, so by the optional stopping theorem,
we have

E
[
|{j ∈ H0 : pj ≤ t̂}|

mt̂

]
= E[M(t̂)] ≤ E[M(1)] = |H0|

m
≤ 1. (6.19)

This completes the proof.

FDR control under dependence. The BH procedure has empirically been shown to control
the FDR for a wide variety of dependency structures besides independence. However, theoretical
FDR control results for the BH procedure are available only for a few dependency structures. A
notable example is a type of positive dependency called positive regression dependence on a subset, or
PRDS. Benjamini and Yekutieli proved FDR control for BH under PRDS in 2001. This theoretical
condition is somewhat hard to verify in practice, however. The simplest example of a set of PRDS
p-values is when x ∼ N(µ,Σ) ∈ Rm where Σ has all positive entries and the p-values are derived
based on one-sided tests. Outside of this special case, there are few known instances of PRDS
p-values.

6.2 High-dimensional inference under Model-X
All of the statistical inference done so far in this class was low-dimensional: we assumed that the
number of predictors p was fixed and at most equal to the sample size n. However, some modern
applications fall outside of this regime and therefore require new statistical methodology. We discuss
here a line of work initiated by Candès, E., Fan, Y., Janson, L., & Lv, J. (2018). Panning for
gold: ‘model-X’ knockoffs for high dimensional controlled variable selection. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80(3), 551–577.

6.2.1 Motivation and problem statement

All statistical inference requires assumptions, and inherently difficult problems like high-dimensional
inference require strong assumptions. One such assumption is the

Model-X assumption: That the joint distribution of (x1, . . . , xp) is known. (6.20)

This assumption is in some sense the opposite of what we have been considering in this class so
far: Usually we assume nothing about the joint distribution of covariates (we treat these as fixed
anyways), and assume instead that y|(x1, . . . , xp) follows a generalized linear model. Notably, this
assumption is stronger than correct specification of a parametric model for (x1, . . . , xp); it states
that we know not only a model for this distribution but all of its parameters as well. Below we
discuss the motivation for this assumption, and the inference problem that grows out of it.
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Motivation: Genome-wide association studies (GWAS). In GWAS, x1, . . . , xp ∈ {0, 1, 2}
represent genotypes of an individual at p genomic locations. Suppose that humans typically have
either an A or a T at genomic location j, where A is more common. Since we have two sets of
chromosomes (one maternal and one paternal), the genotype at this location can either be AA, AT,
or TT. The allele T is called the minor allele because it is less common, and xj is defined as the
number of minor alleles an individual has at location j: AA implies xj = 0, AT implies xj = 1, TT
implies xj = 2. We collect this genotype information at p genomic locations from each individual,
as well as a response variable y, like disease status. The goal is to find the genomic locations whose
genotypes are associated with the response. The nice thing in this application is that the joint
distribution (x1, . . . , xp) has been studied extensively in the field of population genetics, and is
well-approximated by a hidden Markov model. This motivates the model-X assumption.

Problem statement. It turns out that if we have a model for the joint distribution of the
predictors, we need not make any assumptions on the distribution of the response given the
predictors. But this leaves us with the following awkward question: If we have no parametric model
for the response, then what even are the hypotheses we are testing? Well, for each genomic location
j, we are trying to test whether the genotype at that location is associated with the response,
controlling for the genotypes at other genomic locations. Probabilistically, this may be written as:

H0j : xj ⊥⊥ y | x-j . (6.21)

Under mild assumptions, this hypothesis turns out to coincide with the usual H0j : βj = 0 in the
case when y does follow a GLM. The problem statement, then, is to test the hypotheses H0j based
on data

(xi1, . . . , xip, yi) i.i.d.∼ Fx,y, i = 1, . . . , n, (6.22)

given knowledge of the distribution Fx. Note that regularized regression methods such as the LASSO
have been developed to get estimates of regression coefficients in high dimensions. However, the
issue with these shrinkage-based estimation methodologies is that they do not come with inferential
guarantees and therefore cannot provide valid tests of the conditional independence hypothesis (6.21).
Under the model-X assumption, we can get around this roadblock.

