Deep learning preliminaries

STAT 4710

November 14, 2023

Rolling into a new unit!

Unit 1: R for data mining
Unit 2: Prediction fundamentals
Unit 3: Regression-based methods
Unit 4: Tree-based methods
Unit 5: Deep learning

Lecture 1: Deep learning preliminaries
Lecture 2: Neural networks
Lecture 3: Deep learning for images
Lecture 4: Deep learning for text
Lecture 5: Unit review and quiz in class

What is deep learning?

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

Natural language processing

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18

Natural language processing

- Machine translation

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18
Natural language processing
- Machine translation
- Speech recognition

What is deep learning?

Deep learning is an enormously successful class of predictive models that has achieved state-of-the-art performance across a variety of domains:

Image processing

- Medical image analysis
- Self-driving cars

https://towardsdatascience.com/understanding-cancer-using-machine-learning-84087258ee18
Natural language processing
- Machine translation
- Speech recognition
- Chatbots

Game plan for Unit 5

Game plan for Unit 5

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Game plan for Unit 5

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Game plan for Unit 5

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 3: Deep learning for images

- Image classification
- Convolutional neural networks

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Game plan for Unit 5

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 2: Neural networks

- Multi-layer predictive models
- Stochastic gradient descent

Lecture 3: Deep learning for images

- Image classification
- Convolutional neural networks

Lecture 4: Deep learning for text

- Document classification
- Recurrent neural networks and transformers

Game plan for Unit 5

Lecture 1: Deep learning preliminaries

- Predictive models as graphs
- Training via optimization

Lecture 3: Deep learning for images

- Image classification
- Convolutional neural networks

Lecture 4: Deep learning for text

- Document classification
- Recurrent neural networks and transformers

Models as graphs: Linear regression

$$
\widehat{Y}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}
$$

Models as graphs: Logistic model

$$
Z=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3} ; \quad \hat{p}=\operatorname{logistic}(Z)=\frac{e^{Z}}{1+e^{Z}}
$$

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Image is flattened to get vector of input features

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Image is flattened to get vector of input features

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

Models as graphs: Multi-class logistic model

Suppose the response has more than two levels.

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}$. Define

$$
\text { cross-entropy loss } L(Y, \widehat{p})= \begin{cases}-\log \left(\hat{p}_{1}\right) & \text { if } Y=1 \\ -\log \left(\hat{p}_{2}\right) & \text { if } Y=2 \\ -\log \left(\hat{p}_{3}\right) & \text { if } Y=3\end{cases}
$$

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}$. Define

$$
\text { cross-entropy loss } L(Y, \widehat{p})= \begin{cases}-\log \left(\hat{p}_{1}\right) & \text { if } Y=1 \\ -\log \left(\hat{p}_{2}\right) & \text { if } Y=2 \\ -\log \left(\hat{p}_{3}\right) & \text { if } Y=3\end{cases}
$$

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}$. Define

$$
\text { cross-entropy loss } L(Y, \widehat{p})= \begin{cases}-\log \left(\hat{p}_{1}\right) & \text { if } Y=1 \\ -\log \left(\hat{p}_{2}\right) & \text { if } Y=2 \\ -\log \left(\hat{p}_{3}\right) & \text { if } Y=3\end{cases}
$$

Greater probability attached to true class \rightarrow smaller cross-entropy loss.

The cross-entropy loss function

Suppose we have a true label Y and fitted probabilities $\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}$. Define

$$
\text { cross-entropy loss } L(Y, \widehat{p})= \begin{cases}-\log \left(\hat{p}_{1}\right) & \text { if } Y=1 \\ -\log \left(\hat{p}_{2}\right) & \text { if } Y=2 \\ -\log \left(\hat{p}_{3}\right) & \text { if } Y=3\end{cases}
$$

Greater probability attached to true class \rightarrow smaller cross-entropy loss.

The cross-entropy loss generalizes the negative logarithm of the logistic likelihood.

Training predictive models via optimization

Training predictive models via optimization

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β.

