
November 2, 2023

Random forests
STAT 4710

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Growing decision trees

Lecture 2: Tree pruning and bagging

Lecture 3: Random forests

Lecture 4: Boosting

Lecture 5: Unit review and quiz in class

Where we are

Recall: Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

Recall: Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

T*B

T*b

…
…

Recall: Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

̂f(X) =
1
B

B

∑
b=1

T*b(X)

̂f(X) = mode({T*b(X)}B
b=1)

Regression:

Classification:

T*1

T*B

T*b

…
…

Variance reduction of bagging

The bagging prediction is defined by .̂f(X) =
1
B

B

∑
b=1

T*b(X)

Variance reduction of bagging

The bagging prediction is defined by .̂f(X) =
1
B

B

∑
b=1

T*b(X)

Suppose . Then, we can derive thatCorr[T*b1(X), T*b2(X)] = ρ ∈ [0,1]

Var[̂f(X)] ≈ (1
B

+
B − 1

B
ρ) Var[T(X)] ≈ ρ ⋅ Var[T(X)],

where is a single decision tree.T(X)

Variance reduction of bagging

The bagging prediction is defined by .̂f(X) =
1
B

B

∑
b=1

T*b(X)

Suppose . Then, we can derive thatCorr[T*b1(X), T*b2(X)] = ρ ∈ [0,1]

Var[̂f(X)] ≈ (1
B

+
B − 1

B
ρ) Var[T(X)] ≈ ρ ⋅ Var[T(X)],

where is a single decision tree.T(X)

• The variance is reduced by a factor of , so the less
correlated the bootstrapped trees prediction are, the better.

ρ = Corr[T*b1(X), T*b2(X)]

Variance reduction of bagging

The bagging prediction is defined by .̂f(X) =
1
B

B

∑
b=1

T*b(X)

Suppose . Then, we can derive thatCorr[T*b1(X), T*b2(X)] = ρ ∈ [0,1]

Var[̂f(X)] ≈ (1
B

+
B − 1

B
ρ) Var[T(X)] ≈ ρ ⋅ Var[T(X)],

where is a single decision tree.T(X)

• The variance is reduced by a factor of , so the less
correlated the bootstrapped trees prediction are, the better.

ρ = Corr[T*b1(X), T*b2(X)]

• As long as is large enough, the variance reduction is about the same.B

Variance reduction of bagging

Random forests: More variance reduction

Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

At each split point of each tree:

• Randomly sample a subset of featuresm ≤ p

• Split on the best feature among this subset

Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

At each split point of each tree:

• Randomly sample a subset of featuresm ≤ p

• Split on the best feature among this subset

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-
learning/

Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

At each split point of each tree:

• Randomly sample a subset of featuresm ≤ p

• Split on the best feature among this subset

Redraw sample of features at every split point,
regardless of samples at previous split points.

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-
learning/

Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

At each split point of each tree:

• Randomly sample a subset of featuresm ≤ p

• Split on the best feature among this subset

Redraw sample of features at every split point,
regardless of samples at previous split points.

Intuition: Sampling features at each split decorrelates
the trees, reducing variance and therefore boosting
prediction performance.

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-
learning/

Random forests: More variance reduction
Random forests are the same as bagging, but with one key modification:

At each split point of each tree:

• Randomly sample a subset of featuresm ≤ p

• Split on the best feature among this subset

Redraw sample of features at every split point,
regardless of samples at previous split points.

Intuition: Sampling features at each split decorrelates
the trees, reducing variance and therefore boosting
prediction performance.

Note that setting recovers bagging. m = p
Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-

learning/

Random forests

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Random forests
Parameters:
• : number of bootstrap samplesB
• : number of variables to sample at each splitm
• criterion to stop splitting, like max number of nodes

and/or min samples per node

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Random forests
Parameters:
• : number of bootstrap samplesB
• : number of variables to sample at each splitm
• criterion to stop splitting, like max number of nodes

and/or min samples per node

Training:
• Extract bootstrap samples from your training dataB

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Random forests
Parameters:
• : number of bootstrap samplesB
• : number of variables to sample at each splitm
• criterion to stop splitting, like max number of nodes

and/or min samples per node

Training:
• Extract bootstrap samples from your training dataB
• For each bootstrap sample ,b = 1,…, B
• Grow a decision tree based on the bootstrap sample, randomly sampling candidate

variable to split on at each step, until stopping criterion is met
m

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Random forests
Parameters:
• : number of bootstrap samplesB
• : number of variables to sample at each splitm
• criterion to stop splitting, like max number of nodes

and/or min samples per node

Training:
• Extract bootstrap samples from your training dataB
• For each bootstrap sample ,b = 1,…, B
• Grow a decision tree based on the bootstrap sample, randomly sampling candidate

variable to split on at each step, until stopping criterion is met
m

Prediction:
• aggregate the decision trees using the mean (for regression) or mode (for classification)

