
November 16, 2023

Neural networks
STAT 4710 



Lecture 1: Deep learning preliminaries


Lecture 2: Neural networks


Lecture 3: Deep learning for images


Lecture 4: Deep learning for text


Lecture 5: Unit review and quiz in class

Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods


Unit 5: Deep learning

Where we are



Recall: Multi-class logistic model

Z2 ̂p 2

Z3 ̂p 3

X1

X2

X3

1

Input

Input

Input

Z1 ̂p 1

summation

̂p 1 =
eZ1

eZ1 + eZ2 + eZ3

̂p 2 =
eZ2

eZ1 + eZ2 + eZ3

̂p 3 =
eZ3

eZ1 + eZ2 + eZ3

softmax activation

0.95

0.04

0.01



Recall: Multi-class logistic model

Z2 ̂p 2

Z3 ̂p 3

X1

X2

X3

1

Input

Input

Input

Z1 ̂p 1

summation

̂p 1 =
eZ1

eZ1 + eZ2 + eZ3

̂p 2 =
eZ2

eZ1 + eZ2 + eZ3

̂p 3 =
eZ3

eZ1 + eZ2 + eZ3

softmax activation

This simple architecture directly uses raw pixel features.

Intuitively, a good classifier would pick up on cat’s eyes, ears, etc. 

0.95

0.04

0.01



One-hidden-layer neural network

X1

X2

X3

1

Z12

Z11

1

Z22

w1

b1

w2
w3
w4w5
w6

w7
w8

b2

b3

Input layer Hidden layer Output layer

Z21

Z23

̂p 2

̂p 1

̂p 3

w9
w10

w11
w12

b4b5

A12

A11

summation
ReLU


activation
summation softmax


activation

0.95

0.04

0.01



One-hidden-layer neural network

X1

X2

X3

1

Z12

Z11

1

Z22

w1

b1

w2
w3
w4w5
w6

w7
w8

b2

b3

Input layer Hidden layer Output layer

Z21

Z23

̂p 2

̂p 1

̂p 3

w9
w10

w11
w12

b4b5

A12

A11

summation
ReLU


activation
summation softmax


activation
E.g., Z12 = b2 + w2X1 + w4X2 + w6X3

0.95

0.04

0.01



One-hidden-layer neural network

X1

X2

X3

1

Z12

Z11

1

Z22

w1

b1

w2
w3
w4w5
w6

w7
w8

b2

b3

Input layer Hidden layer Output layer

Z21

Z23

̂p 2

̂p 1

̂p 3

w9
w10

w11
w12

b4b5

A12

A11

summation
ReLU


activation
summation softmax


activation
E.g., Z12 = b2 + w2X1 + w4X2 + w6X3

Z12

E.g., A12 = max(0,Z12)

A12

0.95

0.04

0.01



One-hidden-layer neural network

X1

X2

X3

1

Z12

Z11

1

Z22

w1

b1

w2
w3
w4w5
w6

w7
w8

b2

b3

Input layer Hidden layer Output layer

Z21

Z23

̂p 2

̂p 1

̂p 3

w9
w10

w11
w12

b4b5

A12

A11

summation
ReLU


activation
summation softmax


activation
E.g., Z12 = b2 + w2X1 + w4X2 + w6X3

Z12

E.g., A12 = max(0,Z12)

A12
Terminology:


: biases

: weights

bj
wj

0.95

0.04

0.01



One-hidden-layer neural network

Input layer Hidden layer

(ReLU activation)

Output layer

(softmax activation)

Concise representation

0.95

0.04

0.01



One-hidden-layer neural network

Input layer Hidden layer

(ReLU activation)

Output layer

(softmax activation)

Concise representation

“unit” or “neuron”

0.95

0.04

0.01



One-hidden-layer neural network

Input layer Hidden layer

(ReLU activation)

Output layer

(softmax activation)

Concise representation

“unit” or “neuron”

Notes:

• Bias terms left implicit.

• Fully connected architecture.

• Hidden layer: learned features.

0.95

0.04

0.01



One-hidden-layer neural network

Input layer Hidden layer

(ReLU)

Output layer

(softmax)

Even more concise representation

Fully

Connected

Fully

Connected

0.95

0.04

0.01



One-hidden-layer neural network

Input layer Hidden layer

(ReLU)

Output layer

(softmax)

Even more concise representation

Fully

Connected

Fully

Connected

Number of parameters in FC layer =

(# units in previous layer + 1)  (# units in this layer)×

0.95

0.04

0.01



Multi-layer fully connected neural networks
Input layer Hidden layer 1


(ReLU)
Output layer


(softmax)

Fully

Connected

Fully

Connected

Fully

Connected

Hidden layer 2

(ReLU)

0.95

0.04

0.01



Multi-layer fully connected neural networks
Input layer Hidden layer 1


(ReLU)
Output layer


(softmax)

Fully

Connected

Fully

Connected

Fully

Connected

Hidden layer 2

(ReLU)

Raw pixels Increasingly abstract representations Predicted classes

0.95

0.04

0.01



Training deep learning models



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Training deep learning models



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

https://arxiv.org/abs/1712.09913

Training deep learning models



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Gradient
Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



Training a neural network amounts to solving our 
usual optimization problem:

̂β = arg min
β

1
n

n

∑
i=1

L(Yi, fβ(Xi)) + λ ⋅ penalty(β) = arg min
β

F(β) .

