Deep learning for image processing
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/Unit 1: R for data mining Lecture 1: Deep learning preliminaries
/ Unit 2: Prediction fundamentals Lecture 2: Neural networks

\/ Unit 3: Regression-based methods
/ Unit 4: Tree-based methods Lecture 4: Deep learning for text

Unit 5: Deep learning Lecture 5: Unit review and quiz in class
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Network architectures

Convolutional neural network (CNN) architectures

Fully connected architectures . .
for image processing (today)
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Recurrent neural network architectures

for language processing (Thursday)
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Recurrent neural network architectures Architecture components are modular and

for language processing (Thursday)

pronoun verb article adjective noun
N () Y
f OO0 OO

ete ob® ove

{Q _

N

w W W
vV
%4
U
. )
A\ 7/
[t

https://towardsdatascience.com/recurrent-neural-networks-rnn-explained-the-eli5-way-3956887e8b75

Oi@
ese

was an agwesome movie

Vision Language
Deep CNN Generating
RNN

3G

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781788398060/3/ch03Ivl1sec22/what-is-caption-generation
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Case study: Image classification

Prototypical computer vision task:
e,
3=

Given an image, classify according = |

to what object it depicts.
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http://ai.stanford.edu/~olga/papers/iccvi3-ILSVRCanalysis.pdf



Case study: Image classification

Prototypical computer vision task:
e,
3=
Given an image, classify according = .
to what object it depicts.
5
Challenges: S
© Y. AN SR NS
dalmatian keeshond miniature schnauzer standard schnauzer giant schnauzer

http://ai.stanford.edu/~olga/papers/iccvi3-ILSVRCanalysis.pdf



Case study: Image classification

Prototypical computer vision task:
e,
8=
Given an image, classify according ™
to what object it depicts.
s
Challenges: 9
* Viewpoint variation , ‘
O oY ‘&.__N s il T
dalmatian keeshond miniature schnauzer standard schnauzer giant schnauzer e« o o

http://ai.stanford.edu/~olga/papers/iccvi3-ILSVRCanalysis.pdf



Case study: Image classification

Prototypical computer vision task:
e,
8=
Given an image, classify according =
to what object it depicts.
s
Challenges: S
cat
* Viewpoint variation z
. . B0 N .’,l"{r-'r"- IX ; " ' , “;‘_..T;
o |llumination S Nl s’ Al MRS RN
dalmaﬁn keeshoﬁd. Jminiature sc;ﬁarstandard schuzer t chnazr °c o o

http://ai.stanford.edu/~olga/papers/iccvi3-ILSVRCanalysis.pdf



Case study: Image classification

Prototypical computer vision task: 2
8=
Given an image, classify according =
to what object it depicts.
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* Viewpoint variation
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Case study: Image classification

Prototypical computer vision task:
o)
4
Given an image, classify according = A
to what object it depicts. u ’
% .
Challenges: S “ N
Egyptiancat  Persian cat Siamese cat
* Viewpoint variation
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* Occlusion
 Background clutter
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ImageNet

A large dataset for image classification

Assembled in 2009 by downloading
lots of images from the web and
crowdsourcing their labels.
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ImageNet

A large dataset for image classification

Assembled in 2009 by downloading
lots of images from the web and
crowdsourcing their labels.
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ImageNet

A large dataset for image classification

Assembled in 2009 by downloading
lots of images from the web and
crowdsourcing their labels.
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Convolutional neural networks (CNNs) have dominated since 2012.
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CNNs are built on image-specific properties

Figure 5.1. Images can be broken into local patterns such as edges, textures,
and so on.

Images from Deep Learning with R (Chapter 5)



CNNs are built on image-specific properties

Figure 5.1. Images can be broken into local patterns such as edges, textures, Figure 5.2. The visual world forms a spatial hierarchy of visual modules:
and so on. hyperlocal edges combine into local objects such as eyes or ears, which
combine into high-level concepts such as “cat.”
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CNNs are built on image-specific properties

Figure 5.1. Images can be broken into local patterns such as edges, textures, Figure 5.2. The visual world forms a spatial hierarchy of visual modules:
and so on. hyperlocal edges combine into local objects such as eyes or ears, which
combine into high-level concepts such as “cat.”
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Convolution: Searching for patterns

Filter (3x3) Input image Activation map

(pattern)
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We want to use many filters, each sensitive to a different kind of pattern.




