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Rolling into a new unit!

\/Unit 1: R for data mining Lecture 1: Deep learning preliminaries

\/ Unit 2: Prediction fundamentals Lecture 2: Neural networks
J Unit 3: Regression-based methods Lecture 3: Deep learning for images
\/ Unit 4: Tree-based methods Lecture 4: Deep learning for text

Unit 5: Deep learning Lecture 5: Unit review and quiz in class
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Models as graphs: Logistic model

Z=p,+ X, + X, + X5, p =logistic(Z) =

1 + ¢4

summation sigmoid activation
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Suppose we have a true label Y and fitted probabilities p,, p,, p ;. Define

—log(p,) ifY=1;
cross-entropy loss L(Y, p) = 1 —log(p,) ifY =2;
—log(p,) ifY =3.
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negative logarithm of the logistic likelihood.

Cross-entropy loss
N
|

amb
'

0.00 0.25 0.50 0.75 1.00
Fitted probability for true class




Training predictive models via optimization



Training predictive models via optimization

Define class of predictive models fﬂ(X) indexed by some parameter vector /.



Training predictive models via optimization

Define class of predictive models fﬂ(X) indexed by some parameter vector /.

Find member of this class that best fits the training data, as measured by the loss
function L of predictions given true responses, possibly regularized:

N\

f = arg min l Z L(Y;, f5(X;)) + A - penalty(f).
g



Training predictive models via optimization

Define class of predictive models fﬂ(X) indexed by some parameter vector /.

Find member of this class that best fits the training data, as measured by the loss
function L of predictions given true responses, possibly regularized:

,3\ = arg min l Z L(Y;, f5(X;)) + A - penalty(f).
g i L

—
objective function F(f)



Training predictive models via optimization

Define class of predictive models fﬁ(X) indexed by some parameter vector /.

Find member of this class that best fits the training data, as measured by the loss
function L of predictions given true responses, possibly regularized:

,3\ = arg min l Z L(Y;, f5(X;)) + A - penalty(f).
g i L

[ ] \/l
objective function F(f)
For example, ridge regression has

p—1
L(Y, Y;) = (Y, — Yi)23 JpX) = poXo+ -+ p,_1X,_15  penalty(f) = Zﬁjz
j=1



Training predictive models via optimization

Define class of predictive models fﬂ(X) indexed by some parameter vector /.

Find member of this class that best fits the training data, as measured by the loss
function L of predictions given true responses, possibly regularized:

N\

f = arg min l Z L(Y;, f5(X;)) + A - penalty(f).
n -
T -

[ ] \/l
objective function F(f)
For example, ridge regression has

p—1
L(Y, Y;) = (Y, — Yi)23 JpX) = poXo+ -+ p,_1X,_15  penalty(f) = Zﬁjz
j=1

Training predictive models = solving optimization problems.



Convexity: A crucial property of F

The hardness of the optimization problem arg min F(f) depends crucially on
whether the objective function F'is convex, or “bowl-shaped.”

Convex Convex Non-convex Convex

F(p) | F(p) | FP) | b
p p

P



Convexity: A crucial property of F

The hardness of the optimization problem arg min F(f) depends crucially on
whether the objective function F'is convex, or “bowl-shaped.”

Convex Convex Non-convex Convex

FB) | \ .7/ F(p) F(p) | Fp) | Py
p p

ﬁ Any line must lie on
or above the function

P

For convex functions, any local minimum must also be a global minimum.

It Is much easier to find local minima than global minima.
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Convex Not convex
* Linear and logistic regression * [ree-based methods
* Linear and logistic regression with ridge or * Neural networks
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Gradient descent

1. Choose some initial value of p.

2. Evaluate the gradient V F(f) at that point; it is

the direction in which F increases the fastest.
The negative gradient is the direction in which

I decreases the fastest. F(p)

3. Take small step in negative gradient direction:
fp «— f—yVF(p);ycalled the learning rate.

4. Repeat steps 2 and 3 until gradient is near zero.

As long as the learning rate y is not too large, gradient descent is guaranteed
to converge to a global minimum regardless of initialization if /' is convex.
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Gradient descent for non-convex optimization

Convex
Think about gradient descent as a ball rolling down a hill.
For convex functions, there is only one place (the global  f(s)
minimum) for the ball to roll, no matter where it starts.
For non-convex functions, the ball can roll into any of the Z
local minima, most of which are not global minima. Non-convex

While it is computationally infeasible to find global minima
for non-convex optimization,
F(p)

* | ocal minima may still give reasonable models

» Other tricks, like multiple restarts, give better solutions
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Summary

* We can think of certain predictive models as graphs.

 We extended logistic regression to the case of more than two output classes,
and defined the cross-entropy loss that is used for training such models.

* Solving optimization problems is a key part of training predictive models.

 Hardness of optimization depends on whether objective function is convex;
linear and logistic regression are convex but trees and neural networks are not.

 (Gradient descent is a common way to “go downhill” along an objective
function, arriving at a local minimum (and for convex objectives, a global one).



