
November 28, 2023

Deep learning for text processing
STAT 4710

Lecture 1: Deep learning preliminaries

Lecture 2: Neural networks

Lecture 3: Deep learning for images

Lecture 4: Deep learning for text

Lecture 5: Unit review and quiz in class

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Where we are

Applications of natural language processing

https://translate.google.com/intl/en/about/

Machine translation

Applications of natural language processing

https://translate.google.com/intl/en/about/

Machine translation

Applications of natural language processing
Chatbots

https://translate.google.com/intl/en/about/

Machine translation

Applications of natural language processing
Chatbots

https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

Spam filtering

https://translate.google.com/intl/en/about/

Machine translation

Applications of natural language processing
Chatbots

https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

Spam filtering

https://www.itproportal.com/guides/how-to-turn-off-ok-google-android-voice-search/

Voice to text

https://translate.google.com/intl/en/about/

Machine translation

Applications of natural language processing
Chatbots

https://brailleinstitute.org/event/online-introducing-amazon-alexa

Personal assistant

https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

Spam filtering

https://www.itproportal.com/guides/how-to-turn-off-ok-google-android-voice-search/

Voice to text

https://translate.google.com/intl/en/about/

Machine translation

Applications of natural language processing

https://towardsdatascience.com/language-modeling-c1cf7b983685

Auto-complete

Chatbots

https://brailleinstitute.org/event/online-introducing-amazon-alexa

Personal assistant

https://blog.malwarebytes.com/security-world/2017/02/explained-bayesian-spam-filtering/

Spam filtering

https://www.itproportal.com/guides/how-to-turn-off-ok-google-android-voice-search/

Voice to text

Three natural language processing tasks

Three natural language processing tasks

Sentiment analysis

Three natural language processing tasks

Sentiment analysis

Input: Movie review

Output: Positive or negative

Three natural language processing tasks

Sentiment analysis Language modeling

Input: Movie review

Output: Positive or negative

Three natural language processing tasks

Sentiment analysis Language modeling

Input: Movie review

Output: Positive or negative

Input: Beginning of sentence

Output: Next word

Three natural language processing tasks

Sentiment analysis Machine translationLanguage modeling

Input: Movie review

Output: Positive or negative

Input: Beginning of sentence

Output: Next word

Three natural language processing tasks

Sentiment analysis Machine translationLanguage modeling

Input: Movie review

Output: Positive or negative

Input: Beginning of sentence

Output: Next word

Input: Sentence in one language

Output: Translation of sentence
to another language

What makes NLP challenging?

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed

Language modeling Variable Fixed

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

Task Input length Output length
Sentiment analysis Variable Fixed

Language modeling Variable Fixed

Machine translation Variable Variable

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

2. The meaning of a word depends on its context:

Task Input length Output length
Sentiment analysis Variable Fixed

Language modeling Variable Fixed

Machine translation Variable Variable

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

2. The meaning of a word depends on its context:

“She sat by the river bank.” versus “He went to the bank to deposit his paycheck.”

Task Input length Output length
Sentiment analysis Variable Fixed

Language modeling Variable Fixed

Machine translation Variable Variable

What makes NLP challenging?
1. NLP requires handling variable-length inputs and/or outputs.

2. The meaning of a word depends on its context:

“She sat by the river bank.” versus “He went to the bank to deposit his paycheck.”

3. Words do not come with vector representations (unlike pixels).

Task Input length Output length
Sentiment analysis Variable Fixed

Language modeling Variable Fixed

Machine translation Variable Variable

NLP terminology

NLP terminology

• Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

NLP terminology

• Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

• Vocabulary. The set of all tokens considered by an NLP method.

NLP terminology

• Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

• Vocabulary. The set of all tokens considered by an NLP method.

• Vocabulary size. The number of tokens in a vocabulary.

NLP terminology

• Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

• Vocabulary. The set of all tokens considered by an NLP method.

• Vocabulary size. The number of tokens in a vocabulary.

• Corpus. A large body of text (such as Wikipedia), which can serve as training
data for an NLP model.

