Deep learning for text processing

November 28, 2023

Where we are

/Unit 1: R for data mining Lecture 1: Deep learning preliminaries
\/ Unit 2: Prediction fundamentals Lecture 2: Neural networks

J Unit 3: Regression-based methods Lecture 3: Deep learning for images

\/ Unit 4: Tree-based methods Lecture 4: Deep learning for text

Unit 5: Deep learning Lecture 5: Unit review and quiz in class

Applications of natural language processing

Applications of natural language processing

Machine translation

CKONbKO CTOAT 6unetbl?
Skol'ko stoyat bilety?

Applications of natural language processing

Machine translation Chatbots

Applications of natural language processing

Machine translation Chatbots Spam filtering

How much are the tickets?

C I t G PT https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

4) Russian

CKONbKO CTOAT 6uneTbl?
Skol'ko stoyat bilety?

=

https://translate.google.com/intl/en/about/

Applications of natural language processing

Machine translation Chatbots Spam filtering

How much are the tickets?

C I t G PT https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

Voice to text

%) Russian

CKONbKO CTOAT 6UNeTbI?
Skol'ko stoyat bilety?

https://translate.google.com/intl/en/about/ https://www.itproportal.com/guides/how-to-turn-off-ok-google-android-voice-search/

Applications of natural language processing

achine translation Chatbots Spam filterin - Personal assistant

on i‘v;ﬁl“

“Alexa, turn on

Welcome Home”
“Alexa, turn off my

Bedroom Sonos”

How much are the tickets?

“Alexa, turn on my /
Chill Time” “Alexa, turn on
/ the TV”

C l t G PT https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

- Voice to text

CKONbKO CTOAT 6unetbl?
Skol'ko stoyat bilety?

https://brailleinstitute.org/event/online-introducing-amazon-alexa

=

https://translate.google.com/intl/en/about/ https://www.itproportal.com/guides/how-to-turn-off-ok-google-android-voice-search/

Applications of natural language processing

Machine translation Chatbots

Spam filtering Personal assistant
AT NV —

“Alexa, turn on
Welcome Home”

“Alexa, turn off my
Bedroom Sonos”

How much are the tickets?

“Alexa, turn on my 7
Chill Time” “Alexa, turn on
2 the TV”

https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

© Russian Voice to text

CKONbKO CTOAT 6unetbl?
Skol'ko stoyat bilety?

https://brailleinstitute.org/event/online-introducing-amazon-alexa

Auto-complete

The next word

O

https://translate.google.com/intl/en/about/ https://www.itproportal.com/guides/how-to-turn-off-ok-google-android-voice-search/ https://towardsdatascience.com/language-modeling-c1cf7b983685

Three natural language processing tasks

Three natural language processing tasks

Sentiment analysis

* Just producing a reality-competition
show based on Squid Game is a pretty
good way of signaling to the world that
you didn’t really get Squid Game.

November 22, 2023 | Full Review...

\] Brian Lowry

CNN.com
% TOP CRITIC

‘ Squid Game: The Challenge delivers a
captivating, if chaotic, set of episodes. If
you can move past the awkwardness of
its core concept, the series delivers a lot
of the drama, tension, and backstabbing
that reality tv has always been known
for.

November 23, 2023 | Full Review...

\] Charles Hartford

But Why Tho? A Geek Community

Three natural language processing tasks

Sentiment analysis

* Just producing a reality-competition
show based on Squid Game is a pretty
good way of signaling to the world that
you didn’t really get Squid Game.

November 22, 2023 | Full Review...

\] Brian Lowry

CNN.com
% TOP CRITIC

‘ Squid Game: The Challenge delivers a
captivating, if chaotic, set of episodes. If
you can move past the awkwardness of
its core concept, the series delivers a lot
of the drama, tension, and backstabbing
that reality tv has always been known
for.

November 23, 2023 | Full Review...

\] Charles Hartford

But Why Tho? A Geek Community

Input: Movie review
Output: Positive or negative

Three natura

| language processing tasks

Sentiment analysis Language modeling

* Just producing a reality-competition
show based on Squid Game is a pretty
good way of signaling to the world that
you didn’t really get Squid Game.

November 22, 2023 | Full Review...

\] Brian Lowry

CNN.com
% TOP CRITIC

‘ Squid Game: The Challenge delivers a
captivating, if chaotic, set of episodes. If
you can move past the awkwardness of
its core concept, the series delivers a lot
of the drama, tension, and backstabbing
that reality tv has always been known
for.

November 23, 2023 | Full Review...

\] Charles Hartford

But Why Tho? A Geek Community

Input: Movie review

Output: Positive or negative

Google

is upenn an| X

{=

iS upenn an ivy

is upenn an ivy league school

is upenn and penn state the same thing
is upenn an urban campus

is upenn and ivy league

iS upenn an open campus

is upenn and penn state different

is upenn and wharton the same

is upenn an elite school

is upenn an accredited school

Google Search I'm Feeling Lucky

Report inappropriate predictions

Three natural language processing tasks

Sentiment analysis

* Just producing a reality-competition
show based on Squid Game is a pretty
good way of signaling to the world that
you didn’t really get Squid Game.

November 22, 2023 | Full Review...

\I Brian Lowry

CNN.com
w TOP CRITIC

. Squid Game: The Challenge delivers a
captivating, if chaotic, set of episodes. If
you can move past the awkwardness of
its core concept, the series delivers a lot
of the drama, tension, and backstabbing
that reality tv has always been known
for.

November 23, 2023 | Full Review...

\I Charles Hartford

But Why Tho? A Geek Community

Input: Movie review

Output: Positive or negative

Language modeling

Google

is upenn an| X

{=

iS upenn an ivy

is upenn an ivy league school

is upenn and penn state the same thing
is upenn an urban campus

is upenn and ivy league

iS upenn an open campus

is upenn and penn state different

is upenn and wharton the same

is upenn an elite school

is upenn an accredited school

Google Search I'm Feeling Lucky

Report inappropriate predictions

Input: Beginning of sentence
Output: Next word

Three natural language processing tasks

Sentiment analysis

* Just producing a reality-competition
show based on Squid Game is a pretty
good way of signaling to the world that
you didn’t really get Squid Game.

November 22, 2023 | Full Review...

\] Brian Lowry

CNN.com
% TOP CRITIC

‘ Squid Game: The Challenge delivers a
captivating, if chaotic, set of episodes. If
you can move past the awkwardness of
its core concept, the series delivers a lot
of the drama, tension, and backstabbing
that reality tv has always been known
for.