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

A bias-variance trade-off in choosing m

A bias-variance trade-off in choosing m

If is larger, the random forest will have lower bias (it can better fit the
underlying trend) but higher variance (more correlated trees).

m

A bias-variance trade-off in choosing m

If is larger, the random forest will have lower bias (it can better fit the
underlying trend) but higher variance (more correlated trees).

m

If is smaller, the random forest will have higher bias (it might not be able to fit
the underlying trend as well) but lower variance (less correlated trees).

m

A bias-variance trade-off in choosing m

If is larger, the random forest will have lower bias (it can better fit the
underlying trend) but higher variance (more correlated trees).

m

If is smaller, the random forest will have higher bias (it might not be able to fit
the underlying trend as well) but lower variance (less correlated trees).

m

Default choices: for regression and for classification.m = p/3 m = p

A bias-variance trade-off in choosing m

If is larger, the random forest will have lower bias (it can better fit the
underlying trend) but higher variance (more correlated trees).

m

If is smaller, the random forest will have higher bias (it might not be able to fit
the underlying trend as well) but lower variance (less correlated trees).

m

Default choices: for regression and for classification.m = p/3 m = p

For best predictive performance, should be tuned.m

Tuning random forests via out-of-bag error

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

The idea behind cross-validation is that we want to using parts of our training
data as validation sets. By bootstrapping, random forests already do this!

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

The idea behind cross-validation is that we want to using parts of our training
data as validation sets. By bootstrapping, random forests already do this!

For each bootstrap sample, define the “bag” to be the set of unique training
observations in the sample. Then, predictions based on that tree can be made
on the out-of-bag (OOB) samples.

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

The idea behind cross-validation is that we want to using parts of our training
data as validation sets. By bootstrapping, random forests already do this!

For each bootstrap sample, define the “bag” to be the set of unique training
observations in the sample. Then, predictions based on that tree can be made
on the out-of-bag (OOB) samples.

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample b

T*b

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

The idea behind cross-validation is that we want to using parts of our training
data as validation sets. By bootstrapping, random forests already do this!

For each bootstrap sample, define the “bag” to be the set of unique training
observations in the sample. Then, predictions based on that tree can be made
on the out-of-bag (OOB) samples.

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample b

T*b

1 3

2
5

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

The idea behind cross-validation is that we want to using parts of our training
data as validation sets. By bootstrapping, random forests already do this!

For each bootstrap sample, define the “bag” to be the set of unique training
observations in the sample. Then, predictions based on that tree can be made
on the out-of-bag (OOB) samples.

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample b

T*b

4 X4 Y4 out-of-bag b

1 3

2
5

Tuning random forests via out-of-bag error
We usually tune prediction methods via cross-validation. For random forests,
there is a clever and computationally faster alternative: out-of-bag error.

The idea behind cross-validation is that we want to using parts of our training
data as validation sets. By bootstrapping, random forests already do this!

For each bootstrap sample, define the “bag” to be the set of unique training
observations in the sample. Then, predictions based on that tree can be made
on the out-of-bag (OOB) samples.

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample b

T*b

4 X4 Y4 out-of-bag b

T*b(X4)
1 3

2
5

Out of bag error

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B…

…

T*1

T*B

…

Out of bag error

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B…

…

T*1

T*B

…

4 X4 Y4 out-of-bag 1

Out of bag error

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B…

…

T*1

T*B

…

4 X4 Y4 out-of-bag 1

2 X2 Y2

3 X3 Y3
out-of-bag B

Out of bag error

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B…

…

T*1

T*B

…

4 X4 Y4 out-of-bag 1

2 X2 Y2

3 X3 Y3
out-of-bag B

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

OOB predictions

Out of bag error

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B…

…

T*1

T*B

…

4 X4 Y4 out-of-bag 1

2 X2 Y2

3 X3 Y3
out-of-bag B

̂YOOB
i = mean{T*b(Xi))}i∈OOBb

OOB err =
1
n

n

∑
i=1

(Yi − ̂YOOB
i)2

Regression:

