STAT 4710

November 21, 2023

Deep learning for image processing

Where we are

Unit 1: R for data mining
Unit 2: Prediction fundamentals
Unit 3: Regression-based methods
Unit 4: Tree-based methods
Unit 5: Deep learning

Lecture 1: Deep learning preliminaries

Lecture 2: Neural networks

Lecture 3: Deep learning for images

Lecture 4: Deep learning for text

Lecture 5: Unit review and quiz in class

Fully connected architectures

https://community.rstudio.com/t/visualising-neural-network-architectures/41723

Fully connected architectures

https://community.rstudio.com/t/visualising-neural-network-architectures/41723

Convolutional neural network (CNN) architectures for image processing (today) CAR - TRUCK - VAN - BICYCLE FULLY INPUT **CONVOLUTION + RELU** FLATTEN SOFTMAX CONVOLUTION + RELU POOLING POOLING

FEATURE LEARNING

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CLASSIFICATION

Fully connected architectures

https://community.rstudio.com/t/visualising-neural-network-architectures/41723

Recurrent neural network architectures for language processing (Thursday)

https://towardsdatascience.com/recurrent-neural-networks-rnn-explained-the-eli5-way-3956887e8b75

Convolutional neural network (CNN) architectures for image processing (today) - TRUCK - VAN - BICYCLE FULLY INPUT FLATTEN SOFTMAX **CONVOLUTION + RELU** POOLIN POOLING

FEATURE LEARNING

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

CLASSIFICATION

Fully connected architectures

https://community.rstudio.com/t/visualising-neural-network-architectures/41723

Recurrent neural network architectures for language processing (Thursday)

https://towardsdatascience.com/recurrent-neural-networks-rnn-explained-the-eli5-way-3956887e8b75

Convolutional neural network (CNN) architectures for image processing (today)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Architecture components are modular and can be composed, e.g. image captioning

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781788398060/3/ch03lvl1sec22/what-is-caption-generation

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

keeshond miniature schnauzer standard schnauzer giant schnauzer

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

keeshond miniature schnauzer standard schnauzer giant schnauzer

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

Viewpoint variation

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

keeshond miniature schnauzer standard schnauzer giant schnauzer

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

- Viewpoint variation
- Illumination

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

keeshond miniature schnauzer standard schnauzer giant schnauzer

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

- Viewpoint variation
- Illumination
- Deformation

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

miniature schnauzer standard schnauzer giant schnauzer keeshond

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

- Viewpoint variation
- Illumination
- Deformation
- Occlusion

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

keeshond miniature schnauzer standard schnauzer giant schnauzer

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

- Viewpoint variation
- Illumination
- Deformation
- Occlusion
- Background clutter

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

miniature schnauzer standard schnauzer giant schnauzer keeshond

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

Prototypical computer vision task:

Given an image, classify according to what object it depicts.

Challenges:

- Viewpoint variation
- Illumination
- Deformation
- Occlusion
- Background clutter
- Intraclass variation

bird

birds

dog

flamingo

Egyptian cat

dalmatian

cock

partridge

Persian cat Siamese cat

tabby

lynx

miniature schnauzer standard schnauzer giant schnauzer keeshond

http://ai.stanford.edu/~olga/papers/iccv13-ILSVRCanalysis.pdf

. . .

ImageNet A large dataset for image classification

ImageNet A large dataset for image classification

Assembled in 2009 by downloading lots of images from the web and crowdsourcing their labels.

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

ImageNet

A large dataset for image classification

Assembled in 2009 by downloading lots of images from the web and crowdsourcing their labels.

- Training set: 1.2 million images
- Test set: 100,000 images
- 1000 classes

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

ImageNet

A large dataset for image classification

Assembled in 2009 by downloading lots of images from the web and crowdsourcing their labels.

- Training set: 1.2 million images
- Test set: 100,000 images
- 1000 classes

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) held annually between 2010-2017.