November 23, 2023 | Full Review...

\] Charles Hartford

But Why Tho? A Geek Community

Input: Movie review

Output: Positive or negative

Language modeling

Google

is upenn an| X

{=

) is upenn an ivy

. is upenn an ivy league school

2. is upenn and penn state the same thing
. is upenn an urban campus

. is upenn and ivy league

. is upenn an open campus

. is upenn and penn state different

. is upenn and wharton the same

is upenn an elite school

' is upenn an accredited school

Google Search I'm Feeling Lucky

Report inappropriate predictions

Input: Beginning of sentence
Output: Next word

Machine translation

How much are the tickets?

«) Russian

CKONbKO CTOAT 6uneTbi?
Skolko stoyat bilety?

Three natural language processing tasks

Sentiment analysis

* Just producing a reality-competition
show based on Squid Game is a pretty
good way of signaling to the world that
you didn’t really get Squid Game.

November 22, 2023 | Full Review...

O, is upenn an| X

\] Brian Lowry

CNN.com
% TOP CRITIC

‘ Squid Game: The Challenge delivers a
captivating, if chaotic, set of episodes. If
you can move past the awkwardness of
its core concept, the series delivers a lot
of the drama, tension, and backstabbing
that reality tv has always been known
for.

November 23, 2023 | Full Review...

\] Charles Hartford

But Why Tho? A Geek Community

Input: Movie review

Output: Positive or negative

Language modeling

Google

{=

iS upenn an ivy

is upenn an ivy league school

is upenn and penn state the same thing
is upenn an urban campus

is upenn and ivy league

iS upenn an open campus

is upenn and penn state different

is upenn and wharton the same

is upenn an elite school

is upenn an accredited school

Google Search I'm Feeling Lucky

Report inappropriate predictions

Input: Beginning of sentence
Output: Next word

Machine translation

€ Russian

CKONbKO CTOAT 6uneTbl?
Skol'ko stoyat bilety?

Input: Sentence in one language
Output: Translation of sentence
to another language

What makes NLP challenging?

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

Task

Input length

Output length

Sentiment analysis

Variable

Fixed

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed
Language modeling Variable Fixed

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed
Language modeling Variable Fixed
Machine translation Variable Variable

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed
Language modeling Variable Fixed
Machine translation Variable Variable

2. The meaning of a word depends on its context:

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed
Language modeling Variable Fixed
Machine translation Variable Variable

2. The meaning of a word depends on its context:

“She sat by the river bank.” versus “He went to the bank to deposit his paycheck.”

What makes NLP challenging?

1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed
Language modeling Variable Fixed
Machine translation Variable Variable

2. The meaning of a word depends on its context:

“She sat by the river bank.” versus “He went to the bank to deposit his paycheck.”

3. Words do not come with vector representations (unlike pixels).

NLP terminology

NLP terminology

 Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

NLP terminology

 Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

 Vocabulary. The set of all tokens considered by an NLP method.

NLP terminology

 Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

 Vocabulary. The set of all tokens considered by an NLP method.

 Vocabulary size. The number of tokens in a vocabulary.

NLP terminology

 Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

 Vocabulary. The set of all tokens considered by an NLP method.
 Vocabulary size. The number of tokens in a vocabulary.

 Corpus. A large body of text (such as Wikipedia), which can serve as training
data for an NLP model.

NLP terminology

 Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

 Vocabulary. The set of all tokens considered by an NLP method.
 Vocabulary size. The number of tokens in a vocabulary.

 Corpus. A large body of text (such as Wikipedia), which can serve as training
data for an NLP model.

 Encoding. Representation of token or sequence of tokens as a numeric vector.

NLP timeline

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed

Sequence length

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed

Sequence length

Recurrent neural network (RNN)

1980s to early

Good

5-50 tokens

NLP timeline

Deep learning models for NLP:

Model Popular during Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens

RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens

NLP timeline

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

NLP timeline

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens
Transformers (“attention is all you need”)| 2017-present Excellent 1000+ tokens

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model

Year

Number of parameters

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model

Year

Number of parameters

Initial transformer model (Google)

2017

213M

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAl) 2018 117M

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAl) 2018 117M
BERT (Google) 2018 340M

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAl) 2018 117M
BERT (Google) 2018 340M
ChatGPT-3.5 (OpenAl) 2022 1758

NLP timeline

Deep learning models for NLP:

Model

Popular during

Speed | Sequence length

Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

Transformers (“attention is all you need”)

2017-present

Excellent 1000+ tokens

Transformer models:

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAl) 2018 117M
BERT (Google) 2018 340M
ChatGPT-3.5 (OpenAl) 2022 1758
ChatGPT-4 (OpenAl) 2023 1.76T

Word vectors

Word vectors

A common first step in deep learning
for NLP Is to encode each word using
a word vector, e.g.

Venan = (0.2,1.6,2.5, — 3.2,4.1)

Word vectors

A common first step in deep learning
for NLP Is to encode each word using
a word vector, e.g.

Venan = (0.2,1.6,2.5, — 3.2,4.1)

Word vectors capture meaning, unlike
one-hot encodings, such as

vman — (0909 1 909090,0,0,0)

Word vectors

A common first step in deep learning
for NLP Is to encode each word using
a word vector, e.g.

Venan = (0.2,1.6,2.5, — 3.2,4.1)

Word vectors capture meaning, unlike
one-hot encodings, such as

Vman — (0909 1 909090,0,0,0)

One-hot

Embed

-l

this —

IS

one —

r—

of 4 =

the -

best —

films —

-

— actually —

the —

-

ever -

seen

the —

film —

—

starts -

one -

fall —

day -~

—

. B o

Word vectors

A common first step in deep learning : : S
for NLP is to encode each word using = : .
a word vector, e.g.

Venan = (0.2,1.6,2.5, — 3.2,4.1)

One-hot
n

of 4 m
one -
fall —
day -

this —
IS -
one -

seen -
the —
film —
starts -

the -
best -
films —

Word vectors capture meaning, unlike
one-hot encodings, such as

Vman — (09091909090909090) s ooooo ISLR2

Word vectors are trained on large text corpora, so that word vectors for pairs of
frequently co-occurring words are similar. Popular algorithms: word2vec, GloVe.

— actually —

r_
F
=

-
—

"
-
-
-
%
+_
-

Embed
ju|
u|
u

Word vectors

A common first step in deep learning .
for NLP Is to encode each word using -
a word vector, e.g.