NLP terminology

• Token. A discrete unit of language, such as a word. Other tokens include
punctuation symbols, <SOS> (start of sequence), and <EOS> (end of sequence).

• Vocabulary. The set of all tokens considered by an NLP method.

• Vocabulary size. The number of tokens in a vocabulary.

• Corpus. A large body of text (such as Wikipedia), which can serve as training
data for an NLP model.

• Encoding. Representation of token or sequence of tokens as a numeric vector.

NLP timeline

Deep learning models for NLP:

NLP timeline

Model Popular during Speed Sequence length

Deep learning models for NLP:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

Deep learning models for NLP:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens

Deep learning models for NLP:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens

Deep learning models for NLP:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters

Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters
Initial transformer model (Google) 2017 213M

Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAI) 2018 117M

Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAI) 2018 117M
BERT (Google) 2018 340M

Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAI) 2018 117M
BERT (Google) 2018 340M
ChatGPT-3.5 (OpenAI) 2022 175B

Deep learning models for NLP:

Transformer models:

NLP timeline

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Model Year Number of parameters
Initial transformer model (Google) 2017 213M
GPT (OpenAI) 2018 117M
BERT (Google) 2018 340M
ChatGPT-3.5 (OpenAI) 2022 175B
ChatGPT-4 (OpenAI) 2023 1.76T

Word vectors

Word vectors
A common first step in deep learning
for NLP is to encode each word using
a word vector, e.g.

vman = (0.2,1.6,2.5, − 3.2,4.1)

Word vectors
A common first step in deep learning
for NLP is to encode each word using
a word vector, e.g.

vman = (0.2,1.6,2.5, − 3.2,4.1)

Word vectors capture meaning, unlike
one-hot encodings, such as

vman = (0,0,1,0,0,0,0,0,0)

Word vectors

Source: ISLRv2

A common first step in deep learning
for NLP is to encode each word using
a word vector, e.g.

vman = (0.2,1.6,2.5, − 3.2,4.1)

Word vectors capture meaning, unlike
one-hot encodings, such as

vman = (0,0,1,0,0,0,0,0,0)

Word vectors

Source: ISLRv2

A common first step in deep learning
for NLP is to encode each word using
a word vector, e.g.

vman = (0.2,1.6,2.5, − 3.2,4.1)

Word vectors capture meaning, unlike
one-hot encodings, such as

vman = (0,0,1,0,0,0,0,0,0)

Word vectors are trained on large text corpora, so that word vectors for pairs of
frequently co-occurring words are similar. Popular algorithms: word2vec, GloVe.

Word vectors

Source: ISLRv2

A common first step in deep learning
for NLP is to encode each word using
a word vector, e.g.

vman = (0.2,1.6,2.5, − 3.2,4.1)

Word vectors capture meaning, unlike
one-hot encodings, such as

vman = (0,0,1,0,0,0,0,0,0)

Word vectors are trained on large text corpora, so that word vectors for pairs of
frequently co-occurring words are similar. Popular algorithms: word2vec, GloVe.

Word vectors need to be trained only once (for each language), and can be reused.

Word vectors capture semantic relationships

https://www.researchgate.net/figure/A-two-dimensional-representation-of-word-embeddings-Words-with-similar-meanings-are_fig1_327074728

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

Word

vector

Output

probabilities

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

Context

vector

Word

vector

Output

probabilities

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

Context

vector

Word

vector

Output

probabilities

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

Context

vector

Word

vector

Output

probabilities

First

hidden

state

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

• Arrows denote FC layers

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

• Arrows denote FC layers

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

• Arrows denote FC layers

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state FC1 FC2= tanh +

First

hidden

state

Second

hidden

state

<SOS>

word

vector

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

• Arrows denote FC layers

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

1

2

• Arrows denote FC layers

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

…

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

…

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

…

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

1

2

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

…

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

1

2

1

2

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

…

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis

1

2

1

2

1

2

1

2

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Context

vector

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

… …

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

Last hidden state

= context vector

1

2

RNN for sentiment analysis

1

2

1

2

1

2

1

2

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

… …

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Input text: “I enjoyed the movie!” Output class: “Positive”

