
November 7, 2023

Boosting
STAT 4710

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Growing decision trees

Lecture 2: Tree pruning and bagging

Lecture 3: Random forests

Lecture 4: Boosting

Lecture 5: Unit review and quiz in class

Where we are

Looking back and looking ahead

Looking back and looking ahead

Looking back:

Looking back and looking ahead

Looking back:

• Decision trees: Great interpretability, but subpar prediction performance

Looking back and looking ahead

Looking back:

• Decision trees: Great interpretability, but subpar prediction performance

• Bagging and random forests: Aggregating together the predictions of multiple
decision trees to reduce variance and improve prediction performance

Looking back and looking ahead

Looking back:

• Decision trees: Great interpretability, but subpar prediction performance

• Bagging and random forests: Aggregating together the predictions of multiple
decision trees to reduce variance and improve prediction performance

This lecture: we’ll learn about boosting (AKA gradient boosting), another way of
aggregating multiple decision trees to get excellent prediction performance.

Looking back and looking ahead

Looking back:

• Decision trees: Great interpretability, but subpar prediction performance

• Bagging and random forests: Aggregating together the predictions of multiple
decision trees to reduce variance and improve prediction performance

This lecture: we’ll learn about boosting (AKA gradient boosting), another way of
aggregating multiple decision trees to get excellent prediction performance.

• Random forests: Grow deep decision trees in parallel

Looking back and looking ahead

Looking back:

• Decision trees: Great interpretability, but subpar prediction performance

• Bagging and random forests: Aggregating together the predictions of multiple
decision trees to reduce variance and improve prediction performance

This lecture: we’ll learn about boosting (AKA gradient boosting), another way of
aggregating multiple decision trees to get excellent prediction performance.

• Random forests: Grow deep decision trees in parallel

• Boosting: Grow shallow decision trees sequentially

Boosting: Learning sequentially

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

• Let be the residuals, portion of response left over to explainri ← Yi − ̂f1(Xi)

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

• Let be the residuals, portion of response left over to explainri ← Yi − ̂f1(Xi)

• Now fit the weak learner to the residuals to get (Xi, ri) ̂f2

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

• Let be the residuals, portion of response left over to explainri ← Yi − ̂f1(Xi)

• Now fit the weak learner to the residuals to get (Xi, ri) ̂f2

• Update the residuals via ri ← ri − ̂f2(Xi)

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

• Let be the residuals, portion of response left over to explainri ← Yi − ̂f1(Xi)

• Now fit the weak learner to the residuals to get (Xi, ri) ̂f2

• Update the residuals via ri ← ri − ̂f2(Xi)
• Repeat timesB

Boosting: Learning sequentially
We are given some training data points ; suppose continuous response.(Xi, Yi)

Consider a low-complexity weak learner , such as a shallow decision tree. We
can boost the performance of the weak learner by applying it iteratively:

̂f

• First fit the weak learner to the training data to get ̂f1

• Let be the residuals, portion of response left over to explainri ← Yi − ̂f1(Xi)

• Now fit the weak learner to the residuals to get (Xi, ri) ̂f2

• Update the residuals via ri ← ri − ̂f2(Xi)
• Repeat timesB

Final prediction rule: .̂f = ̂f1 + ⋯ + ̂fB

Boosting: An analogy with golf

Y

r

̂f = 0

0

Each golf swing is not too accurate, but a sequence of them is.

Boosting: An analogy with golf

Y
̂f1

r

̂f = 0

0

Each golf swing is not too accurate, but a sequence of them is.

Boosting: An analogy with golf

Y
̂f1

r

̂f = ̂f1

0

Each golf swing is not too accurate, but a sequence of them is.

Boosting: An analogy with golf

Y
̂f1

r
̂f2

̂f = ̂f1

0

Each golf swing is not too accurate, but a sequence of them is.

Boosting: An analogy with golf

Y
̂f1 ̂f2 r

̂f = ̂f1 + ̂f2

0

Each golf swing is not too accurate, but a sequence of them is.

Boosting: An analogy with golf

Y
̂f1 ̂f2

0

̂f = ̂f1 + ⋯ + ̂fB

̂fB

̂fB−1

⋯

r

Each golf swing is not too accurate, but a sequence of them is.

Comparison to random forests (driving range)

Y

0

Try to make each single swing as accurate as possible, then average.

Comparison to random forests (driving range)

Y
̂f1

0

Try to make each single swing as accurate as possible, then average.

Comparison to random forests (driving range)

Y
̂f1

0

Try to make each single swing as accurate as possible, then average.

̂f2

Comparison to random forests (driving range)

Y
̂f1

0

Try to make each single swing as accurate as possible, then average.

̂f2

̂fB

⋯

Comparison to random forests (driving range)

Y
̂f1

0

Try to make each single swing as accurate as possible, then average.