Convolutional layer versus fully-connected layer

A convolutional layer can be visualized
similarly to a fully-connected layer.

Fully-connected layer

Images from: https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b
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Convolutional layer versus fully-connected layer

A convolutional layer can be visualized
similarly to a fully-connected layer.
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Fully-connected layer
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Convolutional layer versus fully-connected layer

A convolutional layer can be visualized
similarly to a fully-connected layer.
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Convolutional layer versus fully-connected layer

A convolutional layer can be visualized @
similarly to a fully-connected layer.
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A convolutional layer can be visualized
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Convolutional layer versus fully-connected layer

A convolutional layer can be visualized @
similarly to a fully-connected layer.
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Convolutional layer versus fully-connected layer

A convolutional layer can be visualized
similarly to a fully-connected layer.
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In a convolutional layer:
* Not all node pairs are connected with edges
* \Weights (from filter) reused across edges
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Convolutional layer versus fully-connected layer

A convolutional layer can be visualized @
similarly to a fully-connected layer.
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* Not all node pairs are connected with edges
* Weights (from filter) reused across edges

Consequence: Conv layers have fewer parameters!

Images from: https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

Convolutional layer . Fully-connected layer



https://towardsdatascience.com/convolutional-layers-vs-fully-connected-layers-364f05ab460b

Note: This slide and several

CO”VOI UtiOn Layer following ones are borrowed

from Stanford’s CS231n.
32x32x3 Image (images typically have red, green, and blue channels.)

32 height

3 depth

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 68 April 13, 2021


http://cs231n.stanford.edu/slides/2021/lecture_5.pdf

Convolution Layer

32x32x3 Image

5x5x3 filter

32 £/
I Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 69 April 13, 2021



COnVOI UtiOn Layer Filters always extend the full

~  depth of the input volume
32x32x3 Image /
5x5x3 filter
32 £/
I Convolve the filter with the image

l.e. “slide over the image spatially,
computing dot products”

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5- 70 April 13, 2021



Convolution Layer

__— 32x32x3 image

5x5x3 filter w
32

"~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

w' z + b

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 71 April 13, 2021



Convolution Layer

32

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 72 April 13, 2021



Convolution Layer

32

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5- 73 April 13, 2021
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Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter
32

28

-

convolve (slide) over all
spatial locations

32 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 76 April 13, 2021



Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter
32

convolve (slide) over all
spatial locations

32

3 1 /
Activation map dimension =

Input iImage dimension - Filter dimension + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 76 April 13, 2021



Convolution Layer consider a second, green filter

_— 32x32x3 Image activation maps

5x5x3 filter
32

28

-

convolve (slide) over all
spatial locations

32 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 77 April 13, 2021



For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32
28

Convolution Layer

32 28
3 6

We stack these up to get a "new image” of size 28x28x0!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 78 April 13, 2021



For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

32
28

Convolution Layer

32 28

3 3 Each of the 28x28x6
/ pixels is a neuron

We stack these up to get a "new image” of size 28x28x0!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 78 April 13, 2021



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

-

CONYV,
RelLU
e.g.6
5x5x3

filters 28

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 79 April 13, 2021



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 Y
CONV, CONV CONV
RelLU RelLU RelLU
2-95- % e.g. 10
XOX 5x5x6
32 filters 28 filtars 24
3 o 10

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 80 April 13, 2021



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
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32 28 Y
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RelLU RelLU RelLU
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XOX 5x5x6
32 filters 28 filtars 24
3 o 10
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3 channels (RGB)
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 24

CONV, CONV, CONV,

RelU RelU RelU

2-95- % e.g. 10
XOX 5x5x6

32 filters 28 filtars 24
3\ 6\ 10
3 channels (RGB) 6 channels (6 filters)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 80 April 13, 2021