Unfortunately, neural networks have non-convex 
objective functions, causing issues discussed in 
the previous lecture.

In practice, deep learning models are trained 
using stochastic gradient descent, which is a 
variant of gradient descent.

https://arxiv.org/abs/1712.09913

Training deep learning models

β1

F(β)
β2

Neg. gradient



The computational cost of gradient descent



The computational cost of gradient descent
computational cost = (cost of computing the gradient) × (number of iterations)



The computational cost of gradient descent
computational cost = (cost of computing the gradient) × (number of iterations)

Number of iterations has to do with the size of the learning rate (like boosting) 
and the shape of the objective function .F



The computational cost of gradient descent
computational cost = (cost of computing the gradient) × (number of iterations)

Number of iterations has to do with the size of the learning rate (like boosting) 
and the shape of the objective function .F

Cost of computing the gradient has to do with the size of the training data: 



The computational cost of gradient descent
computational cost = (cost of computing the gradient) × (number of iterations)

Number of iterations has to do with the size of the learning rate (like boosting) 
and the shape of the objective function .F

Cost of computing the gradient has to do with the size of the training data: 

If , then .F(β) =
1
n

n

∑
i=1

L(Yi, fβ(Xi)) ∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi))



The computational cost of gradient descent
computational cost = (cost of computing the gradient) × (number of iterations)

Number of iterations has to do with the size of the learning rate (like boosting) 
and the shape of the objective function .F

Cost of computing the gradient has to do with the size of the training data: 

If , then .F(β) =
1
n

n

∑
i=1

L(Yi, fβ(Xi)) ∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi))

Each evaluation of the gradient requires a pass through the entire training data, 
and modern data sets can have millions of training observations.



The computational cost of gradient descent
computational cost = (cost of computing the gradient) × (number of iterations)

Number of iterations has to do with the size of the learning rate (like boosting) 
and the shape of the objective function .F

Cost of computing the gradient has to do with the size of the training data: 

If , then .F(β) =
1
n

n

∑
i=1

L(Yi, fβ(Xi)) ∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi))

Each evaluation of the gradient requires a pass through the entire training data, 
and modern data sets can have millions of training observations.

This can make gradient descent prohibitively expensive. 



Stochastic gradient descent



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))

1. Choose some initial value of .β



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))

1. Choose some initial value of .β

2. Randomly assign observations to mini-batches  of a certain size  S1, …, SM



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))

1. Choose some initial value of .β

2. Randomly assign observations to mini-batches  of a certain size  S1, …, SM

3. Repeat until convergence:



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))

1. Choose some initial value of .β

2. Randomly assign observations to mini-batches  of a certain size  S1, …, SM

3. Repeat until convergence:

• For , update .m = 1,…, M β ← β − γ ⋅
1

|Sm | ∑
i∈Sm

∇L(Yi, fβ(Xi))



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))

1. Choose some initial value of .β

2. Randomly assign observations to mini-batches  of a certain size  S1, …, SM

3. Repeat until convergence:

• For , update .m = 1,…, M β ← β − γ ⋅
1

|Sm | ∑
i∈Sm

∇L(Yi, fβ(Xi))

One “epoch”



Stochastic gradient descent
Use subset  (mini-batch) of observations to approximate gradient:S ⊆ {1,…, n}

.∇F(β) =
1
n

n

∑
i=1

∇L(Yi, fβ(Xi)) ≈
1

|S | ∑
i∈S

∇L(Yi, fβ(Xi))

1. Choose some initial value of .β

2. Randomly assign observations to mini-batches  of a certain size  S1, …, SM

3. Repeat until convergence:

• For , update .m = 1,…, M β ← β − γ ⋅
1

|Sm | ∑
i∈Sm

∇L(Yi, fβ(Xi))

One “epoch” Backpropagation: An efficient algorithm to compute   ∇L(Yi, fβ(Xi))



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Behavior of stochastic gradient descent

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Stochastic gradient descent wobbles toward decreasing values of the objective:

Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Behavior of stochastic gradient descent

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Stochastic gradient descent wobbles toward decreasing values of the objective:

The smaller the mini-batch, the cheaper and more wobbly each step is; 
Intermediate mini-batch sizes tend to work well, e.g. mini-batch size = 32. 

Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Behavior of stochastic gradient descent

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Stochastic gradient descent wobbles toward decreasing values of the objective:

The smaller the mini-batch, the cheaper and more wobbly each step is; 
Intermediate mini-batch sizes tend to work well, e.g. mini-batch size = 32. 

Bonus: The extra randomness sometimes allows SGD to wobble past local minima.

Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Behavior of stochastic gradient descent

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch
SGD step

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch
SGD step SGD epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

Observation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Epoch Epoch 1 Epoch 2

SGD step SGD epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

Observation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Epoch Epoch 1 Epoch 2
SGD step (mini-batch size 1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SGD step SGD epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

Observation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Epoch Epoch 1 Epoch 2
SGD step (mini-batch size 1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SGD step (mini-batch size 3) Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

SGD step SGD epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

Observation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Epoch Epoch 1 Epoch 2
SGD step (mini-batch size 1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SGD step (mini-batch size 3) Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

SGD step SGD epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

E.g. , mini-batch 
size 3. Then each 
epoch consists of 
three SGD steps.

n = 9

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



Source: https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Stochastic gradient descent step versus epoch

Observation 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Epoch Epoch 1 Epoch 2
SGD step (mini-batch size 1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SGD step (mini-batch size 3) Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
Gradient step Step 1 Step 2

SGD step SGD epoch

An epoch consists of 
SGD steps that cycle 
through all of the 
observations once. 

E.g. , mini-batch 
size 3. Then each 
epoch consists of 
three SGD steps.

n = 9

mini-batch size =  (equivalent to gradient descent)n

mini-batch size = 1
1 < mini-batch size < n



The learning rate for (stochastic) gradient descent

Source: https://www.jeremyjordan.me/nn-learning-rate/



The learning rate for (stochastic) gradient descent

Source: https://www.jeremyjordan.me/nn-learning-rate/

• Setting the learning rate is more of an art than a science; might need to try a few values to 
get a good one.



The learning rate for (stochastic) gradient descent

Source: https://www.jeremyjordan.me/nn-learning-rate/

• Setting the learning rate is more of an art than a science; might need to try a few values to 
get a good one.

• Especially for non-convex optimization, people come up with clever strategies like shrinking 
learning rates, cycling learning rates, adaptive learning rates, etc. (RMSprop, Adam, 
AdaGrad, AdaDelta, …) 



Regularization in deep learning models



Regularization in deep learning models
Explicit regularization via penalization. Ridge regression penalty is the most 
common; this kind of penalization is known as weight decay.



Regularization in deep learning models
Explicit regularization via penalization. Ridge regression penalty is the most 
common; this kind of penalization is known as weight decay.

Implicit regularization: Other techniques to control 
complexity of the model.



Regularization in deep learning models
Explicit regularization via penalization. Ridge regression penalty is the most 
common; this kind of penalization is known as weight decay.

Implicit regularization: Other techniques to control 
complexity of the model.

• Early stopping: Do not run SGD until 
convergence; rather, stop SGD when validation 
error starts to increase.



Regularization in deep learning models
Explicit regularization via penalization. Ridge regression penalty is the most 
common; this kind of penalization is known as weight decay.

Implicit regularization: Other techniques to control 
complexity of the model.

• Early stopping: Do not run SGD until 
convergence; rather, stop SGD when validation 
error starts to increase.

• Dropout: At each SGD iteration, remove a 
randomly selected set of nodes from the 
network (analogous to sub-sampling features 
for random forests).



Model complexity and tuning in deep learning



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)

• Optimization algorithm used (RMSprop, Adam, etc.)



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)

• Optimization algorithm used (RMSprop, Adam, etc.)

• Weight decay parameter, dropout rate, number of SGD iterations 



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)

• Optimization algorithm used (RMSprop, Adam, etc.)

• Weight decay parameter, dropout rate, number of SGD iterations 

More complex models arise from bigger networks, less weight decay, less 
dropout, more SGD iterations.



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)

• Optimization algorithm used (RMSprop, Adam, etc.)

• Weight decay parameter, dropout rate, number of SGD iterations 

More complex models arise from bigger networks, less weight decay, less 
dropout, more SGD iterations.

Deep learning performance can be sensitive to these parameters; there is no 
standard way to tune neural networks; tuning is computationally expensive.



Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)

• Optimization algorithm used (RMSprop, Adam, etc.)

• Weight decay parameter, dropout rate, number of SGD iterations 

More complex models arise from bigger networks, less weight decay, less 
dropout, more SGD iterations.

Deep learning performance can be sensitive to these parameters; there is no 
standard way to tune neural networks; tuning is computationally expensive.

For computational savings, validation sets are typically employed instead of 
cross-validation to tune neural networks.



Summary



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).

• Stochastic gradient descent is used to train neural networks; it uses noisy 
approximations to the gradient but is much faster than gradient descent.



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).

• Stochastic gradient descent is used to train neural networks; it uses noisy 
approximations to the gradient but is much faster than gradient descent.

• Explicit and implicit regularization are used to control model complexity, the 
latter including early stopping and dropout.



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).

• Stochastic gradient descent is used to train neural networks; it uses noisy 
approximations to the gradient but is much faster than gradient descent.

• Explicit and implicit regularization are used to control model complexity, the 
latter including early stopping and dropout.

• Neural networks come with a smorgasbord of tuning parameters, which often 
require considerable effort to tune.