6.2.2 Conditional randomization test

One idea is to view xj as a treatment (though not necessarily binary) and x-j as a set of covariates.
The model-X assumption gives us knowledge of the propensity function p(xj |x-j), i.e. the distribution
of treatment assignments given the covariates. In the spirit of Fisher’s randomization test (see
Homework 5 Problem 1), we can build a null distribution for any test statistic T (X,y)—e.g. a
lasso coefficient—by randomly reassigning the treatment xj to each individual based on its covariates
x-j . More explicitly, let

x̃ij |X,y
ind∼ Fxj |x-j=xi,-j . (6.23)

Let X̃ be the matrix obtained by replacing the jth column in X with ˜̂x∗j as defined above. For
a test statistic T , we then define the CRT p-value by comparing the test statistic’s value on the
original data with its distribution under resampling:

pCRT
j ≡ P[T (X̃,y) ≥ T (X,y)|X,y]. (6.24)
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In practice, we approximate this p-value by resampling a finite number B of instances X̃b and
setting

p̂CRT
j ≡ 1

B + 1

B∑
b=1

1(T (X̃b,y) ≥ T (X,y)). (6.25)

The CRT is a simple and elegant inferential framework that gives finite-sample valid p-values for
high-dimensional inference. However, its adoption has been slowed by the computational cost of
resampling.

6.2.3 Model-X knockoffs

An alternative to the CRT for model-X inference is model-X knockoffs. This methodology requires
constructing a set of p new knockoff variables (x̃1, . . . , x̃p), whose joint distribution with the original
variables satisfies the following exchangeability criterion:

for each j, (xj , x̃j)
d= (x̃j , xj) | x-j , x̃-j . (6.26)

Knockoff variables are meant to serve as valid negative controls for the original variables: they
have the same dependency structure but they have no association with the response y. Con-
structing such knockoff variables is a nontrivial endeavor that depends on the joint distribu-
tion of the original variables. If this can be done, then we can sample an entire knockoff
matrix X̃, row by row. We then assess the significant of all 2p variables using test statis-
tics Z1(X, X̃,y), . . . , Zp(X, X̃,y), Z̃1(X, X̃,y), . . . , Z̃p(X, X̃,y), constructed to ensure the fol-
lowing swap-equivariance property: swapping X∗j with X̃∗j results in Zj(X, X̃,y) swapping with
Z̃j(X, X̃,y), while all the other test statistics stay the same. For example, consider running the
LASSO of y on the augmented design matrix [X, X̃], and defining the Zj ’s as the fitted coefficients
for the corresponding variables. With these Zj ’s in hand, the idea is to define the significance of the
jth original variable by comparing the test statistics for itself and for its knockoff:

Tj(X, X̃,y) ≡ Zj(X, X̃,y)− Z̃j(X, X̃,y). (6.27)

Large values of Tj are evidence against H0j . If the knockoffs are constructed correctly, then the
test statistics Tj for null j can be shown to have symmetric distributions around zero. In other
words, the original variable and its knockoff are equally likely to be more significant. Using this
observation, a clever multiple testing algorithm called Selective SeqStep can be used to choose a
cutoff t̂ for the test statistics in a way that provably controls the FDR at a pre-specified level q.
Remarkably, this entire construction bypasses the construction of p-values!

6.2.4 Comparing CRT to MX knockoffs

There are pros and cons to both the CRT and MX knockoffs. Both procedures offer valid, finite-sample
inference in high dimensions, which sets them apart from many other inferential methodologies.
Both procedures require the model-X assumption, however, which may or may not be reasonable
in a given application. MX knockoffs is the more popular methodology at this time, due to its
computational speed. It can be used to carry out inference for all p hypotheses in “one shot”,
by running one big regularized regression on the augmented design matrix. It has been applied
successfully to genome-wide association studies, using a hidden Markov model as the model for X.
On the other hand, MX knockoffs is a randomized procedure, giving different results for different
realizations of X̃. Furthermore, it does not provide p-values quantifying the significance of individual
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predictors, which hinders the interpretability of its results. On the other hand, the CRT requires
more computation than knockoffs, so it has been slower to be adopted in practice. But this procedure
is not randomized in the same way that knockoffs is; with more computation its results can be
arbitrarily “de-randomized.” Furthermore, the CRT does have a p-value output, which facilitates
easy interpretation and more flexibility for downstream multiple testing.
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