Venan = (0.2,1.6,2.5, — 3.2,4.1)

One-hot
.

.

IS
of 4 =

this —
one —
the -
best —
films —
the -
best —
ever -
seen —
the —
film —
starts -
one —
fall —
day -~

Word vectors capture meaning, unlike
one-hot encodings, such as Ly

vmaﬂ — (09091909090909090) ; : D :s ooooo ISLAv2 D ;

— actually —

b
-

-
-
-

"
-
-
-
-
-

Embed
o
o
o
|
o
o
|

Word vectors are trained on large text corpora, so that word vectors for pairs of
frequently co-occurring words are similar. Popular algorithms: word2vec, GloVe.

Word vectors need to be trained only once (for each language), and can be reused.

Word vectors capture semantic relationships

[I I I : .
has can have
- could .
came
- ut .
went gave P
- sunday ‘UQSday |
day monday Wednesday
week
month _ mother chair
aris
L) P sister father desk {able_
ftaly germany brother
iran sweden portugal)
- stockholm jimmy mark -
peter
john
fiquid solid
i gas N
- | | | |

https://www.researchgate.net/figure/A-two-dimensional-representation-of-word-embeddings-Words-with-similar-meanings-are_fig1_327074728

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

T : ial? - K 1+)
Input text: “I enjoyed the movie!” Output class: “Positive 0.85 BN Output
0.15 , probabilities

EEREEEE

\X\e/cc:)trcc)lr <SOS> enjoyed the movie ! <EOS>

RNN for sentiment analysis

0.85 * Output
015 , probabilities

Input text: “l enjoyed the movie!” Output class: “Positive” 8

Context
vector

e e

vector| <SOS> enjoyed the movie ! <EOS>

RNN for sentiment analysis

0.85 * Output
015 , probabilities

Input text: “l enjoyed the movie!” Output class: “Positive” 8

Context
vector

EEREEEE

\X\e/cc:)trcc)lr <SOS> enjoyed the movie ! <EOS>

RNN for sentiment analysis

0.85 * Output
015 , probabilities

Input text: “l enjoyed the movie!” Output class: “Positive” 8

First
hidden
state

Context
vector

EEREEEE

\X\e/cc:)trcc)lr <SOS> enjoyed the movie ! <EOS>

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

e

e R

vector <90S> enjoyed the movie ! <EOS>

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

* Arrows denote FC layers

e

R R

vector <90S> enjoyed the movie <EOS>

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

®

Context
vector

@

e

R R

vector <90S> enjoyed the movie <EOS>

* Arrows denote FC layers

RNN for sentiment analysis

T ' ial? - G 111 7
Input text: “I enjoyed the movie!” Output class: “Positive 0.85 BN Output

015 , probabilities

]

First Second
hidden hidden
state state

®

= tanh | FC,

Context
vector

Second First <SOS>
hidden hidden word

state state vector

@ E] @ @ @ E] T
Word

vector <90S> enjoyed the movie ! <EOS>

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

®

Context
vector

@

e

R R

vector <90S> enjoyed the movie <EOS>

* Arrows denote FC layers

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

R

\X\e/cc:)trcc)lr <SOS> enjoyed the movie <EOS>

* Arrows denote FC layers

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

R

\X\e/cc:)trcc)lr <SOS> enjoyed the movie <EOS>

* Arrows denote FC layers
* Arrows with same
numbers share weights

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

e

I YRS

vector <90S> | enjoyed the movie <EOS>

* Arrows denote FC layers
* Arrows with same
numbers share weights

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

e

HERE

vector <90S> | enjoyed the movie <EOS>

* Arrows denote FC layers
* Arrows with same
numbers share weights

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

e

. <S0OS> | enjoyed the movie | <EOS>

* Arrows denote FC layers
* Arrows with same
numbers share weights

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Context
vector

* Arrows denote FC layers
* Arrows with same
numbers share weights

P

vector <90S> | enjoyed the movie <EOS>

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

8 Output
probabillities

First Second 0.15 ,

hidden hidden

state state

Last hidden state
= context vector

* Arrows denote FC layers
* Arrows with same
numbers share weights

P

vector <90S> | enjoyed the movie ! <EOS>

RNN for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 *

Output
probabillities
First Second 0.15 ,
hidden hidden
state state

Last hidden state
= context vector

* Arrows denote FC layers
* Arrows with same
numbers share weights

P

vector <90S> | enjoyed the movie ! <EOS>

RNN for sentiment analysis (simplified)

Input text: “l enjoyed the movie!” Output class: “Positive”

0.85 WM output

h!;i:jst ig(;:gnd . 0.15 , probabilities
idden idden

state state @T

0.0 Lo .9 gL gl @ U, @ uepssna

ol of ol
@,

o o ol
@,

@l
O O
/<'SOS> | enjoyed the movie | <EOS>

Word
vector

RNN for sentiment analysis (simplified)

Input text: “l enjoyed the movie!” Output class: “Positive”

@ —0—0—0— 00—

T

o —
T

| T
O O

<SOS> | enjoyed the movie

O
T
O

Training RNINs for sentiment classification

Training data

Movie ratings database:

Input Output
“I enjoyed the movie.” “Positive”
“Despite its intriguing premise, this movie y L
ended up being disappointment.” Negative
“This was the best movie | had seen in a) e
Positive

while.”

Training process

* Learn the three sets of weights via
stochastic gradient descent on the
cross-entropy loss function.

©
021
@)
O

RNN for language modeling

Input text: “my favorite season is”. Output word: “spring”
0.35: spring

0.25: summer

. 0.02: not
T 0.0001: elephant

@—0—0—0—0—0

| N
e © o o o

<SOS> my favorite season IS

Training RNNs for language modeling

Training data Training process

Large corpus of text, e.g. Wikipedia. Learn the three sets of weights via

stochastic gradient descent on the

My favorite season in spring. The flowers cross-entropy loss function.

are blooming and the sun is shining...”

