
STAT 4710: Homework 5

Name

Due: December 5, 2023 at 9:00pm

Contents
Instructions 1

Fashion MNIST Data 2

1 Data exploration 3

2 Model training 3
2.1 Multi-class logistic regression . 3
2.2 Fully connected neural network . 3
2.3 Convolutional neural network . 4

3 Evaluation 4

Instructions
Materials and collaboration
The policy on allowed materials and collaboration is as stated on the Syllabus:

“Students are permitted to work together on homework assignments, but must write up and submit
solutions individually. In particular, students may not copy each others’ solutions. Students
may consult all course materials, textbooks, the internet, or AI tools (e.g. ChatGPT or GitHub
Copilot) to complete their homework. Students may not use solutions to problems that may be
available online and/or from past iterations of the course. For each homework, students must
disclose all classmates with whom they collaborated, which AI tools they used, and how they used
them. Failure to do so will result in a 5-point penalty.”

In accordance with this policy,

Please disclose all classmates with whom you collaborated:

Please disclose which AI tools you used, and how you used them:

Failure to answer the above questions will result in a 5-point penalty.

Writeup
Use this document as a starting point for your writeup, adding your R code using code chunks and adding
your text answers using bold text. Consult the preparing reports guide for guidance on compilation, creation
of figures and tables, and presentation quality. In particular, if the instructions ask you to “print a table”,
you should use kable. If the instructions ask you to “print a tibble”, you should not use kable and instead
print the tibble directly.

1

https://katsevich-teaching.github.io/stat-4710-fall-2023/assets/preparing-reports.pdf

Programming
The tidyverse paradigm for data visualization, manipulation, and wrangling is required. No points will be
awarded for code written in base R.

We’ll need to use the following R packages:
library(keras) # to train neural networks
library(kableExtra) # to print tables
library(cowplot) # to print side-by-side plots
library(stat471) # for deep learning helper functions
library(tidyverse) # tidyverse

Grading
The point value for each problem sub-part is indicated. Additionally, the presentation quality of the solution
for each problem (as exemplified by the guidelines in Section 4 of the preparing reports guide will be evaluated
on a per-problem basis. There are 100 points possible on this homework, 85 of which are for correctness and
15 of which are for presentation.

Fashion MNIST Data
In this homework, we will analyze the Fashion MNIST data, which is like MNIST but with clothing items
rather than handwritten digits. There are ten classes, as listed in Table 1.

Table 1: The ten classes in the Fashion MNIST data.

Index Name
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

The code provided below loads the data, and prepares it for modeling with keras.
load the data
fashion_mnist <- dataset_fashion_mnist()

extract information about the images
num_classes <- nrow(class_names) # number of image classes
num_train_images <- dim(fashion_mnist$train$x)[1] # number of training images
num_test_images <- dim(fashion_mnist$test$x)[1] # number of test images
img_rows <- dim(fashion_mnist$train$x)[2] # rows per image
img_cols <- dim(fashion_mnist$train$x)[3] # columns per image
num_pixels <- img_rows*img_cols # pixels per image
max_intensity <- 255 # max pixel intensity

2

https://katsevich-teaching.github.io/stat-4710-fall-2023/assets/preparing-reports.pdf
https://github.com/zalandoresearch/fashion-mnist

normalize and reshape the images
x_train <- array_reshape(fashion_mnist$train$x/max_intensity,

c(num_train_images, img_rows, img_cols, 1))
x_test <- array_reshape(fashion_mnist$test$x/max_intensity,

c(num_test_images, img_rows, img_cols, 1))

extract the responses from the training and test data
g_train <- fashion_mnist$train$y
g_test <- fashion_mnist$test$y

recode response labels using "one-hot" representation
y_train <- to_categorical(g_train, num_classes)
y_test <- to_categorical(g_test, num_classes)

1 Data exploration
1. How many observations in each class are there in the training data? (Kable output optional.) [Hint:

Try the table() function.]

2. Plot the first six training images in a 2 × 3 grid, each image titled with its class name from the second
column of Table 1.