Last hidden state

= context vector

1

2

RNN for sentiment analysis

3

1

2

1

2

1

2

1

2

1

2

1

2

• Arrows denote FC layers
• Arrows with same

numbers share weights

Word

vector

Output

probabilities

First

hidden

state

Second

hidden

state

… …

RNN for sentiment analysis (simplified)
Input text: “I enjoyed the movie!” Output class: “Positive”

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

1

2

3
1

2

1

2

1

2

1

2

1

2

1

2

Word

vector

Output

probabilities

Last hidden state

= context vector

First

hidden

state

Second

hidden

state

RNN for sentiment analysis (simplified)
Input text: “I enjoyed the movie!” Output class: “Positive”

theI enjoyed movie ! <EOS><SOS>

0.85
0.15

Training RNNs for sentiment classification

Training data

Movie ratings database:

Input Output
“I enjoyed the movie.” “Positive”
“Despite its intriguing premise, this movie
ended up being disappointment.” “Negative”

… …
“This was the best movie I had seen in a
while.” “Positive”

Training process

• Learn the three sets of weights via
stochastic gradient descent on the
cross-entropy loss function.

1

2

3

Input text: “my favorite season is”. Output word: “spring”

RNN for language modeling

seasonmy favorite is<SOS>

0.35: spring

0.25: summer

…

0.02: not

0.0001: elephant

…

Training RNNs for language modeling

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

Training data

Large corpus of text, e.g. Wikipedia.

“My favorite season in spring. The flowers
are blooming and the sun is shining…”

Training process

• Learn the three sets of weights via
stochastic gradient descent on the
cross-entropy loss function.

1

2

3

RNNs for autoregressive text generation

RNNs for autoregressive text generation

<SOS>

RNNs for autoregressive text generation

<SOS>

RNNs for autoregressive text generation

<SOS>

0.35: The

0.25: A

…

RNNs for autoregressive text generation

<SOS>

The

RNNs for autoregressive text generation

<SOS>

The

The

RNNs for autoregressive text generation

<SOS>

The

The

RNNs for autoregressive text generation

<SOS>

The

The

0.15: grass

0.12: sky

…

RNNs for autoregressive text generation

<SOS>

The

The

sky

RNNs for autoregressive text generation

<SOS>

The

The

sky

sky

RNNs for autoregressive text generation

<SOS>

The

The

sky
0.20: is

0.13: this

…

sky

RNNs for autoregressive text generation

<SOS>

The

The

sky is

sky

RNNs for autoregressive text generation

<SOS>

The

The

sky is

sky is

RNNs for autoregressive text generation

<SOS>

The

The

sky is
0.25: blue

0.13: the

…

sky is

RNNs for autoregressive text generation

<SOS>

The

The

sky is gray

sky is

RNNs for autoregressive text generation

<SOS>

The

The

sky is gray

sky is gray

RNNs for autoregressive text generation

<SOS>

The

The

sky is gray

sky is gray

…

…

RNN for machine translation

Input text: “How are you?” Output translation: “¿Cómo estás?”

RNN for machine translation

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

Encoder RNN

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS>

Encoder RNN

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS>

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS> How

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS> How

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS> How are

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS> How are you

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS> How are you ?

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN

1

2

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN Decoder RNN

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN Decoder RNN

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS>

Encoder RNN Decoder RNN

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Encoder RNN Decoder RNN

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Encoder RNN Decoder RNN

3

4

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo estás

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo estás

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo estás

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo estás ?

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo estás

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo estás ?

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo estás ?

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

2. Find the last hidden state of the encoder RNN, called the context vector.

3. Copy the context vector into the first hidden state of a decoder RNN.

4. Use the decoder RNN to generate the translation.

RNN for machine translation

<SOS> How are you ? <EOS> <SOS>

Cómo estás ? <EOS>

Encoder RNN Decoder RNN

?

5
3

4

1

2

context

vector

?

Cómo estás ?