Input Output .
“My” “favorite” @T
“My favorite” “season” @
“My favorite season” “is” . —
“My favorite season is” “spring” @T

RNNSs for autoregressive text generation

RNNSs for autoregressive text generation

<SOS>

RNNSs for autoregressive text generation

<SOS>

RNNSs for autoregressive text generation

0.35: The
0.25: A

T

@—©O

|

@,
<SOS>

RNNSs for autoregressive text generation

The

<SOS>

RNNSs for autoregressive text generation

The,
O :
@Q—©O

<SOS> The

RNNSs for autoregressive text generation

The,
|

|

|

1

|

|
|
|

T |
|
|
|
@—0—0
1
1
|
|
|
1
1
1
1
1
|

<SOS> The

RNNSs for autoregressive text generation

0.15: grass
The 0.12: sky
©: O
®e—0——
@ 0

<SOS> The

RNNSs for autoregressive text generation

The, sky
©O: O

®— 0 ——
@ 'O

<SOS> The

RNNSs for autoregressive text generation

The, sky.
|
1 |
| | |
| |
| | | |
| | | |
1 1
| | | |
1 | |
1
| |
| |
O—Q@ ——
|
| |
1
| |
1
| | | |
| | |
1 1
| | |
| | |
1 | |

<SOS> ‘The *sky

RNNSs for autoregressive text generation

0.20:1s
0.13: this

RNNSs for autoregressive text generation

RNNSs for autoregressive text generation

RNNSs for autoregressive text generation

0.25: blue

RNNSs for autoregressive text generation

RNNSs for autoregressive text generation

RNNSs for autoregressive text generation

The, sky, IS . gray

RNN for machine translation

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

=
Z

Encoder R

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

<SOS>

=
Z

Encoder R

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

<SOS> How

Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

<SOS> How

Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

<SOS> How are

Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

QQ.—>Q—>Q—>Q

o ! 1 1
@,

<SOS> How are

Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

QQQ—>Q—>Q—>Q—>Q

o ! 1 1 1
@,

<SOS> How are

Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

QQQ—>Q—>Q—>Q—>Q—>.

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

QQQ—>Q—>Q—>Q—>Q—>Q

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

context

@ vector
e—0—0—0—0—0—0

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Pass input sentence through encoder RNN.
2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

context

@ vector
e—0—0—0—0—0—0

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Pass input sentence through encoder RNN.
2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

context

@ vector
e—0—0—0—0—0—0

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder R

v b

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Pass input sentence through encoder RNN.
2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder R

v b

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder R

v b

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder R

v b

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

¢

1

O
@ Cvoerc]:t?))l(rt @@T
ele—+0—+0—>0—+0—0 11050

o t 1t 1t 1 d
@,

L}
@ 06 o 0 o © O

1

\ |

<SOS> How are ? <EOS> <SOS> ¢
Encoder RNN Decoder RNN

1
L}
1
1
1
|
1
1
|}

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

¢

1

O
@ Cvoerc]:t?))l(rt @@T
e—0o0—--0—-0—0—0—0-{10—0—0

o t t t 1 1 oY
O Qo

|
<SOS> How are ? <EOS> <SOS> 2

Encoder RNN Decoder RNN

1
L}
1
1
1
|
1
1
|}

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Pass input sentence through encoder RNN.
2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.
4. Use the decoder RNN to generate the translation.
(&, Como
O. O
© estor @@T T
e—0—0—0—0—-0—0-{10—0—-—0

o t t t 1 1 oY
O Qo

|
<SOS> How are ? <EOS> <SOS> 2

Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

RNN for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.
3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

context

@ vector
=>0—0—+0—>0—>0—0 -

o ! 1t 1 t 1
@,

<SOS> How are ? <EOS>
Encoder RNN Decoder RNN

Training RNNs for machine translation

Training data

Parallel text corpora across two
languages, e.g. U.N. proceedings.

Input Output
“How are you?” “s COmo estas?”
“The cat sleeps.” “El gato duerme.”
“| am reading.” “Estoy leyendo.”
“She is happy.” “Ella esta feliz.”

Training RNNs for machine translation

Training data Training process
Parallel text corpora across two * |earn the two sets of weights in
languages, e.g. U.N. proceedings. encoder RNN and three sets of
weights in decoder RNN via
Input Output stochastic gradient descent on the
“How are you?” “, COMO estas?” cross-entropy loss function.
“Th t sl “El
- s S.eep,,s - 9ato duerme,, Encoder weights Decoder weights
| am reading. Estoy leyendo.)
“She is happy.” “Ella esta feliz.” O
@—0 Q@Q
© O

<SOS> <SOS>

Weaknesses of RNNs

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

Weaknesses of RNNs

 Hard to handle long sequences. Example: Text generated from RNN
Hard to encode the information from trained on Obama’s speeches:
entire input sequence In a single context
vector. RNNs tend to “forget.”

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that | will not
be able to get this done...”

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

* Slow to train. The sequential nature of
RNNs prevents parallelization.

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that | will not
be able to get this done...”

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

* Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that | will not
be able to get this done...”

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

* Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:

 Equipping RNNs with “memory” (LSTMs)

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that | will not
be able to get this done...”

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

* Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:
 Equipping RNNs with “memory” (LSTMs)
 Equipping RNNs with "attention”

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that | will not
be able to get this done...”

Weaknesses of RNNs

 Hard to handle long sequences.
Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

* Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:
 Equipping RNNs with “memory” (LSTMs)
 Equipping RNNs with "attention™ <«—

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that | will not
be able to get this done...”

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Encode input sentence via RNN.

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Encode input sentence via RNN.

e—0—0—-0—0—-0—0—0

11 11t 11

<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

2. Pass each hidden state through
FC layer with softmax to get
attention weights.

e—0—0—-0—0—-0—0—0

11 11t 11

<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

2. Pass each hidden state through
FC layer with softmax to get
attention weights.

0 0.1 0.4 0.1 0.2 0.2 0

ottt

e—0—0—-0—0—-0—0—0

11 11t 11

<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

2. Pass each hidden state through
FC layer with softmax to get
attention weights.

3. Multiply hidden states by

attention weights.
0 01 04 01 02 02 0

ottt

e—0—0—-0—0—-0—0—0

11 11t 11

<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

2. Pass each hidden state through
FC layer with softmax to get
attention weights.

3. Multiply hidden states by O © © O © © O
| attention weights. T T T T T T T
0 0.1 0.4 0.1 0.2 0.2 0
| T R
e—O0—0—0—-0—0—0—0
rF 1ttt 1 1t 1
@ 00 0 0 o o0 o

<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

2. Pass each hidden state through
FC layer with softmax to get

attention weights.

