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1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed
Language modeling Variable Fixed
Machine translation Variable Variable

2. The meaning of a word depends on its context:

“She sat by the river bank.” versus “He went to the bank to deposit his paycheck.”

3. Words do not come with vector representations (unlike pixels).
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 Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

 Vocabulary. The set of all tokens considered by an NLP method.
 Vocabulary size. The number of tokens in a vocabulary.

 Corpus. A large body of text (such as Wikipedia), which can serve as training
data for an NLP model.

 Encoding. Representation of token or sequence of tokens as a numeric vector.
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Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAl) 2018 117M
BERT (Google) 2018 340M
ChatGPT-3.5 (OpenAl) 2022 1758
ChatGPT-4 (OpenAl) 2023 1.76T
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Word vectors capture semantic relationships
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Training RNINs for sentiment classification

Training data

Movie ratings database:

Input Output
“I enjoyed the movie.” “Positive”
“Despite its intriguing premise, this movie y L
ended up being disappointment.” Negative
“This was the best movie | had seen in a ) e
Positive

while.”

Training process

* Learn the three sets of weights via
stochastic gradient descent on the
cross-entropy loss function.
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RNN for language modeling

Input text: “my favorite season is”. Output word: “spring”
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Training RNNs for language modeling

Training data Training process

Large corpus of text, e.g. Wikipedia.  Learn the three sets of weights via

stochastic gradient descent on the

My favorite season in spring. The flowers cross-entropy loss function.

are blooming and the sun is shining...”

Input Output .
“My” “favorite” @T
“My favorite” “season” @
“My favorite season” “is” . —
“My favorite season is” “spring” @T
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Training RNNs for machine translation

Training data

Parallel text corpora across two
languages, e.g. U.N. proceedings.

Input Output
“How are you?” “s COmo estas?”
“The cat sleeps.” “El gato duerme.”
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Training RNNs for machine translation

Training data Training process
Parallel text corpora across two * |earn the two sets of weights in
languages, e.g. U.N. proceedings. encoder RNN and three sets of
weights in decoder RNN via
Input Output stochastic gradient descent on the
“How are you?” “, COMO estas?” cross-entropy loss function.
“Th t sl “El
- s S.eep,,s - 9ato duerme,, Encoder weights  Decoder weights
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

5. Compute first context vector as weighted average of encoder
hidden states.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

6. Pass context vector through FC layer with softmax to get
first predicted token.

O0—0O o0

0.05 0.2 0.1 0.1 0. O

T \.

o—»o—»o—»o—»o—»o—»o ----- - @—

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>




RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

6. Pass context vector through FC layer with softmax to get
first predicted token.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

/. Copy first predicted token to input sequence.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

/. Copy first predicted token to input sequence.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Define next hidden state by passing previous context vector, previous
hidden state, and input token through FC layers.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Define next hidden state by passing previous context vector, previous
hidden state, and input token through FC layers.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

¢,
o

1
1

|
1
|
|
1

*e—0—0—-0—-—0—0—0---0—0—0

t ottt ot Ry

|
|
|

v
<SOS> How are you ?7 <EOS> <SO0S> ¢




RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.
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From RNNs to transformers

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens
Transformers (“attention is all you need”)| 2017-present Excellent 1000+ tokens

RNNs, no matter how fancy, still did not allow parallel processing of inputs.

Transformer proposed in 2017: An architecture based on attention but not
recurrence, which performed better than RNNs and accommodated parallelization.
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passing its word vector through FC layer.
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Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another

FC layer with softmax to get attention
weights.
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Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention

weights.
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Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention

weights.
4. Take weighted average of token valuesto 0 0.1 0.4 0.1 0.2 0.2 0
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Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.
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passing its word vector through FC layer.
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get context vector.

. Pass context vector through FC layer

with softmax to get output class
probabillities.
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Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer
with softmax to get output class
probabillities.

This strategy ignores word order!



Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Positionally encode each input token’s
word vector by appending its index.

2. Compute each input token’s value by
passing its positional encoding vector
through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer with
softmax to get output class probabillities.



Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive” 0.85 *
1. Positionally encode each input token’s © 0.15 ,
word vector by appending its index. T
O

2. Compute each input token’s value by
passing its positional encoding vector

through FC layer. O O 6 O O O O
3. Pass each token value through another T T T T T T T
FC layer with softmax to get attention 0 01 04 01 02 0.2 0
weights. T T T T T T T
4. Take weighted average of token values to @ ©®© O O O o o
get context vector. T T T T T T T
O. Pass contextvector through FC layerwith o o o o @ @ @

softmax to get output class probabillities.
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and

pass it through FC layer to compute values.

2. Calculate attention weights for “is” by
comparing its value to its own and those of

preceding tokens (self-attention).
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and
pass it through FC layer to compute values.

2. Calculate attention weights for “is” by
comparing its value to its own and those of

preceding tokens (self-attention).
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1.

Positionally encode each input token and
pass it through FC layer to compute values.

Calculate attention weights for “is” by
comparing its value to its own and those of

preceding tokens (self-attention).

Take weighted average of preceding token
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1.

. Calculate attention weights for “is” by %
comparing its value to its own and those of

Positionally encode each input token and
pass it through FC layer to compute values.

preceding tokens (self-attention). CT) CT) O CT)
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1.

4. Pass contextual embedding through FC

. Calculate attention weights for “is” by %
comparing its value to its own and those of

Positionally encode each input token and
pass it through FC layer to compute values.

preceding tokens (self-attention).
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring” spring

4. Pass contextual embedding through FC

. Positionally encode each input token and
pass it through FC layer to compute values.

