Preparing homeworks and exams in STAT 4710

FEugene Katsevich

August 23, 2023

1 Compilation

Compile your R Markdown file to PDF by pressing the Knit button or using a keyboard shortcut
(e.g. Command-Shift-K on Mac). The PDF will pop up in a separate browser tab. You can download this
PDF for submission to Gradescope.

You may run into compilation issues for a variety of reasons. Here are a few trouble-shooting tips:

 Avoid using underscores or other special characters in chunk headers or figure/table captions. If you
must use special characters, you must escape them by prepending them with two backslashes. For
example, use \\% instead of %.

o Put a blank line between each code chunk and the subsequent text, especially for code chunks containing
figures.

¢ You might not have loaded all necessary R packages. See Section 2.

e Your R code may have bugs. Usually the error message will point you to a line number where the code
broke. Debug your code by stepping through it line-by-line interactively before compiling your report.

o Try Googling your error messages and/or asking ChatGPT.

o If you are stuck, post on Ed Discussion or come to office hours and the teaching staff will assist you.

2 Loading R packages

If your code requires functions from packages not in base R, you must load these packages via library. For
example:

library(tidyverse) # for tidyverse packages
library(kableExtra) # for printing tables
library(cowplot) # for stde-by-side plots

Note that library(tidyverse) loads all the core tidyverse packages, including ggplot2 for data visual-
ization, dplyr for data manipulation, tidyr for data tidying, and readr for data import.

3 Adding figures and tables to your report

Before getting started, let’s add global R Markdown chunk configurations as follows:

***{r, echo = FALSE}
knitr::opts_chunk$set (fig.pos = "!h", fig.align = "center")
ggplot2: :theme_set (ggplot2: :theme_bw())

This will set the horizontal and vertical alignment of figures: horizontally they will be centered, and vertically
they will appear right after the code used to produce them. Furthermore, it will add a nice theme to the
plots produced.

3.1 Figures

You can add a figure by plotting it inside of a code chunk:

T A{r}

test_data <- tibble(x

test_data [>
ggplot(aes(x = x, y
geom_point ()

rnorm(10), y = rnorm(10))

y)) +

2 []
[J
1
>
b °
04
° L °
P
_1 I. T T T T
-3 -2 -1 O 1
X

Each figure should have a caption and should be referenced in the text. You can add a caption by including
fig.cap in the chunk header, and you can reference the figure by including a chunk name (in this case
test-plot). Note that having a caption is necessary to be able to reference a figure!

***{r test-plot, fig.cap = "This is a test plot."}
test_data [>

ggplot(aes(x = x, y = y)) +

geom_point ()

2 []
°
1-
>
b °
O_
° ° °
-3 -2 -1 0 1
X

Figure 1: This is a test plot.
This produces Figure 1. This type of figure reference can be obtained by typing Figure \@ref (fig:test-plot).

3.2 Tables

The simplest way to add a table is by printing it inside of a code chunk:

T {r}
test_data

A tibble: 10 x 2

X y
<dbl> <dbl>
1 1.71 2.08

2 -2.50 -0.216
3 -0.254 -0.766
4 -0.375 0.266
5 -1.75 0.353
6 0.188 -0.719
7 1.48 -0.320
8 -2.88 -0.854
9 0.342 -0.153
10 1.50 1.36

In R, tables can be stored as either data frames or tibbles. Tibbles are the tidyverse’s upgraded version of
data frames. One advantage of tibbles is that they look nicer when printed. In particular, if you have a tibble
with many rows, then only the first few rows will be displayed when it is printed. On the other hand, printing
a data frame with many rows will lead to all the rows being printed, which can unnecessarily add dozens of
pages to your report! Please make sure your tables are in tibble form prior to printing them. Note that data
read into R using tidyverse import functions (e.g. read_csv()) will automatically be in tibble format. On the
other hand, data read into R using base R import functions (e.g. read.csv()) will be in data frame format.