3. Multiply hidden states by °o 9 9 0 o9 0 O
| attention weights. T T T T T T T
0 01 04 01 02 02 0
4. Add weighted hidden states to T T T T T T T
get context vector.

e—0—0—0—0—-0—0—0
rt t t 1t 1 1
@ ¢ 0 o o6 o o

<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

2. Pass each hidden state through

FC layer with softmax to get %}\
attention weights.
3. Multiply hidden states by °o 9 9 90 9 9 N
attention weights. T T T T T T T
| | 0 01 04 01 02 02 0
4. Add weighted hidden states to T T T T T T T
get context vector.
e—0—0—0—0—-0—0—0
rt t t 1t 1 1
@ ¢ 0 o o6 o o
<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Encode input sentence via RNN.

2. Pass each hidden state through ®
FC layer with softmax to get %T\
attention weights.
3. Multiply hidden states b DY © O © © O
. Multiply hi Y
attention weights. T T T T T T T
| | 0 01 04 01 02 02 0
4. Add weighted hidden states to T T T T T T T
get context vector.
e—0—0—0—0—-0—0—0
5. Pass context vector through FC T T T T T T T
layer with softmax to get output
class probabillities. © © © @ © © ©
<S0OS> | enjoyed the movie ! <EOS>

RNN for sentiment analysis with attention

Input text: “l enjoyed the movie!” Output class: “Positive” 0.85 *
1. Encode input sentence via RNN. CT) 0.15 ,
2. Pass each hiaden state through O

FC layer with softmax to get
attention weights.

3. Multiply hidd tates b °o 9 0 O 0 0 O
. Multiply hidden states by
attention weights. T T T T T T T
| | 0 01 04 01 02 02 0
4. Add weighted hidden states to T T T T T T T
get context vector.
e—0—0—0—-0—0—0—0
5. Pass context vector through FC T T T T T T T
layer with softmax to get output
class probabillities. © © © @ © © ©
<S0OS> | enjoyed the movie ! <EOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

<SOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

—©0

<SOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

—©0

T

<SOS> How

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

°e—0—0
11
e ©

<SOS> How

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

e—0—+0—0
11 1
© © o

<SOS> How are

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

e—+0—+0—>0—0
1 1t 1t 1
© ©¢ o o

<SOS> How are you

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

e—+0—-0—-0—~0—0
1t 1t 1 1
© ©¢ © © o

<SOS> How are you ?

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

1. Pass input sentence through encoder RNN.

—0—0—-0—0—-0—0

11 1t 11

<SOS> How are you ?7 <EOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

2. Copy the last hidden state of encoder RNN to first hidden state of a
decoder RNN.

—0—0—-0—0—-0—0

11 1t 11

<SOS> How are you ?7 <EOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

2. Copy the last hidden state of encoder RNN to first hidden state of a
decoder RNN.

e—0—+>0—-0—+0—0—0 0

11 1t 11

<SOS> How are you ?7 <EOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

3. Input <SOS> token to generate next decoder hidden state.

e—0—+>0—-0—+0—0—0 0

11 1t 11

<SOS> How are you ?7 <EOS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

3. Input <SOS> token to generate next decoder hidden state.

e—0—+>0—-0—+0—0—0 0

11 1t 11

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

3. Input <SOS> token to generate next decoder hidden state.

e—0—+0—-0—+0—0—0 0—0

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

4. Calculate attention vector over encoder hidden states based on decoder
hidden state.

e—0—+0—-0—+0—0—0 0—0

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

4. Calculate attention vector over encoder hidden states based on decoder
hidden state.

0.05 0.2 0.1 0.1 . 0.05
‘

e—0—+>0—-0—+0—~0—0 0—

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

5. Compute first context vector as weighted average of encoder
hidden states.

0.05 0.2 0.1 0.1 0.05

T "--
e—0—+0+0—>0—0—0 0

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

5. Compute first context vector as weighted average of encoder
hidden states.

O O

O.TOS OTZ

!
O—mQO0O— Q0 —

P 1

@ O

<SOS> How are

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

5. Compute first context vector as weighted average of encoder
hidden states.

O0—0 o0

0.05 0.2 0.1 0.1 OO
T \\
o—»o—»o—»o—»o—»o—»o ----- - @—

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

6. Pass context vector through FC layer with softmax to get
first predicted token.

O0—0O o0

0.05 0.2 0.1 0.1 0. O

T \.

o—»o—»o—»o—»o—»o—»o ----- - @—

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

6. Pass context vector through FC layer with softmax to get
first predicted token.

0—0 O0—_0 é)
\\
0.[)5 OT.Z 0.1 0.1 1

T \.

o—»o—»o—»o—»o—»o—»o ----- - @—

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

/. Copy first predicted token to input sequence.

00
1

T

0.05 0.2

T &
©e—-0—+0 -0 —+0—>0—0 0

11 1t 11 T

<SOS> How are you ?7 <EOS> <S0OS>

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

/. Copy first predicted token to input sequence.

O0—O
11T
0.054 0.2

T &
©e—-0—+0 -0 —+0—>0—0 0

11 1t 11 T

1
|
|
|
@ 0 06 o o6 o © ©
|
v

<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Define next hidden state by passing previous context vector, previous
hidden state, and input token through FC layers.

0—0 O0—_0 é)
\\
0.[)5 OT.Z 0.1 0.1 1

1 ———
o—»o—»o—»o—»o—»o—»o ----- - @—

11 1t 11 T

1
|
|
|
@ 0 06 o o6 o © ©
|
v

<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Define next hidden state by passing previous context vector, previous
hidden state, and input token through FC layers.

O0—O
11T
0.054 0.2

e—0—0—-0—-0—-0—0---0—0—0

11 1t 11 Pt

|
|
|

v
<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

¢,
o

1
1

|
1
|
|
1

*e—0—0—-0—-—0—0—0---0—0—0

t ottt ot Ry

|
|
|

v
<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

0.05 0.5 0.1

T
11 1t 11 T iy

|
|
|

v
<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

o—»l—»o—»
11 I 1t 1 T x‘T
@ © e © o ‘©

v
<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

.

0.05 0.5 0.1

T
11 1t 11 T iy

|
|
|

v
<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

.

0.05 0.5 0.1

T
11 1t 11 T

<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

.

0.05 0.5 0.1

T
11 1t 11 T
O

@ 0 6 o6 o o O {

<SOS> How are you ? <EOS> <SOS> ¢ Como

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

.

0.05 0.5 0.1

e—0—0—0—-0—-0—0

----- @ —

11 1t 11 Pt

|
|
|

<SOS> How are you ?7 <EOS> <SO0S> ¢

RNN for machine translation with attention

Input text: “How are you?” Output translation: “; Como estas?”