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

OOB predictions

Out of bag error

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B…

…

T*1

T*B

…

4 X4 Y4 out-of-bag 1

2 X2 Y2

3 X3 Y3
out-of-bag B

̂YOOB
i = mean{T*b(Xi))}i∈OOBb

OOB err =
1
n

n

∑
i=1

(Yi − ̂YOOB
i)2

Regression:

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

OOB predictions

̂YOOB
i = mode{T*b(Xi))}i∈OOBb

OOB err =
1
n

n

∑
i=1

I(Yi ≠ ̂YOOB
i)

Classification:

Parameters to tune (or not)

Parameters to tune (or not)

Random forests generally work pretty well even if not tuned (i.e. if default
parameter choices are used).

Parameters to tune (or not)

Random forests generally work pretty well even if not tuned (i.e. if default
parameter choices are used).

However, parameters can be tuned using OOB error to improve performance:

Parameters to tune (or not)

Random forests generally work pretty well even if not tuned (i.e. if default
parameter choices are used).

However, parameters can be tuned using OOB error to improve performance:

• : most important tuning parameterm

Parameters to tune (or not)

Random forests generally work pretty well even if not tuned (i.e. if default
parameter choices are used).

However, parameters can be tuned using OOB error to improve performance:

• : most important tuning parameterm

• criteria to stop splitting: can be tuned but growing trees about as deep as
possible generally works pretty well

Parameters to tune (or not)

Random forests generally work pretty well even if not tuned (i.e. if default
parameter choices are used).

However, parameters can be tuned using OOB error to improve performance:

• : most important tuning parameterm

• criteria to stop splitting: can be tuned but growing trees about as deep as
possible generally works pretty well

• : least necessary to tune; just choose a large value like 100-1000.B

Interpretability and variable importance measures

Interpretability and variable importance measures

Compared to trees, main drawback of random forests is reduced interpretability.

Interpretability and variable importance measures

Compared to trees, main drawback of random forests is reduced interpretability.

However, variable importance measures can help improve the interpretability.

Interpretability and variable importance measures

Compared to trees, main drawback of random forests is reduced interpretability.

However, variable importance measures can help improve the interpretability.

Two types of variable importance measures are used for random forests:

Interpretability and variable importance measures

Compared to trees, main drawback of random forests is reduced interpretability.

However, variable importance measures can help improve the interpretability.

Two types of variable importance measures are used for random forests:

• purity based importance: how much improvement in node purity results
from splitting on a feature

Interpretability and variable importance measures

Compared to trees, main drawback of random forests is reduced interpretability.

However, variable importance measures can help improve the interpretability.

Two types of variable importance measures are used for random forests:

• purity based importance: how much improvement in node purity results
from splitting on a feature

• OOB prediction based importance: how much deterioration in prediction
accuracy results from scrambling a feature out of bag

Purity-based variable importance

Consider the construction of one tree. For each split, note the feature that was
split on and resulting reduction in RSS or Gini index (i.e. improvement in purity).

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Purity-based variable importance

Consider the construction of one tree. For each split, note the feature that was
split on and resulting reduction in RSS or Gini index (i.e. improvement in purity).

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Define the importance of each feature in
this single tree by summing up the
improvement in purity for all splits based
on this feature.

Purity-based variable importance

Consider the construction of one tree. For each split, note the feature that was
split on and resulting reduction in RSS or Gini index (i.e. improvement in purity).

Image source: https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

Define the importance of each feature in
this single tree by summing up the
improvement in purity for all splits based
on this feature.

For random forests, we can average this
quantity over all of the trees to get a
purity-based variable importance metric.

OOB prediction based variable importance

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

x0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X =

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Regular OOB predictions

Regular

OOB error

x0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X =

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

For each feature and each tree, consider making
predictions on the OOB data after first scrambling
feature . We can therefore get a scrambled OOB error.

j

j

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Regular OOB predictions

Regular

OOB error

x0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X =

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

For each feature and each tree, consider making
predictions on the OOB data after first scrambling
feature . We can therefore get a scrambled OOB error.

j

j

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Regular OOB predictions

Regular

OOB error

x0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X = X =scramble

x0 x1 … xj … xp-1

X1 12 0 b 1.5
X2 -3 1 e -0.7
X3 5 0 d 0.2
X4 16 0 c -3.5
X5 -7 1 a 0.9

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

For each feature and each tree, consider making
predictions on the OOB data after first scrambling
feature . We can therefore get a scrambled OOB error.