A better way than simply printing a table is to use the kable and kable_styling functions from the
kableExtra package:

> {r test-table}
test_data [>

kable(format = "latex", row.names = NA,
booktabs = TRUE, digits = 2,
caption = "This is a test table") |[>

kable_styling(position = "center", latex_options = "HOLD_position")

Table 1: This is a test table

X y
171 2.08
-2.50 -0.22
-0.25 -0.77
-0.38 0.27
-1.75 0.35
0.19 -0.72
1.48 -0.32
-2.88 -0.85
0.34 -0.15

1.50 1.36

This produces Table 1. This type of table reference can be obtained by typing Table \@ref (tab:test-table).
Note that captions for tables must go into the kable function rather than into the chunk header like for
figures. The chunk name is still used to reference the table. Note that having a caption is necessary to be
able to reference a table! The code latex_options = "HOLD_position" ensures that the table appears right
after the code used to create it.

4 High-quality reports

Aside from data mining, another goal of STAT 471 is to teach you how to produce high-quality reports. This
skill is essential to successfully communicating the results of your data analyses. Therefore, each submitted
homework and exam will be held to a high standard of presentation, which will be evaluated and will
comprise a part of your grade. Below are guidelines on producing high-quality reports, broken down by their
components: text, code, figures, and tables.

4.1 Text

Your prose should be clear and concise. Use references to refer to figures and tables.

4.2 Code

Your code should be commented and easy to read. The level of commenting in this document is a good
guideline. Each contiguous chunk of code has a comment at the top, and then some individual lines that
deserve extra attention/clarification have comments as well. There is no need to comment every single line
of code. When in doubt, however, feel free to add a comment; we will not deduct points for “too much”
commenting.

Make sure that your code does not exceed the width of the page, like this:

a line that exceeds the width of the page
tibble(x = 1:100, y = 5 * x + rnorm(100, sd = 100)) |> filter(x < 80) |> summarise(sample_correlation =

A tibble: 1 x 1

sample_correlation
<dbl>
1 0.806

To avoid such long lines of code, make sure your code does not reach the vertical line in the right-hand side
of your RStudio editor. Insert line breaks appropriately to make your code more readable:

appropriate line breaks added

tibble(x = 1:100, y = 5 * x + rnorm(100, sd = 100)) |> # generate data
filter(x < 80) |> # subset data
summarise(sample_correlation = cor(x, y)) # evaluate sample corr.

A tibble: 1 x 1

sample_correlation
<dbl>
1 0.663

Your code should conform to the style guidelines described in Chapter 5 of R for Data Science. You can
easily style your code with the help of the styler package (installed for you on Posit Cloud) by clicking
Addins -> Style selection or Addins -> Style active file.

4.3 Figures

Figures are very important tools to convey information to readers, and they should be constructed thoughtfully.
Please read Chapter 12 of R for Data Science, which is a good reference for producing high-quality figures.
Here we discuss some of the most important elements.

4.3.1 Sizing

The aspect ratio (i.e. ratio of width to height) of your plots is consistent with their content; e.g. box plots
are usually relatively narrow, and scatter plots often make sense with equal aspect ratios.

https://r4ds.hadley.nz/workflow-style
https://r4ds.hadley.nz/communication

The size of your figures (specified in the chunk options via the fig.width and fig.height arguments, which
are in inches) should be such that the the text on the plot is easy to read. Consider the following three
choices for the size of the test plot from Figure 1:

***{r test-plot-abs-small, echo = FALSE, fig.cap = "This plot's
size (1in by 1in) is too small.", fig.width=1, fig.height=1}
test_data [>

ggplot(aes(x = x, y = y)) +

geom_point ()

**{r test-plot-abs-medium, echo = FALSE, fig.cap = "This plot's
size (2in by 2in) is about right.", fig.width=2, fig.height=2}
test_data [> ggplot(aes(x = x, y = y)) + geom_point() + theme_bw()

***{r test-plot-abs-large, echo = FALSE, fig.cap = "This plot's
size (bin by 5in) is too large.", fig.width=5, fig.height=5,}
test_data [>

ggplot(aes(x = x, y = y)) +

geom_point ()

Figures 2, 3, 4 are produced by these three code chunks. The small-sized plot is too cramped, the large-sized
plot has axis titles and labels that are too small to read, and the medium-sized plot is about right. A good
rule of thumb is that the smallest text in your plots should be roughly the same size as the text in your
report. Some experimentation is necessary to find an appropriate size for each plot.