8. Repeat until <EOS> token is reached.

e—0—+>0—+0—>0—0—0

11 1t 11

<SOS> How are you ?7 <EOS>

Visualizing attention

4
-
Q
-
Q
Q
—
(@)
©

on
the
European
Economic
Area

was
signed

N
August
1992
<end>

accord

sur

la

zone
économique
européenne
a

éteée

signé

en

aout

1992

<end>

https://arxiv.org/pdf/1409.0473.pdf

From RNNs to transformers

From RNNs to transformers

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens

From RNNs to transformers

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens
Transformers (“attention is all you need”)| 2017-present Excellent 1000+ tokens

From RNNs to transformers

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens
Transformers (“attention is all you need”)| 2017-present Excellent 1000+ tokens

RNNs, no matter how fancy, still did not allow parallel processing of inputs.

From RNNs to transformers

Deep learning models for NLP:

Model Popular during Speed | Sequence length
Recurrent neural network (RNN) 1980s to early Good 5-50 tokens
RNN with “memory” (e.g. LSTMSs) 1997 to mid-2010s| Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor| 1000+ tokens
Transformers (“attention is all you need”)| 2017-present Excellent 1000+ tokens

RNNs, no matter how fancy, still did not allow parallel processing of inputs.

Transformer proposed in 2017: An architecture based on attention but not
recurrence, which performed better than RNNs and accommodated parallelization.

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

<S0OS> | enjoyed the movie ! <EOS>

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

<S0OS> | enjoyed the movie ! <EOS>

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

@ 0 0 0 o o o
@ 0 0 o0 o o o
<S0OS> | enjoyed the movie ! <EOS>

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another

FC layer with softmax to get attention
weights.

@ 0 0 0 o o o
@ 0 0 o0 o o o
<S0OS> | enjoyed the movie ! <EOS>

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention

weights.
0 0.1 0.4 0.1 0.2 0.2 0
| O
@ 0 0 0 o o o
r 11t 1t t 1
@ 0 0 o0 o o o
<S0OS> | enjoyed the movie ! <EOS>

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention

weights.
4. Take weighted average of token valuesto 0 0.1 0.4 0.1 0.2 0.2 0
get context vector. T T T T T T T
@ 0 ¢ 0 o o o
rt t t 1t 1 1
@ ¢ 0 o o6 o o
<S0OS> | enjoyed the movie ! <EOS>

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

Input text: “l enjoyed the movie!” Output class: “Positive”

1.
2.

Simplified transformer for sentiment analysis

Start with each input token’s word vector.

Compute each input token’s value by
passing its word vector through FC layer.

. Pass each token value through another

FC layer with softmax to get attention
weights.

. Take weighted average of token values to

get context vector.

. Pass context vector through FC layer

with softmax to get output class
probabillities.

Input text: “l enjoyed the movie!” Output class: “Positive”

1.
2.

Simplified transformer for sentiment analysis

Start with each input token’s word vector.

Compute each input token’s value by
passing its word vector through FC layer.

. Pass each token value through another

FC layer with softmax to get attention
weights.

. Take weighted average of token values to

get context vector.

. Pass context vector through FC layer

with softmax to get output class
probabillities.

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer
with softmax to get output class
probabillities.

This strategy ignores word order!

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive”

1. Positionally encode each input token’s
word vector by appending its index.

2. Compute each input token’s value by
passing its positional encoding vector
through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer with
softmax to get output class probabillities.

Simplified transformer for sentiment analysis

Input text: “l enjoyed the movie!” Output class: “Positive” 0.85 *
1. Positionally encode each input token’s © 0.15 ,
word vector by appending its index. T
O

2. Compute each input token’s value by
passing its positional encoding vector

through FC layer. O O 6 O O O O
3. Pass each token value through another T T T T T T T
FC layer with softmax to get attention 0 01 04 01 02 0.2 0
weights. T T T T T T T
4. Take weighted average of token values to @ ©®© O O O o o
get context vector. T T T T T T T
O. Pass contextvector through FC layerwith o o o o @ @ @

softmax to get output class probabillities.
0.<SOS> 1.1 2.enjoyed 3.the 4.movie 5.! 6.<EOS>

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and
pass it through FC layer to compute values.

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and
pass it through FC layer to compute values.

e © © © ©
1t 1 1 1
© © © © ©

0.<SOS> 1.my 2.favorite 3.season 4.is

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and

pass it through FC layer to compute values.

2. Calculate attention weights for “is” by
comparing its value to its own and those of

preceding tokens (self-attention).

e © © © ©
1t 1 1 1
© © © © ©

0.<SOS> 1.my 2.favorite 3.season 4.is

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and
pass it through FC layer to compute values.

2. Calculate attention weights for “is” by
comparing its value to its own and those of

preceding tokens (self-attention).

0.05 0.1 0.1 0.65

0.<SOS> 1.my 2.favorite 3.season 4.is

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1.

Positionally encode each input token and
pass it through FC layer to compute values.

Calculate attention weights for “is” by
comparing its value to its own and those of

preceding tokens (self-attention).

Take weighted average of preceding token
0.1_ 01 0.5

values to get context vector or contextual — 9-9°
embedding for i r W
@ O o ©

T T

0.<SOS> 1.my 2.favorite 3.season 4.is

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1.

. Calculate attention weights for “is” by %
comparing its value to its own and those of

Positionally encode each input token and
pass it through FC layer to compute values.

preceding tokens (self-attention). CT) CT) O CT)

T

Take weighted average of preceding token
0.1_ 0.1 0.65

values to get context vector or contextual — 9-9°
embedding for i AR\
@ O 0 ©O

0.<SOS> 1.my 2.favorite 3.season 4.is

o
—

— Q@ —5—

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1.

4. Pass contextual embedding through FC

. Calculate attention weights for “is” by %
comparing its value to its own and those of

Positionally encode each input token and
pass it through FC layer to compute values.

preceding tokens (self-attention).

o o o
Pt

5 0.1 0.1 0.65

TN
layer with softmax to get output class T T T

probabilities. @ © © o o

0.<SOS> 1.my 2.favorite 3.season 4.is

Take weighted average of preceding token
values to get context vector or contextual °

embedding for “is”

o
—

— Q@ —oo— 0
—Q —o—

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring” spring

4. Pass contextual embedding through FC

. Positionally encode each input token and
pass it through FC layer to compute values.