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

Convolutional neural networks (CNNs) have dominated since 2012.

Figure 5.1. Images can be broken into local patterns such as edges, textures, and so on.

Images from Deep Learning with R (Chapter 5)

Figure 5.1. Images can be broken into local patterns such as edges, textures, and so on.

ures, Figure 5.2. The visual world forms a spatial hierarchy of visual modules: hyperlocal edges combine into local objects such as eyes or ears, which combine into high-level concepts such as "cat."

Images from *Deep Learning with R* (Chapter 5)

Figure 5.1. Images can be broken into local patterns such as edges, textures, and so on.

Patterns are

- •Local
- Hierarchical

Figure 5.2. The visual world forms a spatial hierarchy of visual modules: hyperlocal edges combine into local objects such as eyes or ears, which combine into high-level concepts such as "cat."

Images from *Deep Learning with R* (Chapter 5)

Convolution: Searching for patternsFilter (3x3)Input imageActivation map

(pattern)

0	1	2
2	2	0
0	1	2

2_{2}	1	0
1_0	3	1
2_{2}	2	3
0	2	2
0	0	1

(presence of pattern)

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolution: Searching for patternsFilter (3x3)Input imageActivation map

(pattern)

0	1	2
2	2	0
0	1	2

2_{2}	1	0
1_0	3	1
2_{2}	2	3
0	2	2
0	0	1

(presence of pattern)

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolution: Searching for patternsFilter (3x3)Input imageActivation map

(pattern)

0	1	2	
2	2	0	
0	1	2	

We want to use many filters, each sensitive to a different kind of pattern.

 2_2 10 1_0 31 2_2 23022001

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

A convolutional layer can be visualized similarly to a fully-connected layer.

A convolutional layer can be visualized similarly to a fully-connected layer.

A convolutional layer can be visualized similarly to a fully-connected layer.

Convolutional layer

A convolutional layer can be visualized similarly to a fully-connected layer.

Convolutional layer

A convolutional layer can be visualized similarly to a fully-connected layer.

function

In a convolutional layer:

Images from: https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

Convolutional layer

A convolutional layer can be visualized similarly to a fully-connected layer.

function

In a convolutional layer:

Not all node pairs are connected with edges

Convolutional layer

A convolutional layer can be visualized similarly to a fully-connected layer.

function

In a convolutional layer:

- Not all node pairs are connected with edges
- Weights (from filter) reused across edges

Convolutional layer

Convolutional layer versus fully-connected layer

A convolutional layer can be visualized similarly to a fully-connected layer.

function

In a convolutional layer:

- Not all node pairs are connected with edges
- Weights (from filter) reused across edges

Consequence: Conv layers have fewer parameters!

Images from: https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

32x32x3 image (images typically have red, green, and blue channels.)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Note: This slide and several following ones are borrowed from Stanford's CS231n.

Lecture 5 - 68

32x32x3 image

Fei-Fei Li, Ranjay Krishna, Danfei Xu

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Lecture 5 - 69

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Lecture 5 - 70

Fei-Fei Li, Ranjay Krishna, Danfei Xu

32x32x3 image 5x5x3 filter w

number:

the result of taking a dot product between the filter and a small 5x5x3 chunk of the image (i.e. 5*5*3 = 75-dimensional dot product + bias)

$$w^T x + b$$

Lecture 5 - 71

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 72

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 73

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 74

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 75

Fei-Fei Li, Ranjay Krishna, Danfei Xu

activation map

32x32x3 image 5x5x3 filter

convolve (slide) over all spatial locations

Lecture 5 - 76

Fei-Fei Li, Ranjay Krishna, Danfei Xu

32x32x3 image 5x5x3 filter 28 convolve (slide) over all spatial locations 28 Activation map dimension = /Input image dimension - Filter dimension + 1 Lecture 5 - 76

activation map

Fei-Fei Li, Ranjay Krishna, Danfei Xu

consider a second, green filter

32x32x3 image 5x5x3 filter

convolve (slide) over all spatial locations

activation maps

Lecture 5 - 77

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 78

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 78

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 79

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 80

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 80

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 80

Input volume: 32x32x3 10 5x5 filters

Number of parameters in this layer?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 103