Training RNNs for machine translation

Input Output
“How are you?” “¿Cómo estás?”
“The cat sleeps.” “El gato duerme.”
“I am reading.” “Estoy leyendo.”
“She is happy.” “Ella está feliz.”
… …

Training data

Parallel text corpora across two
languages, e.g. U.N. proceedings.

Training RNNs for machine translation

Input Output
“How are you?” “¿Cómo estás?”
“The cat sleeps.” “El gato duerme.”
“I am reading.” “Estoy leyendo.”
“She is happy.” “Ella está feliz.”
… …

Training data

Parallel text corpora across two
languages, e.g. U.N. proceedings.

Training process

• Learn the two sets of weights in
encoder RNN and three sets of
weights in decoder RNN via
stochastic gradient descent on the
cross-entropy loss function.

<SOS>

1

2

<SOS>

?

5
3

4

Encoder weights Decoder weights

Weaknesses of RNNs

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

Example: Text generated from RNN
trained on Obama’s speeches:

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that I will not
be able to get this done…”

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

• Slow to train. The sequential nature of
RNNs prevents parallelization.

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that I will not
be able to get this done…”

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

• Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that I will not
be able to get this done…”

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

• Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:

• Equipping RNNs with “memory” (LSTMs)

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that I will not
be able to get this done…”

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

• Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:

• Equipping RNNs with “memory” (LSTMs)

• Equipping RNNs with “attention”

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that I will not
be able to get this done…”

Weaknesses of RNNs
• Hard to handle long sequences.

Hard to encode the information from
entire input sequence in a single context
vector. RNNs tend to “forget.”

• Slow to train. The sequential nature of
RNNs prevents parallelization.

Improvements to handle long sequences:

• Equipping RNNs with “memory” (LSTMs)

• Equipping RNNs with “attention”

Example: Text generated from RNN
trained on Obama’s speeches:

“Good afternoon. God bless you.

The United States will step up to
the cost of a new challenges of the
American people that will share the
fact that we created the problem.
They were attacked and so that
they have to say that all the task of
the final days of war that I will not
be able to get this done…”

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”
1. Encode input sentence via RNN.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

1. Encode input sentence via RNN.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

3. Multiply hidden states by
attention weights.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

3. Multiply hidden states by
attention weights.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

3. Multiply hidden states by
attention weights.

4. Add weighted hidden states to
get context vector.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

3. Multiply hidden states by
attention weights.

4. Add weighted hidden states to
get context vector.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Encode input sentence via RNN.
2. Pass each hidden state through

FC layer with softmax to get
attention weights.

3. Multiply hidden states by
attention weights.

4. Add weighted hidden states to
get context vector.

5. Pass context vector through FC
layer with softmax to get output
class probabilities.

RNN for sentiment analysis with attention
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

0.85
0.151. Encode input sentence via RNN.

2. Pass each hidden state through
FC layer with softmax to get
attention weights.

3. Multiply hidden states by
attention weights.

4. Add weighted hidden states to
get context vector.

5. Pass context vector through FC
layer with softmax to get output
class probabilities.

RNN for machine translation with attention
Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How are

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How are you

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How are you ?

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How are you ? <EOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

1. Pass input sentence through encoder RNN.

RNN for machine translation with attention

<SOS> How are you ? <EOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”
2. Copy the last hidden state of encoder RNN to first hidden state of a
decoder RNN.

RNN for machine translation with attention

<SOS> How are you ? <EOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”
2. Copy the last hidden state of encoder RNN to first hidden state of a
decoder RNN.

RNN for machine translation with attention

<SOS> How are you ? <EOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

3. Input <SOS> token to generate next decoder hidden state.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

3. Input <SOS> token to generate next decoder hidden state.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

3. Input <SOS> token to generate next decoder hidden state.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

Input text: “How are you?” Output translation: “¿Cómo estás?”