@,
. Calculate attention weights for “is” by %’
comparing its value to its own and those of CT)

preceding tokens (self-attention). © O O

T

5 0.1 0.1 0.65

TN
layer with softmax to get output class T T T

probabilities. @ ©© o O T

0.<SOS> 1.my 2.favorite 3.season 4.is

. Take weighted average of preceding token
values to get context vector or contextual °

embedding for “is”

o
—

— Q@ —oo— 0

Simplified transformer for language modeling

Input text: “my favorite season is” Output word: “spring”

1. Positionally encode each input token and

pass it through FC layer to compute values. Simplified flowchart of
simplified transformer
2. Calculate attention weights for “is” by spring
comparing its value to its own and those of O
preceding tokens (self-attention). T
3. Take weighted average of preceding token ®

values to get context vector or contextual
embedding for “is”. /%T
4. Pass contextual embedding through FC ? ? ? ?

layer with softmax to get output class T

probabilities. @ © © o o

0.<SOS> 1.my 2.favorite 3.season 4.is

Simplified transformer for autoregressive text generation

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

T

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

T

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding O
values (so far, no preceding values). T
O

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

O
4. Generate next token by passing contextual O
embedding through FC layer + softmax. T

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

0.<S0OS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

@—@®— 0 —0:

5. Copy generated token to the input.
0.<SOS>

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

@— 0 — @ — Q3

5. Copy generated token to the input. :
0.<S0S> 1.my

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

@—0®— @ — Q3

5. Copy generated token to the input. .v
6. Repeat until <EOS> token is generated. eSO

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

@— 0 — @ — Q3

\/
0.<S0S> 1.my

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

@— 0 — @ — Q3

. @
5. Copy generated token to the input. VQ

: . 0.<SO0S> 1.my
6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3
<

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

@—0— 0O

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

v

: . 0.<SO0S> 1.my
6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite

3. Calculate <SOS> token’s contextual O ©
embedding by attention-weighted linear T '
combination of its value and all preceding Q'

values (so far, no preceding values). V

— QO —

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input. .v
6. Repeat until <EOS> token is generated. eSO

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite

3. Calculate <SOS> token’s contextual O: O
embedding by attention-weighted linear T
combination of its value and all preceding ‘

values (so far, no preceding values). V

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input. : v
0.<SOS> 1.my 2.favorite

6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite

3. Calculate <SOS> token’s contextual O: O
embedding by attention-weighted linear T
combination of its value and all preceding ‘
values (so far, no preceding values). V

4. Generate next token by passing contextual O |
embedding through FC layer + softmax. T ‘

5. Copy generated token to the input. O v VQ

0.<SOS> 1.my 2.favorite

6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite

3. Calculate <SOS> token’s contextual O O
embedding by attention-weighted linear T : T \
combination of its value and all preceding o 0.
values (so far, no preceding values). V

4. Generate next token by passing contextual O | O
embedding through FC layer + softmax. T ' T

5. Copy generated token to the input. O : VQ

_ _ 0.<SOS> 1.my 2.favorite
6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite

3. Calculate <SOS> token’s contextual ©; Ot
embedding by attention-weighted linear T T
combination of its value and all preceding O ‘-, Q'

4. Generate next token by passing contextual O
embedding through FC layer + softmax. T
O

‘ O
values (so far, no preceding values). W T
. ©

5. Copy generated token to the input. v VQ

0.<SOS> 1.my 2.favorite

6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite season

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual ®
embedding through FC layer + softmax. T ‘.‘
O

5. Copy generated token to the input. : i
0.<SOS> 1.my 2.favori
6. Repeat until <EOS> token is generated. v sfavortie

Simplified transformer for autoregressive text generation

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing

token through fully connected layer. my favorite season i

0. 0: 0. O

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear T -, T T
combination of its value and all preceding . 0. O

values (so far, no preceding values). TM

4. Generate next token by passing contextual ‘ ‘

© —

embedding through FC layer + softmax.

5. Copy generated token to the input. v
0.<SOS> 1.my 2.favorite Sseason

6. Repeat until <EOS> token is generated.

Simplified transformer for autoregressive text generation

1.
2.

Positionally encode <SOS> token.

Calculate <SOS> token’s value by passing
token through fully connected layer.

my favorite season IS spring

. Calculate <SOS> token’s contextual O O O O O
embedding by attention-weighted linear T ‘-‘ T ‘-‘ T ‘.‘ T :
combination of its value and all preceding . 0 0 @ @

values (so far, no preceding values). TW T
O

Generate next token by passing contextual O O O O
embedding through FC layer + softmax. T ‘.‘ T ‘.‘ T '.‘ T ‘-‘
. Copy generated token to the input. O VQ VQ VQ ,Q

0.<SOS> 1.my 2.favorite 3.season 4.is

Repeat until <EOS> token is generated.

Simplified transformer for machine translation

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.

0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<S0S>

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<S0S>

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

© ©¢ © © © 0 ©
r tt t 1 1 1
© ©¢ ©¢ © © © ©

0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<S0S>

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

© ©¢ © ©¢ @ @ ©
r tt t 1 1 1
© ©¢ ©¢ © © © ©

0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<S0S>

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0
!
o
@ ©6 © © @ © o
P 1t 11
© © © ©¢ © © ©

0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<S0S>

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

o

¥

o
@ 0 o o o0 o Q‘
t ot ot 1 1 1
@ 0 ¢ o o o o

v
0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<50S5> 7.

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

o

¥

o
@ 0 o o o0 o Q“":Q
t ot ot ot ot ot ot
@ ©¢ ©¢ ¢ © o o 30

0.<SOS> 1.How 2.are 3.you 4.7 5.<EO0S>6.<50S5> 7.

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

6““ Cg)no
t 1
Q‘-,Q
@ O O Q Q
bttt ot ottt
@ 0 ©© o o o o Q

0.<S0OS> 1.How 2.are 3.you 4.7 5.<E0S>6.<S50S> 7.

Simplified transformer for machine translation

Input text: “How are you?” Output translation: “; Como estas?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

AN
A
—0— Q-’Og

&«--"""

0.<SOS> 1.How 2.are 3.you 4.7 b5.<E0S>6.<SO0S> 7.5 8.Como 9.estas 10.?

Training transformer language models

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

“My favorite season in spring. The flowers are blooming
and the sun is shining...”

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “Is”
“My favorite season is” “spring”

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

 For example, GPT-3 was trained on
45TB of data.

“My favorite season in spring. The flowers are blooming
and the sun is shining...”