3. Comment on the extent to which you (a human) would have been able to successfully classify the
observations plotted in part ii. Would you have had any trouble? If so, with which observations?

4. What is the human performance on this classification task? You can find it at the Fashion MNIST
webpage linked above by searching for “human performance.”

2 Model training
2.1 Multi-class logistic regression

1. Define a keras_model_sequential object called model_lr for multi-class logistic regression, and
compile it using the categorical_crossentropy loss, the adam optimizer, and the accuracy metric.

2. Print the summary of the model (no need to use kable). How many total parameters are there? How
does this number follow from the architecture of this simple neural network?

3. Train the model for 10 epochs, using a batch size of 128, and a validation split of 20%. Save the model
to model_lr.h5 and its history to model_lr_hist.RDS, and then set this code chunk to eval = FALSE
to avoid recomputation. How many total stochastic gradient steps were taken while training this model,
and how did you arrive at this number? Based on the output printed during training, roughly how
many milliseconds did each stochastic gradient step take?

4. Load the model and its history from the files saved in part iii. Create a plot of the training history.
Based on the shape of the validation loss curve, has any overfitting occurred during the first 10 epochs?

2.2 Fully connected neural network
1. Define a keras_model_sequential object called model_nn for a fully connected neural network with

three hidden layers with 256, 128, and 64 units, relu activations, and dropout proportions 0.4, 0.3, and
0.2, respectively. Compile it using the categorical_crossentropy loss, the rmsprop optimizer, and
the accuracy metric.

3

2. Print the summary of the model. How many total parameters are there? How many parameters
correspond to the connections between the second and third hidden layers? How does this number
follow from the architecture of the neural network?

3. Train the model using 15 epochs, a batch size of 128, and a validation split of 0.2. Save the model
to “model_nn.h5” and its history to “model_nn_hist.RDS”, and then set this code chunk to eval
= FALSE to avoid recomputation. Based on the output printed during training, roughly how many
milliseconds did each stochastic gradient step take?

4. Load the model and its history from the files saved in part 3. Create a plot of the training history.

2.3 Convolutional neural network
1. Define a keras_model_sequential object called model_cnn for a convolutional neural network with a

convolutional layer with 32 3 × 3 filters, followed by a convolutional layer with 64 3 × 3 filters, followed
by a max-pooling step with 2 × 2 pool size with 25% dropout, followed by a fully-connected layer
with 128 units and 50% dropout, followed by a softmax output layer. All layers except the output
layer should have relu activations. Compile the model using the categorical_crossentropy loss, the
adadelta optimizer, and the accuracy metric.

2. Print the summary of the model. How many total parameters are there? How many parameters
correspond to the connections between the first and second convolutional layers? How does this number
follow from the architecture of the neural network?

3. Train the model using 5 epochs, a batch size of 128, and a validation split of 0.2. Save the model to
model_cnn.h5 and its history to model_cnn_hist.RDS, and then set this code chunk to eval = FALSE
to avoid recomputation. Based on the output printed during training, roughly how many milliseconds
did each stochastic gradient step take?

4. Load the model and its history from the files saved in part 3. Create a plot of the training history.

3 Evaluation
1. Evaluate the test accuracy for each of the three trained neural network models. Output this information

in a table, along with the number of layers, number of parameters, and milliseconds per stochastic
gradient descent step. Also include a row in the table for human performance. Compare and contrast
the three neural networks and human performance based on this table.

2. Plot confusion matrices for each of the three methods. For each method, what class gets misclassified
most frequently? What is most frequent wrong label for this class?

3. Consider CNN’s most frequently misclassified class. What are the three most common incorrect
classifications for this class? Extract one image representing each of these three type of misclassifications,
and plot these side by side (titled with their predicted labels). Would you have gotten these right?

4

	Instructions
	Fashion MNIST Data
	Data exploration
	Model training
	Multi-class logistic regression
	Fully connected neural network
	Convolutional neural network

	Evaluation