Input volume: 32x32x3 10 5x5 filters

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) **=> 76*10 = 760**

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 104

Input volume: 32x32x3 10 5x5 filters

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params (+1 for bias) => 76*10 = **760**

In general, parameters in conv layer = (filter width x filter height x input channels + 1) x number of filters.

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 104

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 117

MAX POOLING

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

X

Fei-Fei Li, Ranjay Krishna, Danfei Xu

y

max pool with 2x2 filters and stride 2

6	8
3	4

Lecture 5 - 118

MAX POOLING

Single depth slice

X

Fei-Fei Li, Ranjay Krishna, Danfei Xu

max pool with 2x2 filters and stride 2

6	8
3	4

Filter activation in individual image patches

Lecture 5 - 118

MAX POOLING

Single depth slice

X

Fei-Fei Li, Ranjay Krishna, Danfei Xu

max pool with 2x2 filters and stride 2

Filter activation in individual image patches Maximum filter activation across adjacent patches

8

6

3

Lecture 5 - 118

Convolutional neural networks

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Convolutional neural networks

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

A CNN stacks together several alternating convolution and pooling layers, followed by a fully connected layer and a softmax output.

Convolutional neural networks

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

A CNN stacks together several alternating convolution and pooling layers, followed by a fully connected layer and a softmax output.

Filters, weights in fully connected layer, and biases learned by optimizing crossentropy loss via stochastic gradient descent.

Use neural network for binary classification, e.g. faces versus not faces, cars versus not cars, etc.

Use neural network for binary classification, e.g. faces versus not faces, cars versus not cars, etc.

For each neuron at each layer, find input image that activates it most strongly.

Use neural network for binary classification, e.g. faces versus not faces, cars versus not cars, etc.

For each neuron at each layer, find input image that activates it most strongly.

Last layer

Intermediate layer

Initial layer

The original CNN architecture

The original CNN architecture

LeNet architecture for hand-written digit recognition (1989).

The original CNN architecture

LeNet architecture for hand-written digit recognition (1989).

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Yann LeCun
The original CNN architecture

LeNet architecture for hand-written digit recognition (1989).

Idea existed decades ago but data and computing power only became available in 2010s.

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Yann LeCun

Modern CNN architectures

Classification: ImageNet Challenge top-5 error

https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848

Model	Size (M)	Top-1/top-5 error (%)	# layers	Model descriptio
AlexNet	238	41.00/18.00	8	5 conv + 3 fc lay
VGG-16	540	28.07/9.33	16	$13 \operatorname{conv} + 3 \operatorname{fc} \operatorname{lay}$
VGG-19	560	27.30/9.00	19	$16 \operatorname{conv} + 3 \operatorname{fc} \operatorname{lat}$
GoogleNet	40	29.81/10.04	22	21 conv + 1 fc lay
ResNet-50	100	22.85/6.71	50	49 conv $+$ 1 fc la
ResNet-152	235	21.43/3.57	152	151 conv + 1 fc la

https://www.researchgate.net/figure/The-comparison-of-different-CNN-architectures-on-model-size-classification-error-rate_tbl1_320199404

Modern CNN architectures

Classification: ImageNet Challenge top-5 error

https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848

Model	Size (M)	Top-1/top-5 error (%)	# layers	Model descriptio
AlexNet	238	41.00/18.00	8	5 conv + 3 fc lay
VGG-16	540	28.07/9.33	16	13 conv + 3 fc lay
VGG-19	560	27.30/9.00	19	$16 \operatorname{conv} + 3 \operatorname{fc} \operatorname{lag}$
GoogleNet	40	29.81/10.04	22	$21 \operatorname{conv} + 1 \operatorname{fc} \operatorname{lay}$
ResNet-50	100	22.85/6.71	50	49 conv $+ 1$ fc la
ResNet-152	235	21.43/3.57	152	151 conv + 1 fc la

https://www.researchgate.net/figure/The-comparison-of-different-CNN-architectures-on-model-size-classification-error-rate_tbl1_320199404

CNNs are getting progressively deeper with time.