Figure 2: This plot’s size (lin by 1in) is too small.

2 []
°
l-
>
b °
O_
° ° °
-3 -2 -1 0 1
X

Figure 3: This plot’s size (2in by 2in) is about right.

4.3.2 Titles

Each plot should include informative axis and legend titles. For example, consider the code below (drawn
from R4DS Chapter 28), which produces the plot in Figure 5.

°
2-
.
1-
>
°
°
O-
°
°
°
° °
°
_1 T T T T T
-3 -2 -1 0 1

Figure 4: This plot’s size (5in by 5in) is too large.

a plot without clear azis and legend titles
mpg |>
ggplot(aes(x = displ, y = hwy)) +
geom_point (aes(color = class)) +
geom_smooth(se = FALSE)

This is a plot of fuel efficiency versus engine displacement for various types of cars, but the axis and legend
labels on the plot do not make this very clear.

We can easily add informative titles to this plot using labs, resulting in Figure 6, which is much easier to
understand.

a plot with clear azis and legend titles
mpg |>
ggplot(aes(x = displ, y = hwy)) +
geom_point (aes(color = class)) +
geom_smooth(se = FALSE) +

labs(
x = "Engine displacement (liters)",
y = "Highway fuel economy (miles per gallon)",
colour = "Car type"

)

°
40 -
° class
M
: ® 2seater
® compact
® midsize
® minivan
® pickup

©® subcompact

® suv
[]
2 3 4 5 7
displ
Figure 5: A plot without clear titles.

[]
—_
c
O °
—g 40 1
it ° Car type
L °
" H o 2seater
Q °
E ® compact
> 307 ® midsize
£ -
e ® minivan
S)
9 ® pickup
° ® subcompact
=207 .
3 suv
=
£
2
I

[]
2 3 4 5 6 7

Engine displacement (liters)

Figure 6: (A plot with clear axis and legend titles). Fuel efficiency generally decreases with engine size;
two-seaters (sports cars) are an exception because of their light weight.

Plots might or might not need overall titles; often the axis titles speak for themselves and the message of the
plot can be conveyed in the caption (as in Figure 6.) To add plot titles if necessary, use the title argument
of labs(). If applicable, axis titles should also include the units of measurement, e.g. liters or miles per

gallon as in Figure 6.

4.3.3 Captions

Figures should have informative captions to help readers understand what information is displayed and how
to interpret it.

4.3.4 Layout

Sometimes, two or more plots make sense to present together in a single figure. This can be accomplished in
two ways. If the different plots convey the same type of information but for different slices of the data, then
facet_grid and facet_wrap are the best way of laying out these plots. For example, the code below and
Figure 7 illustrates facet_wrap for the mpg data used in Figures 5 and 6.

tllustrate how to use facet_wrap to create a multi-panel plot

mpg | >
filter(class %inJ
c("2seater", "compact", "midsize")) |[> # select 3 classes of cars

ggplot(aes(x = displ, y = hwy)) +
geom_point () +

facet_wrap(class ~ .) + # separate panels per class
labs(
x = "Engine displacement (liters)",
y = "Highway fuel economy\n(miles per gallon)", # line break in axzis title
)
2seater compact midsize
? 45 -
o
g O 40+
o5 ¢
— o~ 351 °
[T °
29]
(X
n -
gg " L
T
5E 25 $ oro °
3= ° °
I T T T T T T T T T T T T T T I. T T T
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

Engine displacement (liters)
Figure 7: An illustration of using facet_wrap to create a multi-panel plot.

