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Three natural language processing tasks

Sentiment analysis Machine translationLanguage modeling

Input: Movie review

Output: Positive or negative

Input: Beginning of sentence

Output: Next word

Input: Sentence in one language

Output: Translation of sentence 
to another language
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What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

2. The meaning of a word depends on its context:

“She sat by the river bank.” versus “He went to the bank to deposit his paycheck.”

3. Words do not come with vector representations (unlike pixels).

Task Input length Output length
Sentiment analysis Variable Fixed

Language modeling Variable Fixed

Machine translation Variable Variable
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• Token. A discrete unit of language, such as a word. Other tokens include 
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

• Vocabulary. The set of all tokens considered by an NLP method.

• Vocabulary size. The number of tokens in a vocabulary.

• Corpus. A large body of text (such as Wikipedia), which can serve as training 
data for an NLP model.

• Encoding. Representation of token or sequence of tokens as a numeric vector. 
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Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early 

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters 
Initial transformer model (Google) 2017 213M
GPT (OpenAI) 2018 117M
BERT (Google) 2018 340M
ChatGPT-3.5 (OpenAI) 2022 175B
ChatGPT-4 (OpenAI) 2023 1.76T
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Word vectors

Source: ISLRv2

A common first step in deep learning 
for NLP is to encode each word using 
a word vector, e.g.

vman = (0.2,1.6,2.5, − 3.2,4.1)

Word vectors capture meaning, unlike 
one-hot encodings, such as

vman = (0,0,1,0,0,0,0,0,0)

Word vectors are trained on large text corpora, so that word vectors for pairs of 
frequently co-occurring words are similar. Popular algorithms: word2vec, GloVe.

Word vectors need to be trained only once (for each language), and can be reused.



Word vectors capture semantic relationships

https://www.researchgate.net/figure/A-two-dimensional-representation-of-word-embeddings-Words-with-similar-meanings-are_fig1_327074728
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Training RNNs for sentiment classification

Training data 

Movie ratings database:

Input Output
“I enjoyed the movie.” “Positive”
“Despite its intriguing premise, this movie 
ended up being disappointment.” “Negative”

… …
“This was the best movie I had seen in a 
while.” “Positive”

Training process 

• Learn the three sets of weights via 
stochastic gradient descent on the 
cross-entropy loss function. 

1

2

3
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Training RNNs for language modeling

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

Training data 

Large corpus of text, e.g. Wikipedia.


“My favorite season in spring. The flowers 
are blooming and the sun is shining…”

Training process 

• Learn the three sets of weights via 
stochastic gradient descent on the 
cross-entropy loss function. 

1

2

3
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RNNs for autoregressive text generation

<SOS>
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The
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sky is gray

…

…
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… …

Training data 

Parallel text corpora across two 
languages, e.g. U.N. proceedings.

Training process 

• Learn the two sets of weights in 
encoder RNN and three sets of 
weights in decoder RNN via 
stochastic gradient descent on the 
cross-entropy loss function. 
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Visualizing attention

https://arxiv.org/pdf/1409.0473.pdf
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Deep learning models for NLP:

RNNs, no matter how fancy, still did not allow parallel processing of inputs.

Transformer proposed in 2017: An architecture based on attention but not 
recurrence, which performed better than RNNs and accommodated parallelization.

From RNNs to transformers
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0.<SOS> 1.my 2.favorite 3.season 4.is

spring

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and 

pass it through FC layer to compute values.

2. Calculate attention weights for “is” by 

comparing its value to its own and those of 
preceding tokens (self-attention). 

3. Take weighted average of preceding token 
values to get context vector or contextual 
embedding for “is”.


4. Pass contextual embedding through FC 
layer with softmax to get output class 
probabilities.

Simplified flowchart of 

simplified transformer
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Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached. 

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Cómo

?

7.¿

estás ? <EOS>

8.Cómo 9.estás 10.?



Training transformer language models



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming 
and the sun is shining…”



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming 
and the sun is shining…”

• For example, GPT-3 was trained on 
45TB of data.



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming 
and the sun is shining…”

• For example, GPT-3 was trained on 
45TB of data.

• Can have hundreds of billions of 
parameters (large language models).



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming 
and the sun is shining…”

• For example, GPT-3 was trained on 
45TB of data.

• Can have hundreds of billions of 
parameters (large language models).

• Along with the weights of the 
network, word vectors themselves 
are trained.



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming 
and the sun is shining…”

• For example, GPT-3 was trained on 
45TB of data.

• Can have hundreds of billions of 
parameters (large language models).

• Along with the weights of the 
network, word vectors themselves 
are trained.

• As with other models, trained using SGD based on cross-entropy.



Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming 
and the sun is shining…”

• For example, GPT-3 was trained on 
45TB of data.

• Can have hundreds of billions of 
parameters (large language models).

• Along with the weights of the 
network, word vectors themselves 
are trained.

• As with other models, trained using SGD based on cross-entropy.

• Training is massively parallelized using specialized GPU hardware.
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Fine-tuning transformers for supervised tasks
Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A, 
like ChatGPT) have much smaller labeled datasets available.

https://www.machinecurve.com/index.php/2021/01/04/intuitive-introduction-to-bert/

(e.g. GPT)

Key idea: Initialize transformer weights based 
on huge pre-trained language model, and then 
fine-tune these weights for supervised task.

In many cases, network architecture can stay 
the same; training data just needs to be 
formatted appropriately. 

Input Output
“How are you?” “¿Cómo estás?”
“The cat sleeps.” “El gato duerme.”
“I am reading.” “Estoy leyendo.”
“She is happy.” “Ella está feliz.”
… …

Input
How are you?<to-sp>¿Cómo estás?
The cat sleeps.<to-sp>El gato duerme.
I am reading.<to-sp>Estoy leyendo.
She is happy.<to-sp>Ella está feliz.
…
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Emergent properties of LLMs
As LLMs grow, they develop emergent properties: Abilities they were not 
explicitly trained for.

https://www.assemblyai.com/blog/emergent-abilities-of-large-language-models/

https://arxiv.org/pdf/2303.12712.pdf
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needed for variable-length inputs and outputs.

• RNNs work by processing the input sequence one word at a time, updating a 
hidden representation of the input using a fixed set of weights.

• RNNs tend to forget text after a while, so they were augmented with memory 
and attention mechanisms.

• These fancier RNNs were displaced by transformers, an attention-based 
architecture allowing parallelized training. 

• The hard work of training large language models can be recycled through the 
pre-training and fine-tuning paradigm.


