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This lecture: we’ll learn about boosting (AKA gradient boosting), another way of 
aggregating multiple decision trees to get excellent prediction performance.

• Random forests: Grow deep decision trees in parallel

• Boosting: Grow shallow decision trees sequentially
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Consider a low-complexity weak learner , such as a shallow decision tree. We 
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

• Let  be the residuals, portion of response left over to explainri ← Yi − ̂f1(Xi)

• Now fit the weak learner to the residuals  to get (Xi, ri) ̂f2

• Update the residuals via  ri ← ri − ̂f2(Xi)
• Repeat  timesB

Final prediction rule: .̂f = ̂f1 + ⋯ + ̂fB
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Comparison to random forests (driving range)

Y
̂f1

0

Try to make each single swing as accurate as possible, then average.

̂f2

̂f

̂fB

⋯

̂f =
1
B

( ̂f1 + ⋯ + ̂fB)
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Boosting with shrinkage

Y

0

Let  be a shrinkage parameter, e.g. 0.5. We only go  of the way each time.λ ∈ (0,1] λ

λ ̂f1
λ ̂f2

λ ̂fB−1

λ ̂fB
⋯

̂f = λ ̂f1 + ⋯ + λ ̂fB
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The parameters  and λ B

The parameter  controls how slowly 
boosting learns.

λ

Learning more slowly tends to give 
better predictive performance, but 
requires more iterations .B

The parameter  controls how many 
iterative refinements are made, so 
larger  means more model flexibility.

B

B

Large enough  can lead to 
overfitting, unlike random forests.

B
(https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf)values of λ

( )B

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
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Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based 
on  and  together (two-way interactions).X1 X2

For , we can get three-way interactions, etc.d = 3

Since the boosting prediction is the sum of tree 
predictions, if all trees have e.g.  the entire 
forest contains interactions of at most two features.

d ≤ 2

X1 ≥ s1 and X2 < s3

interaction between

 and  (two-way)X1 X2

d = 1: ̂f(X1, X2, X3) = ̂g 1(X1) + ̂g 2(X2) + ̂g 3(X3)

d = 2: ̂f(X1, X2, X3) = ̂g 12(X1, X2) + ̂g 23(X2, X3) + ̂g 13(X1, X3)
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Special case: d = 1

When , each tree has only one split; such 
trees are called stumps.

d = 1

Since each tree involves only one feature, the 
entire boosted model can be viewed as an 
additive model:

̂f(X) = ̂g 1(X1) + ̂g 2(X2) + ⋯ + ̂g p(Xp)

for some coordinate functions . ̂g j

The coordinate functions can be easily plotted 
and interpreted.

d = 1

Xj ≥ sj

c1 c2
A “stump”
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Stochastic gradient boosting

Same as gradient boosting, except at each iteration, sample only a fraction  of 
the training observations (with replacement) and train only on those.

π

Subsampling empirically demonstrated to improve boosting performance.

Subsampling increases variance of individual trees but de-correlates them; 
benefit of the latter tends to outweigh the former. 

A subsampling fraction of  tends to work well in most cases.π = 0.5
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Tuning gradient boosting

Parameters:

• Shrinkage parameter : Choose some small number, e.g. .λ λ = 0.1

• Number of trees : Choose via cross-validation or using a validation set.B

• Interaction depth :  usually works well. Try a few values and 
tune by cross-validation or validation set. 

d 1 ≤ d ≤ 5

• Subsampling fraction : Leave at the default of 0.5.π
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Model interpretation
Variable importance measure:

The purity-based notion of variable importance is also applicable to boosting.

Partial dependence plots:

For , the coordinate functions  show exactly how  depends on , i.e.d = 1 ̂g j
̂f Xj

.̂f(X) = ̂g 1(X1) + ⋯ + ̂g B(XB)

For , can define a generalization of  such thatd > 1 ̂g j

  .̂f(X) ≈ ̂g 1(X1) + ⋯ + ̂g B(XB)

The larger  is, the worse the approximation.d
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Boosting for classification

Boosting is applicable—but a little harder— in the classification context.

The key issue is that there is not an obvious notion of residual in classification.

Implementation of boosting for classification is beyond the scope of the class, 
but the same intuitions from this lecture carry over to boosting for classification.



Summary



Summary

• Like random forests, boosting aggregates the results of many decision trees 
to build a predictive model with state-of-the-art performance.



Summary

• Like random forests, boosting aggregates the results of many decision trees 
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in 
parallel, using shallow trees rather than deep trees.



Summary

• Like random forests, boosting aggregates the results of many decision trees 
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in 
parallel, using shallow trees rather than deep trees.

• Boosting works best when paired with shrinkage to further slow learning.



Summary

• Like random forests, boosting aggregates the results of many decision trees 
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in 
parallel, using shallow trees rather than deep trees.

• Boosting works best when paired with shrinkage to further slow learning.

• Unlike random forests, the number of trees  controls the complexity of the 
fit, and therefore must be tuned via cross-validation.

B



Summary

• Like random forests, boosting aggregates the results of many decision trees 
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in 
parallel, using shallow trees rather than deep trees.

• Boosting works best when paired with shrinkage to further slow learning.

• Unlike random forests, the number of trees  controls the complexity of the 
fit, and therefore must be tuned via cross-validation.

B

• Purity-based variable importance as well as partial dependence plots help 
interpret boosting models.