̂f2

̂f

̂fB

⋯

̂f =
1
B

(̂f1 + ⋯ + ̂fB)

Boosting with shrinkage

Y

r

̂f = 0

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

Boosting with shrinkage

Ŷf1

r

̂f = 0

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

Boosting with shrinkage

Ŷf1

r

̂f = 0

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

Boosting with shrinkage

Ŷf1

r

̂f = 0

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

Boosting with shrinkage

Y

r

̂f = 0

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

Boosting with shrinkage

Y

r

̂f = λ ̂f1

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

Boosting with shrinkage

Y

̂f = λ ̂f1

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

̂f2

Boosting with shrinkage

Y

̂f = λ ̂f1

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

̂f2

λ ̂f2

Boosting with shrinkage

Y

̂f = λ ̂f1

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1

̂f2

λ ̂f2

Boosting with shrinkage

Y

̂f = λ ̂f1

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1
λ ̂f2

Boosting with shrinkage

Y

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1
λ ̂f2

r

̂f = λ ̂f1 + λ ̂f2

Boosting with shrinkage

Y

0

Let be a shrinkage parameter, e.g. 0.5. We only go of the way each time.λ ∈ (0,1] λ

λ ̂f1
λ ̂f2

λ ̂fB−1

λ ̂fB
⋯

̂f = λ ̂f1 + ⋯ + λ ̂fB

Boosting with shrinkage

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B
• Fit the weak learner to the training data to get ̂f1

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B
• Fit the weak learner to the training data to get ̂f1

• Backtrack to and compute residuals λ ̂f1 ri ← Yi − λ ̂f1(Xi)

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B
• Fit the weak learner to the training data to get ̂f1

• Backtrack to and compute residuals λ ̂f1 ri ← Yi − λ ̂f1(Xi)

• Fit the weak learner to the residuals to get (Xi, ri) ̂f2

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B
• Fit the weak learner to the training data to get ̂f1

• Backtrack to and compute residuals λ ̂f1 ri ← Yi − λ ̂f1(Xi)

• Fit the weak learner to the residuals to get (Xi, ri) ̂f2

• Backtrack to and update residuals λ ̂f2 ri ← ri − λ ̂f2(Xi)

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B
• Fit the weak learner to the training data to get ̂f1

• Backtrack to and compute residuals λ ̂f1 ri ← Yi − λ ̂f1(Xi)

• Fit the weak learner to the residuals to get (Xi, ri) ̂f2

• Backtrack to and update residuals λ ̂f2 ri ← ri − λ ̂f2(Xi)
• Repeat timesB

Boosting with shrinkage

Inputs: weak learner , shrinkage parameter , number of trees ̂f λ ∈ (0,1] B
• Fit the weak learner to the training data to get ̂f1

• Backtrack to and compute residuals λ ̂f1 ri ← Yi − λ ̂f1(Xi)

• Fit the weak learner to the residuals to get (Xi, ri) ̂f2

• Backtrack to and update residuals λ ̂f2 ri ← ri − λ ̂f2(Xi)
• Repeat timesB

Final prediction rule: .̂f = λ ̂f1 + ⋯ + λ ̂fB

The parameters and λ B

(https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf)values of λ
()B

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

The parameters and λ B

The parameter controls how slowly
boosting learns.

λ

(https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf)values of λ
()B

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

The parameters and λ B

The parameter controls how slowly
boosting learns.

λ

Learning more slowly tends to give
better predictive performance, but
requires more iterations .B

(https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf)values of λ
()B

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

The parameters and λ B

The parameter controls how slowly
boosting learns.

λ

Learning more slowly tends to give
better predictive performance, but
requires more iterations .B

The parameter controls how many
iterative refinements are made, so
larger means more model flexibility.

B

B

(https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf)values of λ
()B

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

The parameters and λ B

The parameter controls how slowly
boosting learns.

λ

Learning more slowly tends to give
better predictive performance, but
requires more iterations .B

The parameter controls how many
iterative refinements are made, so
larger means more model flexibility.

B

B

Large enough can lead to
overfitting, unlike random forests.

B
(https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf)values of λ

()B

https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

Choice of weak learner
Usually, shallow trees are used as the weak learners.

For boosting, tree size usually parameterized by interaction depth , the
maximum number of splits needed to get to a terminal node.

d

Choice of weak learner
Usually, shallow trees are used as the weak learners.

For boosting, tree size usually parameterized by interaction depth , the
maximum number of splits needed to get to a terminal node.

d

d = 1

Choice of weak learner
Usually, shallow trees are used as the weak learners.

For boosting, tree size usually parameterized by interaction depth , the
maximum number of splits needed to get to a terminal node.

d

d = 1 d = 2

Choice of weak learner
Usually, shallow trees are used as the weak learners.

