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Deep learning is an enormously successful class of predictive models that has 
achieved state-of-the-art performance across a variety of domains:

Image processing

• Medical image analysis

• Self-driving cars

Natural language processing

• Machine translation

• Speech recognition

• Chatbots
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Y ̂p 1, ̂p 2, ̂p 3

L(Y, ̂p ) =
−log( ̂p 1) if Y = 1;
−log( ̂p 2) if Y = 2;
−log( ̂p 3) if Y = 3.

Greater probability attached to true class 
 smaller cross-entropy loss.→

The cross-entropy loss generalizes the 
negative logarithm of the logistic likelihood.
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Define class of predictive models  indexed by some parameter vector .fβ(X) β

Find member of this class that best fits the training data, as measured by the loss 
function  of predictions given true responses, possibly regularized:L

 .̂β = arg min
β

1
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∑
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L(Yi, fβ(Xi)) + λ ⋅ penalty(β)

For example, ridge regression has 

.L(Yi, ̂Yi) = (Yi − ̂Yi)2; fβ(X) = β0X0 + ⋯ + βp−1Xp−1; penalty(β) =
p−1

∑
j=1

β2
j

Training predictive models = solving optimization problems.

objective function F(β)
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For convex functions, any local minimum must also be a global minimum. 


It is much easier to find local minima than global minima.

Any line must lie on 

or above the function
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Convex


• Linear and logistic regression


• Linear and logistic regression with ridge or 
lasso penalties


https://arxiv.org/abs/1712.09913

Not convex 


• Tree-based methods


• Neural networks
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4. Repeat steps 2 and 3 until gradient is near zero.
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As long as the learning rate  is not too large, gradient descent is guaranteed 
to converge to a global minimum regardless of initialization if  is convex.

γ
F
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Think about gradient descent as a ball rolling down a hill. 

For convex functions, there is only one place (the global 
minimum) for the ball to roll, no matter where it starts. 

For non-convex functions, the ball can roll into any of the 
local minima, most of which are not global minima.

While it is computationally infeasible to find global minima 
for non-convex optimization,

• Local minima may still give reasonable models

• Other tricks, like multiple restarts, give better solutions
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Summary

• We can think of certain predictive models as graphs.

• We extended logistic regression to the case of more than two output classes, 
and defined the cross-entropy loss that is used for training such models.

• Solving optimization problems is a key part of training predictive models.

• Hardness of optimization depends on whether objective function is convex; 
linear and logistic regression are convex but trees and neural networks are not.

• Gradient descent is a common way to “go downhill” along an objective 
function, arriving at a local minimum (and for convex objectives, a global one).