j

j

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Regular OOB predictions

Regular

OOB error

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Scrambled OOB predictions

Scrambled

OOB errorx0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X = X =scramble

x0 x1 … xj … xp-1

X1 12 0 b 1.5
X2 -3 1 e -0.7
X3 5 0 d 0.2
X4 16 0 c -3.5
X5 -7 1 a 0.9

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

For each feature and each tree, consider making
predictions on the OOB data after first scrambling
feature . We can therefore get a scrambled OOB error.

j

j

For each feature , we can define an OOB-prediction-
based variable importance by the difference in OOB
error when this feature is scrambled and when it is not.

j

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Regular OOB predictions

Regular

OOB error

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Scrambled OOB predictions

Scrambled

OOB errorx0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X = X =scramble

x0 x1 … xj … xp-1

X1 12 0 b 1.5
X2 -3 1 e -0.7
X3 5 0 d 0.2
X4 16 0 c -3.5
X5 -7 1 a 0.9

OOB prediction based variable importance
Recall the OOB error introduced a few slides ago.

For each feature and each tree, consider making
predictions on the OOB data after first scrambling
feature . We can therefore get a scrambled OOB error.

j

j

For each feature , we can define an OOB-prediction-
based variable importance by the difference in OOB
error when this feature is scrambled and when it is not.

j

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Regular OOB predictions

Regular

OOB error

T*1(X) … T*B(X) YOOB

— … — Y1OOB

— … T*B(X2) Y2OOB

— … T*B(X3) Y3OOB

T*1(X4) … — Y4OOB

— … — Y5OOB

̂
̂

̂
̂
̂
̂

Scrambled OOB predictions

Scrambled

OOB error

Variable Importance =

scrambled OOB err - regular OOB err

x0 x1 … xj … xp-1

X1 12 0 a 1.5
X2 -3 1 b -0.7
X3 5 0 c 0.2
X4 16 0 d -3.5
X5 -7 1 e 0.9

X = X =scramble

x0 x1 … xj … xp-1

X1 12 0 b 1.5
X2 -3 1 e -0.7
X3 5 0 d 0.2
X4 16 0 c -3.5
X5 -7 1 a 0.9

Summary

• Random forests are a fancier version of bagging based on random sub-
sampling of features at each split point.m

Summary

• Random forests are a fancier version of bagging based on random sub-
sampling of features at each split point.m

• They improve on bagging by de-correlating the bootstrapped decision trees
and therefore reducing the variance of the method.

Summary

• Random forests are a fancier version of bagging based on random sub-
sampling of features at each split point.m

• They improve on bagging by de-correlating the bootstrapped decision trees
and therefore reducing the variance of the method.

• OOB error is a nice alternative to cross-validation error for random forests,
and can be used to tune parameters such as .m

Summary

• Random forests are a fancier version of bagging based on random sub-
sampling of features at each split point.m

• They improve on bagging by de-correlating the bootstrapped decision trees
and therefore reducing the variance of the method.

• OOB error is a nice alternative to cross-validation error for random forests,
and can be used to tune parameters such as .m

• Random forests usually give much better prediction performance than
individual decision trees, but at the cost of interpretability.

Summary

• Random forests are a fancier version of bagging based on random sub-
sampling of features at each split point.m

• They improve on bagging by de-correlating the bootstrapped decision trees
and therefore reducing the variance of the method.

• OOB error is a nice alternative to cross-validation error for random forests,
and can be used to tune parameters such as .m

• Random forests usually give much better prediction performance than
individual decision trees, but at the cost of interpretability.

• Nevertheless, there are a couple ways to measure variable importance in
random forests, giving us some interpretability.

Summary

• Random forests are a fancier version of bagging based on random sub-
sampling of features at each split point.m

• They improve on bagging by de-correlating the bootstrapped decision trees
and therefore reducing the variance of the method.

• OOB error is a nice alternative to cross-validation error for random forests,
and can be used to tune parameters such as .m

• Random forests usually give much better prediction performance than
individual decision trees, but at the cost of interpretability.

• Nevertheless, there are a couple ways to measure variable importance in
random forests, giving us some interpretability.

Random forests are a state-of-the-art tool for predictive modeling.

Summary

