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The bagging prediction is defined by .̂f(X) =
1
B
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∑
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Suppose . Then, we can derive thatCorr[T*b1(X), T*b2(X)] = ρ ∈ [0,1]

Var[ ̂f(X)] ≈ ( 1
B

+
B − 1

B
ρ) Var[T(X)] ≈ ρ ⋅ Var[T(X)],

where  is a single decision tree.T(X)

• The variance is reduced by a factor of , so the less 
correlated the bootstrapped trees prediction are, the better.

ρ = Corr[T*b1(X), T*b2(X)]

• As long as  is large enough, the variance reduction is about the same.B
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Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

At each split point of each tree:

• Randomly sample a subset of  featuresm ≤ p

• Split on the best feature among this subset

Redraw sample of features at every split point, 
regardless of samples at previous split points.

Intuition: Sampling features at each split decorrelates                                                  
the trees, reducing variance and therefore boosting                                                   
prediction performance.

Note that setting  recovers bagging. m = p
Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-

learning/
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Random forests
Parameters: 
• : number of bootstrap samplesB
• : number of variables to sample at each splitm
• criterion to stop splitting, like max number of nodes                                                          

and/or min samples per node 

Training:
• Extract  bootstrap samples from your training dataB
• For each bootstrap sample ,b = 1,…, B
• Grow a decision tree based on the bootstrap sample, randomly sampling  candidate 

variable to split on at each step, until stopping criterion is met
m

Prediction: 
• aggregate the decision trees using the mean (for regression) or mode (for classification)

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/
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A bias-variance trade-off in choosing m

If  is larger, the random forest will have lower bias (it can better fit the 
underlying trend) but higher variance (more correlated trees).

m

If  is smaller, the random forest will have higher bias (it might not be able to fit 
the underlying trend as well) but lower variance (less correlated trees).

m

Default choices:  for regression and  for classification.m = p/3 m = p

For best predictive performance,  should be tuned.m
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Parameters to tune (or not)

Random forests generally work pretty well even if not tuned (i.e. if default 
parameter choices are used).

However, parameters can be tuned using OOB error to improve performance:

• : most important tuning parameterm

• criteria to stop splitting: can be tuned but growing trees about as deep as 
possible generally works pretty well

• : least necessary to tune; just choose a large value like 100-1000.B
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Interpretability and variable importance measures

Compared to trees, main drawback of random forests is reduced interpretability.

However, variable importance measures can help improve the interpretability.

Two types of variable importance measures are used for random forests:

• purity based importance: how much improvement in node purity results 
from splitting on a feature

• OOB prediction based importance: how much deterioration in prediction 
accuracy results from scrambling a feature out of bag
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split on and resulting reduction in RSS or Gini index (i.e. improvement in purity).
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Purity-based variable importance

Consider the construction of one tree. For each split, note the feature that was 
split on and resulting reduction in RSS or Gini index (i.e. improvement in purity).

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Define the importance of each feature in 
this single tree by summing up the 
improvement in purity for all splits based 
on this feature.

For random forests, we can average this 
quantity over all of the trees to get a 
purity-based variable importance metric.
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OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

For each feature  and each tree, consider making 
predictions on the OOB data after first scrambling 
feature . We can therefore get a scrambled OOB error.

j
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For each feature , we can define an OOB-prediction-
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• Random forests are a fancier version of bagging based on random sub-
sampling of  features at each split point.m

• They improve on bagging by de-correlating the bootstrapped decision trees 
and therefore reducing the variance of the method.

• OOB error is a nice alternative to cross-validation error for random forests, 
and can be used to tune parameters such as .m

• Random forests usually give much better prediction performance than 
individual decision trees, but at the cost of interpretability.

• Nevertheless, there are a couple ways to measure variable importance in 
random forests, giving us some interpretability.

Random forests are a state-of-the-art tool for predictive modeling.
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