
November 16, 2023

Neural networks
STAT 4710 



Lecture 1: Deep learning preliminaries


Lecture 2: Neural networks


Lecture 3: Deep learning for images


Lecture 4: Deep learning for text


Lecture 5: Unit review and quiz in class

Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods


Unit 5: Deep learning

Where we are



Recall: Multi-class logistic model

Z2 ̂p 2

Z3 ̂p 3

X1

X2

X3

1

Input

Input

Input

Z1 ̂p 1

summation

̂p 1 =
eZ1

eZ1 + eZ2 + eZ3

̂p 2 =
eZ2

eZ1 + eZ2 + eZ3

̂p 3 =
eZ3

eZ1 + eZ2 + eZ3

softmax activation

0.95

0.04

0.01



Recall: Multi-class logistic model

Z2 ̂p 2

Z3 ̂p 3

X1

X2

X3

1

Input

Input

Input

Z1 ̂p 1

summation

̂p 1 =
eZ1

eZ1 + eZ2 + eZ3

̂p 2 =
eZ2

eZ1 + eZ2 + eZ3

̂p 3 =
eZ3

eZ1 + eZ2 + eZ3

softmax activation

This simple architecture directly uses raw pixel features.

Intuitively, a good classifier would pick up on cat’s eyes, ears, etc. 
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One-hidden-layer neural network

Input layer Hidden layer

(ReLU activation)

Output layer

(softmax activation)

Concise representation

“unit” or “neuron”

Notes:

• Bias terms left implicit.

• Fully connected architecture.

• Hidden layer: learned features.
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One-hidden-layer neural network
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Multi-layer fully connected neural networks
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Multi-layer fully connected neural networks
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Training deep learning models
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Each evaluation of the gradient requires a pass through the entire training data, 
and modern data sets can have millions of training observations.

This can make gradient descent prohibitively expensive. 
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One “epoch” Backpropagation: An efficient algorithm to compute   ∇L(Yi, fβ(Xi))
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Stochastic gradient descent wobbles toward decreasing values of the objective:

The smaller the mini-batch, the cheaper and more wobbly each step is; 
Intermediate mini-batch sizes tend to work well, e.g. mini-batch size = 32. 

Bonus: The extra randomness sometimes allows SGD to wobble past local minima.
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The learning rate for (stochastic) gradient descent

Source: https://www.jeremyjordan.me/nn-learning-rate/

• Setting the learning rate is more of an art than a science; might need to try a few values to 
get a good one.

• Especially for non-convex optimization, people come up with clever strategies like shrinking 
learning rates, cycling learning rates, adaptive learning rates, etc. (RMSprop, Adam, 
AdaGrad, AdaDelta, …) 
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Explicit regularization via penalization. Ridge regression penalty is the most 
common; this kind of penalization is known as weight decay.

Implicit regularization: Other techniques to control 
complexity of the model.

• Early stopping: Do not run SGD until 
convergence; rather, stop SGD when validation 
error starts to increase.

• Dropout: At each SGD iteration, remove a 
randomly selected set of nodes from the 
network (analogous to sub-sampling features 
for random forests).
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Model complexity and tuning in deep learning
Deep learning has many tuning parameters:

• Network architecture (number of layers, units per layer)

• Optimization algorithm used (RMSprop, Adam, etc.)

• Weight decay parameter, dropout rate, number of SGD iterations 

More complex models arise from bigger networks, less weight decay, less 
dropout, more SGD iterations.

Deep learning performance can be sensitive to these parameters; there is no 
standard way to tune neural networks; tuning is computationally expensive.

For computational savings, validation sets are typically employed instead of 
cross-validation to tune neural networks.



Summary



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).

• Stochastic gradient descent is used to train neural networks; it uses noisy 
approximations to the gradient but is much faster than gradient descent.



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).

• Stochastic gradient descent is used to train neural networks; it uses noisy 
approximations to the gradient but is much faster than gradient descent.

• Explicit and implicit regularization are used to control model complexity, the 
latter including early stopping and dropout.



Summary
• Adding hidden layers to logistic regression gives multilayer neural networks. 

• Multilayer neural networks build increasingly complex representations of the 
input data (feature learning).

• Stochastic gradient descent is used to train neural networks; it uses noisy 
approximations to the gradient but is much faster than gradient descent.

• Explicit and implicit regularization are used to control model complexity, the 
latter including early stopping and dropout.

• Neural networks come with a smorgasbord of tuning parameters, which often 
require considerable effort to tune.