@,
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Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and

pass it through FC layer to compute values. Simplified flowchart of
simplified transformer
2. Calculate attention weights for “is” by spring
comparing its value to its own and those of O
preceding tokens (self-attention). T
3. Take weighted average of preceding token ®

values to get context vector or contextual
embedding for “is”. /%T
4. Pass contextual embedding through FC ? ? ? ?

layer with softmax to get output class T
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.
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1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3
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3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).
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Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite season
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embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual ®
embedding through FC layer + softmax. T ‘.‘
O

5. Copy generated token to the input. : i
0.<SOS> 1.my 2.favori
6. Repeat until <EOS> token is generated. v sfavortie



Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite season i
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1.
2.

Positionally encode <SOS> token.

Calculate <SOS> token’s value by passing
token through fully connected layer.

my favorite season IS spring

. Calculate <SOS> token’s contextual O O O O O
embedding by attention-weighted linear T ‘-‘ T ‘-‘ T ‘.‘ T :
combination of its value and all preceding . 0 0 @ @

values (so far, no preceding values). TW T
O

Generate next token by passing contextual O O O O
embedding through FC layer + softmax. T ‘.‘ T ‘.‘ T '.‘ T ‘-‘
. Copy generated token to the input. O VQ VQ VQ ,Q

0.<SOS> 1.my 2.favorite 3.season 4.is

Repeat until <EOS> token is generated.
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Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.
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Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.
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Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

e For example, GPT-3 was trained on “My favorite season in spring. The flowers are blooming

45TB Of data and the sun is shining...”
» Can have hundreds of billions of oy eyt o
parameters (large language models). My favorite” "
_ _ “My favorite season” “Is”
* Along with the weights of the “My favorite season is” spring’
network, word vectors themselves

are trained.

* As with other models, trained using SGD based on cross-entropy.

* Training is massively parallelized using specialized GPU hardware.
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Fine-tuning transformers for supervised tasks

Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then et Model finetuned
. ! : as to task 1

fine-tune these weights for supervised task. e

Model finetuned

(e.9. GPT) as to task 2

In many cases, network architecture can stay
the same; training data just needs to be
formatted appropriately.

https://www.machinecurve.com/index.php/2021/01/04/intuitive-introduction-to-bert/

Input Output Input
“How are you?” “; COmo estas?” How are you?<to-sp>¢Como estas?
“The cat sleeps.” “El gato duerme.” The cat sleeps.<to-sp>El gato duerme.
(14 . ) 14 J) ﬁ .
| am reading. Estoy leyendo. | am reading.<to-sp>Estoy leyendo.
“She is happy.” “Ella esta feliz.” She is happy.<to-sp>Ella esta feliz.
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Emergent properties of LLMs

As LLMs grow, they develop emergent properties: Abllities they were not

explicitly trained for.

https://www.assemblyai.com/blog/emergent-abilities-of-large-language-models/

GPT-4 vs ChatGPT

Prompt: Here we have a book, 9 eggs, a laptop, a bottle and a nail. Please tell me how to
stack them onto each other in a stable manner.

GPT-4:

One possible way to stack the objects onto each other in a stable manner is:

- Place the book flat on a level surface, such as a table or a floor. The book will serve as the base of
the stack and provide a large and sturdy support.

- Arrange the Y eggs 1n a 3 by 3 square on top of the book, leaving some space between them. The eggs
will

form a second layer and distribute the weight evenly. Make sure the eggs are not cracked or broken, and
handle them gently to avoid dropping them.

- Place the laptop on top of the eggs, with the screen facing down and the keyboard facing up. The
laptop will fit snugly within the boundaries of the book and the eggs, and its flat and rigid surface
will provide a stable platform for the next layer. Make sure the laptop is closed and turned off, and do
not press any keys or buttons.

- Place the bottle on top of the laptop, with the cap facing up and the bottom facing down. The bottle
will add some height and balance to the stack, and its cylindrical shape will reduce the contact area
with the laptop. Make sure the bottle is empty and closed, and do not shake or tilt it.

- Place the nail on top of the bottle cap, with the pointy end facing up and the flat end facing down.
The nail will be the final and smallest object in the stack, and its sharp tip will prevent it from
rolling or sliding off the bottle. Make sure the nail is clean and straight, and do not touch or move
it.

ChatGPT:

It would be difficult to stack all of these objects on top of each other in a stable manner without
using any extra objects. The book and laptop are likely too large and heavy to stack on top of the

eggs without damaging them. The bottle and nail may be too small to provide a stable base for the other
objects.

Here is one possible way to stack the objects:

Place the bottle on a flat surface.

Carefully balance the nail on top of the bottle.

Place the eggs on top of the nail, making sure they are balanced and not tilting to one side.
Place the laptop on top of the eggs, again making sure it is balanced and not tilting to one side.
Finally, place the book on top of the laptop.

This stack may not be very stable, so it is important to be careful when handling it. Alternatively, you
could try stacking the objects in a different order or using some of the objects as supports for others
to create a more stable stack.

https://arxiv.org/pdf/2303.12712.pdf
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Summary

» \Word vectors used to translate words into numbers for predictive modeling.

New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

RNNSs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

These fancier RNNs were displaced by transformers, an attention-based
architecture allowing parallelized training.

The hard work of training large language models can be recycled through the
pre-training and fine-tuning paradigm.