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28 24

CONV, CONV, CONV,

Rel.U RelU RelLU

2-95- % e.g. 10
XOX 5x5x6

32 filters 28 filtars 24
3\ 6\ 10
3 channels (RGB) 6 channels (6 filters) \1 0 channels (10 filters)

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 80 April 13, 2021



Input volume: 32x32x3
10 5x5 filters

Number of parameters in this layer?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 103 April 13, 2021



Input volume: 32x32x
10 5x5 filters

Number of parameters in this layer?

each filter has 5"5*5 + 1 = 76 params  (+1 for bias)
=> /6*10 = 760

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 104 April 13, 2021



Input volume: 32x32x
10 5x5 filters

Number of parameters in this layer?
each filter has 5"5*5 + 1 = 76 params  (+1 for bias)
=> /610 =760

In general, parameters in conv layer =
(filter width X filter height x input channels + 1) x nhumber of filters.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 104 April 13, 2021



Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
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Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Single depth slice

MAX POOLING

11112 | 4
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312|110
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Fei-Fei Li, Ranjay Krishna, Danfei Xu

max pool with 2x2 filters
and stride 2

_——
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Fei-Fei Li, Ranjay Krishna, Danfei Xu

max pool with 2x2 filters
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Filter activation in
iIndividual image patches
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Single depth slice

MAX POOLING

11112 | 4
5|16 |73
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Fei-Fei Li, Ranjay Krishna, Danfei Xu

max pool with 2x2 filters
and stride 2

_——

Filter activation in
iIndividual image patches

Lecture 5 - 118

Maximum filter activation
across adjacent patches

April 13, 2021



Convolutional neural networks
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Convolutional neural networks
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A CNN stacks together several alternating convolution and pooling layers,
followed by a fully connected layer and a softmax output.



Convolutional neural networks
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A CNN stacks together several alternating convolution and pooling layers,

followed by a fully connected layer and a softmax output.

Filters, weights in fully connected layer, and biases learned by optimizing cross-

entropy loss via stochastic gradient descent.



Interpreting the filters learned by a CNN



Interpreting the filters learned by a CNN

Use neural network for binary classification, e.g. faces versus not faces, cars
versus not cars, etc.



Interpreting the filters learned by a CNN

Use neural network for binary classification, e.g. faces versus not faces, cars
versus not cars, etc.

For each neuron at each layer, find input image that activates it most strongly.



Interpreting the filters learned by a CNN

Use neural network for binary classification, e.g. faces versus not faces, cars
versus not cars, etc.

For each neuron at each layer, find input image that activates it most strongly.
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The original CNN architecture



The original CNN architecture

LeNet architecture for hand-written
digit recognition (1989).



The original CNN architecture

fc_3 fc_4
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Classification: ImageNet Challenge top-5 error

152 layers ' Size  Top-1/top-5
A\ Model (M) error (%) # layers  Model description
\
\
N AlexNet 238  41.00/18.00 8 5 conv + 3 fc layers
‘\ VGG-16 540 28.07/9.33 16 13 conv + 3 fc .‘.ayers
zz Iayers 19 Iayers VGG-19 560 27.30/9.00 19 16 conv + 3 fc layers
"\ 6.7 GoogleNet 40  29.81/10.04 22 21 conv + 1 fc layers
3 - ResNet-50 100 22.85/6.71 50 49 conv + 1 fc layers
8 layers 8 layers shallow
---- ResNet-152 235  21.43/3.57 152 151 conv + 1 fc layers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

https://medium.com/@RaghavPrabhu/cnn-architectures-lenet-alexnet-vgg-googlenet-and-resnet-7c81c017b848

CNNs are getting progressively deeper with time.
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Reinforcement learning
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Summary

* |mage classification is a prototypical task in image processing.

A convolution sweeps over an image, looking for a specific pattern.

Convolutions are local (applied to image patches) and translation-invariant
(applied equally to patches across the whole image).

Convolutional neural networks are a specialized architecture for image
processing, consisting of alternating convolutional and pooling layers (feature
learning), following by final fully connected layer (classification).

People have built increasingly deep CNNs, which have performed increasingly
well. Image classification problem is essentially solved.

Many other image processing tasks can be addressed with CNNSs.



