
October 31, 2023

Tree pruning and bagging
STAT 4710

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Growing decision trees

Lecture 2: Tree pruning and bagging

Lecture 3: Random forests

Lecture 4: Boosting

Lecture 5: Unit review and quiz in class

Where we are

Recall: Decision trees

Recall: Decision trees

• Create a partition of feature space by
recursively splitting on different features

Recall: Decision trees

• Create a partition of feature space by
recursively splitting on different features

• Regression and classification trees

Recall: Decision trees

• Create a partition of feature space by
recursively splitting on different features

• Regression and classification trees

• Terminal nodes in the tree correspond to
the rectangles in the partition

Recall: Decision trees

• Create a partition of feature space by
recursively splitting on different features

• Regression and classification trees

• Terminal nodes in the tree correspond to
the rectangles in the partition

• Predict a single number (category) for
each terminal node in a regression
(classification) tree

Complexity of a decision tree

Complexity of a decision tree

The more terminal nodes (regions), the more flexibly the tree fits training data:

• if there are as many terminal nodes as training points, training error = 0

• If there is just one terminal node, we are fitting a constant model

Complexity of a decision tree

The more terminal nodes (regions), the more flexibly the tree fits training data:

• if there are as many terminal nodes as training points, training error = 0

• If there is just one terminal node, we are fitting a constant model

As with any prediction method, there is a bias-variance tradeoff based on model
complexity.

Complexity of a decision tree

The more terminal nodes (regions), the more flexibly the tree fits training data:

• if there are as many terminal nodes as training points, training error = 0

• If there is just one terminal node, we are fitting a constant model

As with any prediction method, there is a bias-variance tradeoff based on model
complexity.

How to choose the best model complexity? Cross-validation.

A family of decision trees of varying complexity

T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

T0

T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

Note: There are several subtrees for each
complexity value.

T

T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

Note: There are several subtrees for each
complexity value.

T

In other model selection scenarios, we have
just had one model for each complexity.

Finding a sequence of trees of increasing complexity

Finding a sequence of trees of increasing complexity

Let be number of terminal nodes in tree . Fixing some , consider |T | T α ≥ 0

.Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Finding a sequence of trees of increasing complexity

Let be number of terminal nodes in tree . Fixing some , consider |T | T α ≥ 0

.Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Like lasso, varying leads to sequence of trees; higher leads to smaller trees.α α

Finding a sequence of trees of increasing complexity

Let be number of terminal nodes in tree . Fixing some , consider |T | T α ≥ 0

.Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Like lasso, varying leads to sequence of trees; higher leads to smaller trees.α α

Unlike lasso, discrete set of values gives all possible solutions as varies.α α

Cost complexity pruning
Finding the sequence of trees Tα

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Sometimes, they can be further up the tree.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Sometimes, they can be further up the tree.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Sometimes, they can be further up the tree.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Sometimes, they can be further up the tree.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Sometimes, they can be further up the tree.

Cost complexity pruning
Finding the sequence of trees Tα

Given a fully grown tree , cost complexity
pruning is an algorithm that finds optimal
sequence , which turns out to be nested.

T0

Tα

Idea: Recursively prune “weakest link” splits.

Usually, weakest link splits are those with just
two terminal nodes below them.

Sometimes, they can be further up the tree.

Cross-validation
To find the optimal for predictionα

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation and each i α

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation and each i α

• Find CV estimates and standard errors as usual; choose based on 1-standard-error rulêα

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation and each i α

• Find CV estimates and standard errors as usual; choose based on 1-standard-error rulêα

• Output the final decision tree (based on sequence of trees grown on full training data)T ̂α

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation and each i α

• Find CV estimates and standard errors as usual; choose based on 1-standard-error rulêα

• Output the final decision tree (based on sequence of trees grown on full training data)T ̂α

• Key insight: Cross-validating to find
optimal ; trees with same across
CV folds may be different.

α α

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation and each i α

• Find CV estimates and standard errors as usual; choose based on 1-standard-error rulêα

• Output the final decision tree (based on sequence of trees grown on full training data)T ̂α

• Key insight: Cross-validating to find
optimal ; trees with same across
CV folds may be different.