If the plots convey different types of information, then they should be created separately and then concatenated
together using the plot_grid function from the cowplot package. An example is shown below and in Figure
8.

illustration of using cowplot to concatenate multiple plots

first plot: box plot of fuel ecomomy by car type
pl <- mpg |>
mutate (
class = fct_reorder(class, hwy) # re-order car classes by fuel economy
) 1>
ggplot(aes(x = class, y = hwy, fill = class)) +
geom_boxplot() +
labs(

x = "Car type",
y = "Highway fuel economy\n(miles per gallon)"
)+
theme (
legend.position = "none", # remove legend and x azis text because

axis.text.x = element_blank() # 4nformation present in second plot

second plot: scatter plot of fuel economy wversus car type
p2 <- mpg |>
mutate (
class = fct_reorder(class, hwy) # re-order car classes by fuel economy
) 1>
ggplot(aes(x = displ, y = hwy)) +
geom_point (aes(color = class)) +
geom_smooth(se = FALSE) +

labs(
x = "Engine displacement (liters)",
colour = "Car type"

)+

theme (axis.title.y = element_blank()) # remove y azis title because already
present in the first plot

use cowplot to concatenate the two plots
plot_grid(pl, p2,
rel_widths = c(1, 2), # specify relative widths

align = "h" # how to align subplots
)
® o « Car type
> i °] e
gﬁ40 40 o pickup
£5 .
Q= ® suv
3T N
5 = 307 ® minivan
[
2o ; - ® 2seater
% 8 ° - [J
e subcompact
- E 20 A
._Ig_’v * ° ® compact
° o ® midsize
T T T T T T T é é 4I. é é %
Car type Engine displacement (liters)

Figure 8: (An illustration of using cowplot to create a multi-panel plot.) Relationships between highway fuel
economy and car type (left panel) and engine displacement (right panel).

4.4 Tables

Tables are generally less complex than figures, but many of the principles of creating high-quality figures
carry over to tables as well (e.g. choosing appropriate sizes, captions, and titles.)

4.4.1 Column titles for tables

Just like axis labels for figures, column titles for tables should be easily readable. Often this means not using
the variable names directly from your data frame. For example, consider Table 2, which tabulates the number
of cylinders and the drive train type for the cars in mpg.

a table without clear column titles

mpg |>
count (cyl, drv) [>
kable(
format = "latex", row.names = NA,
booktabs = TRUE, digits = 2,
caption = "A table without clear column titles"
) 1>

kable_styling(position = "center", latex_options = "HOLD_position")

Table 2: A table without clear column titles

cyl drv n
4 4 23
4 f 58
5 f 4
6 4 32
6 f 43
6 r 4
8 4 48
8 f 1
8 r 21

We can specify clear column names via the col.names argument to kable. See Table 3 and the code chunk
that produced it.

a table with clear column titles

mpg | >
count(cyl, drv) [>
kable(
format = "latex",

row.names = NA,
col.names = c("Num. cylinders", "Drive train", "Count"),

booktabs = TRUE,
digits = 2,
caption = "(A table with clear column titles.) Cross-tabulation of the

number of cylinders and the drive train type for the cars in mpg."
) 1>

kable_styling(position = "center", latex_options = "HOLD_position")

10

Table 3: (A table with clear column titles.) Cross-tabulation of the number of cylinders and the drive train
type for the cars in mpg.

Num. cylinders Drive train Count

23
58

4
32
43

4
48
1
21

CO CO 00O O O O U i
o Fh Fh

e]

11

	Compilation
	Loading R packages
	Adding figures and tables to your report
	Figures
	Tables

	High-quality reports
	Text
	Code
	Figures
	Sizing
	Titles
	Captions
	Layout

	Tables
	Column titles for tables