Training predictive models via optimization

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β.
Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$
\widehat{\beta}=\underset{\beta}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, f_{\beta}\left(X_{i}\right)\right)+\lambda \cdot \text { penalty }(\beta)
$$

Training predictive models via optimization

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β.
Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$
\hat{\beta}=\underset{\beta}{\arg \min } \frac{\frac{1}{n} \sum_{\text {objective function } F(\beta)}^{n} L\left(Y_{i}, f_{\beta}\left(X_{i}\right)\right)+\lambda \cdot \operatorname{penalty}(\beta)}{\text { or }}
$$

Training predictive models via optimization

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β.
Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$
\widehat{\beta}=\underset{\beta}{\arg \min } \frac{\frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, f_{\beta}\left(X_{i}\right)\right)+\lambda \cdot \operatorname{penalty}(\beta)}{\text { objective function } F(\beta)}
$$

For example, ridge regression has

$$
L\left(Y_{i}, \widehat{Y}_{i}\right)=\left(Y_{i}-\widehat{Y}_{i}\right)^{2} ; \quad f_{\beta}(X)=\beta_{0} X_{0}+\cdots+\beta_{p-1} X_{p-1} ; \quad \text { penalty }(\beta)=\sum_{j=1}^{p-1} \beta_{j}^{2}
$$

Training predictive models via optimization

Define class of predictive models $f_{\beta}(X)$ indexed by some parameter vector β.
Find member of this class that best fits the training data, as measured by the loss function L of predictions given true responses, possibly regularized:

$$
\widehat{\beta}=\underset{\beta}{\arg \min } \frac{\frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, f_{\beta}\left(X_{i}\right)\right)+\lambda \cdot \operatorname{penalty}(\beta)}{\text { objective function } F(\beta)}
$$

For example, ridge regression has

$$
L\left(Y_{i}, \widehat{Y}_{i}\right)=\left(Y_{i}-\widehat{Y}_{i}\right)^{2} ; \quad f_{\beta}(X)=\beta_{0} X_{0}+\cdots+\beta_{p-1} X_{p-1} ; \quad \text { penalty }(\beta)=\sum_{j=1}^{p-1} \beta_{j}^{2}
$$

Training predictive models $=$ solving optimization problems.

Convexity: A crucial property of F

The hardness of the optimization problem arg $\min F(\beta)$ depends crucially on whether the objective function F is convex, or "bowl-shaped."

Convexity: A crucial property of F

The hardness of the optimization problem arg min $F(\beta)$ depends crucially on whether the objective function F is convex, or "bowl-shaped."

For convex functions, any local minimum must also be a global minimum.
It is much easier to find local minima than global minima.

Which methods have convex objectives?

Which methods have convex objectives?

Convex

- Linear and logistic regression
- Linear and logistic regression with ridge or lasso penalties

Which methods have convex objectives?

Convex

- Linear and logistic regression
- Linear and logistic regression with ridge or lasso penalties

Not convex

- Tree-based methods
- Neural networks

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

Gradient descent

1. Choose some initial value of β.
2. Evaluate the gradient $\nabla F(\beta)$ at that point; it is the direction in which F increases the fastest. The negative gradient is the direction in which F decreases the fastest.
3. Take small step in negative gradient direction: $\beta \leftarrow \beta-\gamma \nabla F(\beta) ; \gamma$ called the learning rate.
4. Repeat steps 2 and 3 until gradient is near zero.

As long as the learning rate γ is not too large, gradient descent is guaranteed to converge to a global minimum regardless of initialization if F is convex.

Gradient descent for non-convex optimization

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.

Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

Gradient descent for non-convex optimization

Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global minimum) for the ball to roll, no matter where it starts.

For non-convex functions, the ball can roll into any of the local minima, most of which are not global minima.

While it is computationally infeasible to find global minima for non-convex optimization,

- Local minima may still give reasonable models
- Other tricks, like multiple restarts, give better solutions

Summary

Summary

- We can think of certain predictive models as graphs.

Summary

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.

Summary

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.

Summary

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.
- Hardness of optimization depends on whether objective function is convex; linear and logistic regression are convex but trees and neural networks are not.

Summary

- We can think of certain predictive models as graphs.
- We extended logistic regression to the case of more than two output classes, and defined the cross-entropy loss that is used for training such models.
- Solving optimization problems is a key part of training predictive models.
- Hardness of optimization depends on whether objective function is convex; linear and logistic regression are convex but trees and neural networks are not.
- Gradient descent is a common way to "go downhill" along an objective function, arriving at a local minimum (and for convex objectives, a global one).