4. Calculate attention vector over encoder hidden states based on decoder
hidden state.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

4. Calculate attention vector over encoder hidden states based on decoder
hidden state.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

5. Compute first context vector as weighted average of encoder
hidden states.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

5. Compute first context vector as weighted average of encoder
hidden states.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

5. Compute first context vector as weighted average of encoder
hidden states.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

6. Pass context vector through FC layer with softmax to get
first predicted token.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

6. Pass context vector through FC layer with softmax to get
first predicted token.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

7. Copy first predicted token to input sequence.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

7. Copy first predicted token to input sequence.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

8. Define next hidden state by passing previous context vector, previous
hidden state, and input token through FC layers.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

0.05 0.2 0.1 0.1 0.5 0.05

Input text: “How are you?” Output translation: “¿Cómo estás?”

8. Define next hidden state by passing previous context vector, previous
hidden state, and input token through FC layers.

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

0.05 0.5 0.1 0.1 0.2 0.05

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

0.05 0.5 0.1 0.1 0.2 0.05

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

0.05 0.5 0.1 0.1 0.2 0.05

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

0.05 0.5 0.1 0.1 0.2 0.05

Cómo

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

0.05 0.5 0.1 0.1 0.2 0.05

Cómo

Cómo

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

?

?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

0.05 0.5 0.1 0.1 0.2 0.05

Cómo

Cómo

RNN for machine translation with attention

<SOS> How are you ? <EOS> <SOS>

Cómo estás ? <EOS>
?

?

Cómo estás ?

8. Repeat until <EOS> token is reached.

Input text: “How are you?” Output translation: “¿Cómo estás?”

Visualizing attention

https://arxiv.org/pdf/1409.0473.pdf

From RNNs to transformers

Deep learning models for NLP:

From RNNs to transformers

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens

Deep learning models for NLP:

From RNNs to transformers

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Deep learning models for NLP:

RNNs, no matter how fancy, still did not allow parallel processing of inputs.

From RNNs to transformers

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Deep learning models for NLP:

RNNs, no matter how fancy, still did not allow parallel processing of inputs.

Transformer proposed in 2017: An architecture based on attention but not
recurrence, which performed better than RNNs and accommodated parallelization.

From RNNs to transformers

Model Popular during Speed Sequence length
Recurrent neural network (RNN) 1980s to early

2000s
Good 5-50 tokens

RNN with “memory” (e.g. LSTMs) 1997 to mid-2010s Poor 100-500 tokens
LSTMs with attention Mid-2010s Very poor 1000+ tokens
Transformers (“attention is all you need”) 2017-present Excellent 1000+ tokens

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”
1. Start with each input token’s word vector.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

1. Start with each input token’s word vector.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.
3. Pass each token value through another

FC layer with softmax to get attention
weights.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.
3. Pass each token value through another

FC layer with softmax to get attention
weights.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.
3. Pass each token value through another

FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.
3. Pass each token value through another

FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.
3. Pass each token value through another

FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

1. Start with each input token’s word vector.
2. Compute each input token’s value by

passing its word vector through FC layer.
3. Pass each token value through another

FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer
with softmax to get output class
probabilities.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

0.85
0.151. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer
with softmax to get output class
probabilities.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

<SOS> I enjoyed the movie ! <EOS>

0 0.1 0.4 0.1 0.2 0.2 0

0.85
0.151. Start with each input token’s word vector.

2. Compute each input token’s value by
passing its word vector through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer
with softmax to get output class
probabilities.

This strategy ignores word order!

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

0 0.1 0.4 0.1 0.2 0.2 0

0.85
0.15

<SOS> I enjoyed the movie ! <EOS>

1. Positionally encode each input token’s
word vector by appending its index.

2. Compute each input token’s value by
passing its positional encoding vector
through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer with
softmax to get output class probabilities.

Simplified transformer for sentiment analysis
Input text: “I enjoyed the movie!” Output class: “Positive”

0.<SOS> 1.I 2.enjoyed 3.the 4.movie 5.! 6.<EOS>

0 0.1 0.4 0.1 0.2 0.2 0

0.85
0.151. Positionally encode each input token’s

word vector by appending its index.

2. Compute each input token’s value by

passing its positional encoding vector
through FC layer.