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “Is”
“My favorite season is” “spring”

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

e For example, GPT-3 was trained on “My favorite season in spring. The flowers are blooming

45TB of data. and the sun is shining...”
e Can have hundreds of billions of N Input Output
My favorite
parameters (large language models). .y, 7 e R
“My favorite season” “Is”
“My favorite season is” “spring”

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

e For example, GPT-3 was trained on “My favorite season in spring. The flowers are blooming

45TB of data and the sun is shining...”
 Can have hundreds of billions of N Input Output
arameters (large language models) v favorite
P 9 guag "~ |"My favorite” “season”
: : “My favorite season” “ig”
* Along with the weights of the “My favorite season is” spring’
network, word vectors themselves

are trained.

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

e For example, GPT-3 was trained on “My favorite season in spring. The flowers are blooming

45TB Of data and the sun is shining...”
» Can have hundreds of billions of oy eyt o
parameters (large language models). My favorite” "
_ _ “My favorite season” “Is”
* Along with the weights of the “My favorite season is” spring’
network, word vectors themselves

are trained.

* As with other models, trained using SGD based on cross-entropy.

Training transformer language models

 Trained based on unlabeled text, of which there is a massive amount online.

e For example, GPT-3 was trained on “My favorite season in spring. The flowers are blooming

45TB Of data and the sun is shining...”
» Can have hundreds of billions of oy eyt o
parameters (large language models). My favorite” "
_ _ “My favorite season” “Is”
* Along with the weights of the “My favorite season is” spring’
network, word vectors themselves

are trained.

* As with other models, trained using SGD based on cross-entropy.

* Training is massively parallelized using specialized GPU hardware.

Fine-tuning transformers for supervised tasks

Fine-tuning transformers for supervised tasks

Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Fine-tuning transformers for supervised tasks

Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then
fine-tune these weights for supervised task.

Fine-tuning transformers for supervised tasks

Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then et ol instunec
. ! ! task 1 to tas
fine-tune these weights for supervised task. e

Model finetuned

(e.9. GPT) 'tas ' to task 2

Fine-tuning transformers for supervised tasks

Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then et ol instunec
. ! ! task 1 to tas
fine-tune these weights for supervised task. e

i - Model finetuned
(e.9- GPT) as to task 2

In many cases, network architecture can stay
the same; training data just needs to be
formatted appropriately.

Fine-tuning transformers for supervised tasks

Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then et Model finetuned
. ! : as to task 1

fine-tune these weights for supervised task. e

Model finetuned

(e.9. GPT) as to task 2

In many cases, network architecture can stay
the same; training data just needs to be
formatted appropriately.

https://www.machinecurve.com/index.php/2021/01/04/intuitive-introduction-to-bert/

Input Output Input
“How are you?” “; COmo estas?” How are you?<to-sp>¢Como estas?
“The cat sleeps.” “El gato duerme.” The cat sleeps.<to-sp>El gato duerme.
(14 .) 14 J) ﬁ .
| am reading. Estoy leyendo. | am reading.<to-sp>Estoy leyendo.
“She is happy.” “Ella esta feliz.” She is happy.<to-sp>Ella esta feliz.

Emergent properties of LLMs

As LLMs grow, they develop emergent properties: Abllities they were not
explicitly trained for.

Emergent properties of LLMs

As LLMs grow, they develop emergent properties: Abllities they were not
explicitly trained for.

https://www.assemblyai.com/blog/emergent-abilities-of-large-language-models/

Emergent properties of LLMs

As LLMs grow, they develop emergent properties: Abllities they were not

explicitly trained for.

https://www.assemblyai.com/blog/emergent-abilities-of-large-language-models/

GPT-4 vs ChatGPT

Prompt: Here we have a book, 9 eggs, a laptop, a bottle and a nail. Please tell me how to
stack them onto each other in a stable manner.

GPT-4:

One possible way to stack the objects onto each other in a stable manner is:

- Place the book flat on a level surface, such as a table or a floor. The book will serve as the base of
the stack and provide a large and sturdy support.

- Arrange the Y eggs 1n a 3 by 3 square on top of the book, leaving some space between them. The eggs
will

form a second layer and distribute the weight evenly. Make sure the eggs are not cracked or broken, and
handle them gently to avoid dropping them.

- Place the laptop on top of the eggs, with the screen facing down and the keyboard facing up. The
laptop will fit snugly within the boundaries of the book and the eggs, and its flat and rigid surface
will provide a stable platform for the next layer. Make sure the laptop is closed and turned off, and do
not press any keys or buttons.

- Place the bottle on top of the laptop, with the cap facing up and the bottom facing down. The bottle
will add some height and balance to the stack, and its cylindrical shape will reduce the contact area
with the laptop. Make sure the bottle is empty and closed, and do not shake or tilt it.

- Place the nail on top of the bottle cap, with the pointy end facing up and the flat end facing down.
The nail will be the final and smallest object in the stack, and its sharp tip will prevent it from
rolling or sliding off the bottle. Make sure the nail is clean and straight, and do not touch or move
it.

ChatGPT:

It would be difficult to stack all of these objects on top of each other in a stable manner without
using any extra objects. The book and laptop are likely too large and heavy to stack on top of the

eggs without damaging them. The bottle and nail may be too small to provide a stable base for the other
objects.

Here is one possible way to stack the objects:

Place the bottle on a flat surface.

Carefully balance the nail on top of the bottle.

Place the eggs on top of the nail, making sure they are balanced and not tilting to one side.
Place the laptop on top of the eggs, again making sure it is balanced and not tilting to one side.
Finally, place the book on top of the laptop.

This stack may not be very stable, so it is important to be careful when handling it. Alternatively, you
could try stacking the objects in a different order or using some of the objects as supports for others
to create a more stable stack.

https://arxiv.org/pdf/2303.12712.pdf

Summary

» \Word vectors used to translate words into numbers for predictive modeling.

Summary

» \Word vectors used to translate words into numbers for predictive modeling.

e New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

Summary

» \Word vectors used to translate words into numbers for predictive modeling.

e New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

» RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

Summary

» \Word vectors used to translate words into numbers for predictive modeling.

e New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

» RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

* RNNSs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

Summary

» \Word vectors used to translate words into numbers for predictive modeling.

New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

RNNSs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

These fancier RNNs were displaced by transformers, an attention-based
architecture allowing parallelized training.

Summary

» \Word vectors used to translate words into numbers for predictive modeling.

New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

RNNSs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

These fancier RNNs were displaced by transformers, an attention-based
architecture allowing parallelized training.

The hard work of training large language models can be recycled through the
pre-training and fine-tuning paradigm.