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

http://manipulation.csail.mit.edu/segmentation.html

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

http://manipulation.csail.mit.edu/segmentation.html

content image

style image

Ancient city of Persepolis

The Starry Night (Van Gogh)

Persepolis in Van Gogh style

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822

Style Transfer

generated image

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

http://manipulation.csail.mit.edu/segmentation.html

content image

style image

Ancient city of Persepolis

The Starry Night (Van Gogh)

Persepolis in Van Gogh style

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822

Style Transfer

https://medium.com/@nabilliban14/chain-colorization-using-cdcgansand-cnn-from-learned-deep-prior-1405dab48df3

Image colorization

generated image

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

http://manipulation.csail.mit.edu/segmentation.html

content image

style image

Ancient city of Persepolis

The Starry Night (Van Gogh)

Persepolis in Van Gogh style

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822

Style Transfer

https://medium.com/@nabilliban14/chain-colorization-using-cdcgansand-cnn-from-learned-deep-prior-1405dab48df3

Image colorization

https://www.therobotreport.com/reinforcement-learning-industrialrobotics/

Reinforcement learning

generated image

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

http://manipulation.csail.mit.edu/segmentation.html

content image

style image

generated image

Ancient city of Persepolis

The Starry Night (Van Gogh)

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822

Style Transfer

https://medium.com/@nabilliban14/chain-colorization-using-cdcgansand-cnn-from-learned-deep-prior-1405dab48df3

Image colorization

https://www.therobotreport.com/reinforcement-learning-industrialrobotics/

Reinforcement learning

Persepolis in Van Gogh style

https://medium.datadriveninvestor.com/artificial-intelligence-gans-can-create-fake-celebrity-faces-44fe80d419f7

Generative models

• Image classification is a prototypical task in image processing.

- Image classification is a prototypical task in image processing.
- A convolution sweeps over an image, looking for a specific pattern.

- Image classification is a prototypical task in image processing.
- A convolution sweeps over an image, looking for a specific pattern.
- Convolutions are local (applied to image patches) and translation-invariant (applied equally to patches across the whole image).

- Image classification is a prototypical task in image processing.
- A convolution sweeps over an image, looking for a specific pattern.
- Convolutions are local (applied to image patches) and translation-invariant (applied equally to patches across the whole image).
- Convolutional neural networks are a specialized architecture for image processing, consisting of alternating convolutional and pooling layers (feature learning), following by final fully connected layer (classification).

- Image classification is a prototypical task in image processing.
- A convolution sweeps over an image, looking for a specific pattern.
- Convolutions are local (applied to image patches) and translation-invariant (applied equally to patches across the whole image).
- Convolutional neural networks are a specialized architecture for image processing, consisting of alternating convolutional and pooling layers (feature learning), following by final fully connected layer (classification).
- People have built increasingly deep CNNs, which have performed increasingly well. Image classification problem is essentially solved.

- Image classification is a prototypical task in image processing.
- A convolution sweeps over an image, looking for a specific pattern.
- Convolutions are local (applied to image patches) and translation-invariant (applied equally to patches across the whole image).
- Convolutional neural networks are a specialized architecture for image processing, consisting of alternating convolutional and pooling layers (feature learning), following by final fully connected layer (classification).
- People have built increasingly deep CNNs, which have performed increasingly well. Image classification problem is essentially solved.
- Many other image processing tasks can be addressed with CNNs.