3. Pass each token value through another
FC layer with softmax to get attention
weights.

4. Take weighted average of token values to
get context vector.

5. Pass context vector through FC layer with
softmax to get output class probabilities.

Simplified transformer for language modeling
Input text: “my favorite season is” Output word: “spring”

Simplified transformer for language modeling
Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.
2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

0.05 0.1 0.1 0.1 0.65

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.
2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

0.05 0.1 0.1 0.1 0.65

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.
2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

3. Take weighted average of preceding token
values to get context vector or contextual
embedding for “is”.

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

0.05 0.1 0.1 0.1 0.65

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.
2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

3. Take weighted average of preceding token
values to get context vector or contextual
embedding for “is”.

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

0.05 0.1 0.1 0.1 0.65

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.
2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

3. Take weighted average of preceding token
values to get context vector or contextual
embedding for “is”.

4. Pass contextual embedding through FC
layer with softmax to get output class
probabilities.

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

0.05 0.1 0.1 0.1 0.65

springInput text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.
2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

3. Take weighted average of preceding token
values to get context vector or contextual
embedding for “is”.

4. Pass contextual embedding through FC
layer with softmax to get output class
probabilities.

Simplified transformer for language modeling

0.<SOS> 1.my 2.favorite 3.season 4.is

spring

Input text: “my favorite season is” Output word: “spring”
1. Positionally encode each input token and

pass it through FC layer to compute values.

2. Calculate attention weights for “is” by

comparing its value to its own and those of
preceding tokens (self-attention).

3. Take weighted average of preceding token
values to get context vector or contextual
embedding for “is”.

4. Pass contextual embedding through FC
layer with softmax to get output class
probabilities.

Simplified flowchart of

simplified transformer

Simplified transformer for autoregressive text generation

Simplified transformer for autoregressive text generation
1. Positionally encode <SOS> token.

Simplified transformer for autoregressive text generation

0.<SOS>

1. Positionally encode <SOS> token.

Simplified transformer for autoregressive text generation

0.<SOS>

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

Simplified transformer for autoregressive text generation

0.<SOS>

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

Simplified transformer for autoregressive text generation

0.<SOS>

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

Simplified transformer for autoregressive text generation

0.<SOS>

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

Simplified transformer for autoregressive text generation

0.<SOS>

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.
1.my

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my

Simplified transformer for autoregressive text generation

0.<SOS>

my

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite season

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite season

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite 3.season

is

Simplified transformer for autoregressive text generation

0.<SOS>

my favorite season

1. Positionally encode <SOS> token.

2. Calculate <SOS> token’s value by passing
token through fully connected layer.

3. Calculate <SOS> token’s contextual
embedding by attention-weighted linear
combination of its value and all preceding
values (so far, no preceding values).

4. Generate next token by passing contextual
embedding through FC layer + softmax.

5. Copy generated token to the input.

6. Repeat until <EOS> token is generated.
1.my 2.favorite 3.season

is

4.is

spring

Simplified transformer for machine translation

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

?

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

?

7.¿

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

?

7.¿

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

?

7.¿

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Cómo

?

7.¿

Simplified transformer for machine translation
Input text: “How are you?” Output translation: “¿Cómo estás?”
1. Start a sequence based on input text and append <SOS>.
2. Generate text autoregressively until <EOS> token is reached.

0.<SOS> 1.How 2.are 3.you 4.? 5.<EOS> 6.<SOS>

Cómo

?

7.¿

estás ? <EOS>

8.Cómo 9.estás 10.?

Training transformer language models

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming
and the sun is shining…”

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming
and the sun is shining…”

• For example, GPT-3 was trained on
45TB of data.

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming
and the sun is shining…”

• For example, GPT-3 was trained on
45TB of data.

• Can have hundreds of billions of
parameters (large language models).

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming
and the sun is shining…”

• For example, GPT-3 was trained on
45TB of data.

• Can have hundreds of billions of
parameters (large language models).

• Along with the weights of the
network, word vectors themselves
are trained.

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming
and the sun is shining…”

• For example, GPT-3 was trained on
45TB of data.