For boosting, tree size usually parameterized by interaction depth , the
maximum number of splits needed to get to a terminal node.

d

d = 1 d = 2 d = 3

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

X1 ≥ s1 and X2 < s3

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

X1 ≥ s1 and X2 < s3

interaction between

 and (two-way)X1 X2

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

For , we can get three-way interactions, etc.d = 3

X1 ≥ s1 and X2 < s3

interaction between

 and (two-way)X1 X2

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

For , we can get three-way interactions, etc.d = 3

Since the boosting prediction is the sum of tree
predictions, if all trees have e.g. the entire
forest contains interactions of at most two features.

d ≤ 2

X1 ≥ s1 and X2 < s3

interaction between

 and (two-way)X1 X2

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

For , we can get three-way interactions, etc.d = 3

Since the boosting prediction is the sum of tree
predictions, if all trees have e.g. the entire
forest contains interactions of at most two features.

d ≤ 2

X1 ≥ s1 and X2 < s3

interaction between

 and (two-way)X1 X2

d = 1: ̂f(X1, X2, X3) = ̂g 1(X1) + ̂g 2(X2) + ̂g 3(X3)

Interaction depth

X1 ≤ s2

c1

d = 2

X1 ≥ s1

X2 ≥ s3

c2 c3 c4

Consider a single tree, for example with . d = 2

The prediction rule involves making decisions based
on and together (two-way interactions).X1 X2

For , we can get three-way interactions, etc.d = 3

Since the boosting prediction is the sum of tree
predictions, if all trees have e.g. the entire
forest contains interactions of at most two features.

d ≤ 2

X1 ≥ s1 and X2 < s3

interaction between

 and (two-way)X1 X2

d = 1: ̂f(X1, X2, X3) = ̂g 1(X1) + ̂g 2(X2) + ̂g 3(X3)

d = 2: ̂f(X1, X2, X3) = ̂g 12(X1, X2) + ̂g 23(X2, X3) + ̂g 13(X1, X3)

Special case: d = 1

Special case: d = 1

When , each tree has only one split; such
trees are called stumps.

d = 1
d = 1

Xj ≥ sj

c1 c2
A “stump”

Special case: d = 1

When , each tree has only one split; such
trees are called stumps.

d = 1

Since each tree involves only one feature, the
entire boosted model can be viewed as an
additive model:

̂f(X) = ̂g 1(X1) + ̂g 2(X2) + ⋯ + ̂g p(Xp)

for some coordinate functions . ̂g j

d = 1

Xj ≥ sj

c1 c2
A “stump”

Special case: d = 1

When , each tree has only one split; such
trees are called stumps.

d = 1

Since each tree involves only one feature, the
entire boosted model can be viewed as an
additive model:

̂f(X) = ̂g 1(X1) + ̂g 2(X2) + ⋯ + ̂g p(Xp)

for some coordinate functions . ̂g j

The coordinate functions can be easily plotted
and interpreted.

d = 1

Xj ≥ sj

c1 c2
A “stump”

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

= (̂f1() + ̂f3() + ̂f4()) + (̂f2() + ̂f5())X1 X1 X1 X2 X2

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

= (̂f1() + ̂f3() + ̂f4()) + (̂f2() + ̂f5())X1 X1 X1 X2 X2

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

= (̂f1() + ̂f3() + ̂f4()) + (̂f2() + ̂f5())X1 X1 X1 X2 X2

= ̂g1() + ̂g2()X1 X2

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

= (̂f1() + ̂f3() + ̂f4()) + (̂f2() + ̂f5())X1 X1 X1 X2 X2

= ̂g1() + ̂g2()X1 X2

Get coordinate functions by grouping
stumps splitting on the same variable:

Derivation of coordinate functions

̂f(,) = ̂f1() + ̂f2() + ̂f3() + ̂f4() + ̂f5()X1 X2 X1 X1 X1X2 X2

= (̂f1() + ̂f3() + ̂f4()) + (̂f2() + ̂f5())X1 X1 X1 X2 X2

= ̂g1() + ̂g2()X1 X2

Stochastic gradient boosting

Stochastic gradient boosting

Same as gradient boosting, except at each iteration, sample only a fraction of
the training observations (with replacement) and train only on those.

π

Stochastic gradient boosting

Same as gradient boosting, except at each iteration, sample only a fraction of
the training observations (with replacement) and train only on those.

π

Subsampling empirically demonstrated to improve boosting performance.

Stochastic gradient boosting

Same as gradient boosting, except at each iteration, sample only a fraction of
the training observations (with replacement) and train only on those.

π

Subsampling empirically demonstrated to improve boosting performance.

Subsampling increases variance of individual trees but de-correlates them;
benefit of the latter tends to outweigh the former.

Stochastic gradient boosting

Same as gradient boosting, except at each iteration, sample only a fraction of
the training observations (with replacement) and train only on those.

π

Subsampling empirically demonstrated to improve boosting performance.

Subsampling increases variance of individual trees but de-correlates them;
benefit of the latter tends to outweigh the former.

A subsampling fraction of tends to work well in most cases.π = 0.5

Tuning gradient boosting

Tuning gradient boosting

Parameters:

Tuning gradient boosting

Parameters:

• Shrinkage parameter : Choose some small number, e.g. .λ λ = 0.1

Tuning gradient boosting

Parameters:

• Shrinkage parameter : Choose some small number, e.g. .λ λ = 0.1

• Number of trees : Choose via cross-validation or using a validation set.B

Tuning gradient boosting

Parameters:

• Shrinkage parameter : Choose some small number, e.g. .λ λ = 0.1

• Number of trees : Choose via cross-validation or using a validation set.B

• Interaction depth : usually works well. Try a few values and
tune by cross-validation or validation set.

d 1 ≤ d ≤ 5

Tuning gradient boosting

Parameters:

• Shrinkage parameter : Choose some small number, e.g. .λ λ = 0.1

• Number of trees : Choose via cross-validation or using a validation set.B

• Interaction depth : usually works well. Try a few values and
tune by cross-validation or validation set.

d 1 ≤ d ≤ 5

• Subsampling fraction : Leave at the default of 0.5.π

Model interpretation

Model interpretation
Variable importance measure:

The purity-based notion of variable importance is also applicable to boosting.

Model interpretation
Variable importance measure:

The purity-based notion of variable importance is also applicable to boosting.

Partial dependence plots:

Model interpretation
Variable importance measure:

The purity-based notion of variable importance is also applicable to boosting.

Partial dependence plots:

For , the coordinate functions show exactly how depends on , i.e.d = 1 ̂g j
̂f Xj

.̂f(X) = ̂g 1(X1) + ⋯ + ̂g B(XB)

Model interpretation
Variable importance measure:

The purity-based notion of variable importance is also applicable to boosting.

Partial dependence plots:

For , the coordinate functions show exactly how depends on , i.e.d = 1 ̂g j
̂f Xj

.̂f(X) = ̂g 1(X1) + ⋯ + ̂g B(XB)

For , can define a generalization of such thatd > 1 ̂g j

 .̂f(X) ≈ ̂g 1(X1) + ⋯ + ̂g B(XB)

Model interpretation
Variable importance measure:

The purity-based notion of variable importance is also applicable to boosting.

Partial dependence plots:

For , the coordinate functions show exactly how depends on , i.e.d = 1 ̂g j
̂f Xj

.̂f(X) = ̂g 1(X1) + ⋯ + ̂g B(XB)

For , can define a generalization of such thatd > 1 ̂g j

 .̂f(X) ≈ ̂g 1(X1) + ⋯ + ̂g B(XB)

The larger is, the worse the approximation.d

Boosting for classification

Boosting for classification

Boosting is applicable—but a little harder— in the classification context.

Boosting for classification

Boosting is applicable—but a little harder— in the classification context.

The key issue is that there is not an obvious notion of residual in classification.

Boosting for classification

Boosting is applicable—but a little harder— in the classification context.

The key issue is that there is not an obvious notion of residual in classification.

Implementation of boosting for classification is beyond the scope of the class,
but the same intuitions from this lecture carry over to boosting for classification.

Summary

Summary

• Like random forests, boosting aggregates the results of many decision trees
to build a predictive model with state-of-the-art performance.

Summary

• Like random forests, boosting aggregates the results of many decision trees
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in
parallel, using shallow trees rather than deep trees.

Summary

• Like random forests, boosting aggregates the results of many decision trees
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in
parallel, using shallow trees rather than deep trees.

• Boosting works best when paired with shrinkage to further slow learning.

Summary

• Like random forests, boosting aggregates the results of many decision trees
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in
parallel, using shallow trees rather than deep trees.

• Boosting works best when paired with shrinkage to further slow learning.

• Unlike random forests, the number of trees controls the complexity of the
fit, and therefore must be tuned via cross-validation.

B

Summary

• Like random forests, boosting aggregates the results of many decision trees
to build a predictive model with state-of-the-art performance.

• Unlike random forests, boosting builds the trees sequentially rather than in
parallel, using shallow trees rather than deep trees.

• Boosting works best when paired with shrinkage to further slow learning.

• Unlike random forests, the number of trees controls the complexity of the
fit, and therefore must be tuned via cross-validation.

B

• Purity-based variable importance as well as partial dependence plots help
interpret boosting models.