• Can have hundreds of billions of
parameters (large language models).

• Along with the weights of the
network, word vectors themselves
are trained.

• As with other models, trained using SGD based on cross-entropy.

Training transformer language models

• Trained based on unlabeled text, of which there is a massive amount online.

Input Output
“My” “favorite”
“My favorite” “season”
“My favorite season” “is”
“My favorite season is” “spring”
… …

“My favorite season in spring. The flowers are blooming
and the sun is shining…”

• For example, GPT-3 was trained on
45TB of data.

• Can have hundreds of billions of
parameters (large language models).

• Along with the weights of the
network, word vectors themselves
are trained.

• As with other models, trained using SGD based on cross-entropy.

• Training is massively parallelized using specialized GPU hardware.

Fine-tuning transformers for supervised tasks

Fine-tuning transformers for supervised tasks
Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Fine-tuning transformers for supervised tasks
Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then
fine-tune these weights for supervised task.

Fine-tuning transformers for supervised tasks
Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

https://www.machinecurve.com/index.php/2021/01/04/intuitive-introduction-to-bert/

(e.g. GPT)

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then
fine-tune these weights for supervised task.

Fine-tuning transformers for supervised tasks
Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

https://www.machinecurve.com/index.php/2021/01/04/intuitive-introduction-to-bert/

(e.g. GPT)

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then
fine-tune these weights for supervised task.

In many cases, network architecture can stay
the same; training data just needs to be
formatted appropriately.

Fine-tuning transformers for supervised tasks
Sentiment analysis, machine translation, and other supervised tasks (e.g. Q&A,
like ChatGPT) have much smaller labeled datasets available.

https://www.machinecurve.com/index.php/2021/01/04/intuitive-introduction-to-bert/

(e.g. GPT)

Key idea: Initialize transformer weights based
on huge pre-trained language model, and then
fine-tune these weights for supervised task.

In many cases, network architecture can stay
the same; training data just needs to be
formatted appropriately.

Input Output
“How are you?” “¿Cómo estás?”
“The cat sleeps.” “El gato duerme.”
“I am reading.” “Estoy leyendo.”
“She is happy.” “Ella está feliz.”
… …

Input
How are you?<to-sp>¿Cómo estás?
The cat sleeps.<to-sp>El gato duerme.
I am reading.<to-sp>Estoy leyendo.
She is happy.<to-sp>Ella está feliz.
…

Emergent properties of LLMs
As LLMs grow, they develop emergent properties: Abilities they were not
explicitly trained for.

Emergent properties of LLMs
As LLMs grow, they develop emergent properties: Abilities they were not
explicitly trained for.

https://www.assemblyai.com/blog/emergent-abilities-of-large-language-models/

Emergent properties of LLMs
As LLMs grow, they develop emergent properties: Abilities they were not
explicitly trained for.

https://www.assemblyai.com/blog/emergent-abilities-of-large-language-models/

https://arxiv.org/pdf/2303.12712.pdf

Summary

Summary
• Word vectors used to translate words into numbers for predictive modeling.

Summary
• Word vectors used to translate words into numbers for predictive modeling.

• New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

Summary
• Word vectors used to translate words into numbers for predictive modeling.

• New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

• RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

Summary
• Word vectors used to translate words into numbers for predictive modeling.

• New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

• RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

• RNNs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

Summary
• Word vectors used to translate words into numbers for predictive modeling.

• New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

• RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

• RNNs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

• These fancier RNNs were displaced by transformers, an attention-based
architecture allowing parallelized training.

Summary
• Word vectors used to translate words into numbers for predictive modeling.

• New architectures, such as recurrent neural networks and transformers,
needed for variable-length inputs and outputs.

• RNNs work by processing the input sequence one word at a time, updating a
hidden representation of the input using a fixed set of weights.

• RNNs tend to forget text after a while, so they were augmented with memory
and attention mechanisms.

• These fancier RNNs were displaced by transformers, an attention-based
architecture allowing parallelized training.

• The hard work of training large language models can be recycled through the
pre-training and fine-tuning paradigm.