α α

• Analogy with lasso: The variables
selected for the same across
different CV folds might be different.

λ

Cross-validation
To find the optimal for predictionα

• Grow a full tree on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into foldsK

• For each fold , k

• grow a full tree on the out-of-fold dataT−k
0

• find the sequence of subtrees of by pruning (but using same)T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation and each i α

• Find CV estimates and standard errors as usual; choose based on 1-standard-error rulêα

• Output the final decision tree (based on sequence of trees grown on full training data)T ̂α

• Key insight: Cross-validating to find
optimal ; trees with same across
CV folds may be different.

α α

• Analogy with lasso: The variables
selected for the same across
different CV folds might be different.

λ

• Fitting to entire training data happens
at the beginning of the process (for
trees) rather than at the end (for lasso).

Illustration: Tree growing and pruning
Step 1: Grow tree on whole training data in greedy fashion to get .T0

Illustration: Tree growing and pruning

Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 2: Consider penalized objective function.

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 3: Sweep from 0 to infinity, giving a nested sequence of trees.α

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 3: Sweep from 0 to infinity, giving a nested sequence of trees.α

T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 4: Choose a representative value of for each tree.α

T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 5: Cross-validate over the representative values of .α

C
V

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 6: Use one-standard-error rule to choose .α

C
V

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 6: Use one-standard-error rule to choose .α

C
V

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 6: Use one-standard-error rule to choose .α

C
V

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇

Tree growing versus tree pruning

Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

For regression trees, growing and pruning are both based on RSS.

Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

For regression trees, growing and pruning are both based on RSS.

For classification trees, growing based on Gini index but pruning based on
misclassification error.

Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

For regression trees, growing and pruning are both based on RSS.

For classification trees, growing based on Gini index but pruning based on
misclassification error.

Growing and pruning both define a sequence of trees, but it may not be the
same sequence. The sequence of trees for growing not used except to get the
big tree ; the sequence of trees for pruning is the one used for cross-validation.T0

Summary: Decision Trees

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion,
choosing feature and split point to maximally
improve purity of terminal nodes.

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion,
choosing feature and split point to maximally
improve purity of terminal nodes.

• The complexity of a tree increases with the
number of terminal nodes.

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion,
choosing feature and split point to maximally
improve purity of terminal nodes.

• The complexity of a tree increases with the
number of terminal nodes.

• A sequence of trees of varying complexities
obtained from cost complexity pruning of a
maximally-grown tree.

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion,
choosing feature and split point to maximally
improve purity of terminal nodes.

• The complexity of a tree increases with the
number of terminal nodes.

• A sequence of trees of varying complexities
obtained from cost complexity pruning of a
maximally-grown tree.

• Final tree chosen by cross-validation on penalty
parameter .α

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion,
choosing feature and split point to maximally
improve purity of terminal nodes.

• The complexity of a tree increases with the
number of terminal nodes.

• A sequence of trees of varying complexities
obtained from cost complexity pruning of a
maximally-grown tree.

• Final tree chosen by cross-validation on penalty
parameter .α

Pros

Easily interpretable

Captures non-linear
relationships

Summary: Decision Trees

• Nonlinear method for regression or classification
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion,
choosing feature and split point to maximally
improve purity of terminal nodes.

• The complexity of a tree increases with the
number of terminal nodes.

• A sequence of trees of varying complexities
obtained from cost complexity pruning of a
maximally-grown tree.

• Final tree chosen by cross-validation on penalty
parameter .α

Pros

Easily interpretable

Captures non-linear
relationships

Cons
Tree structure very sensitive to

training data
High variance predictions;

suboptimal predictive performance

How can we reduce the variance of trees?

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

• “Shake up” the training data lots of times (bootstrap)

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

• “Shake up” the training data lots of times (bootstrap)

• For each version of the training data, fit a different tree

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

• “Shake up” the training data lots of times (bootstrap)

• For each version of the training data, fit a different tree

• Use the average of all these trees to make predictions (aggregation)

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

• “Shake up” the training data lots of times (bootstrap)

• For each version of the training data, fit a different tree

• Use the average of all these trees to make predictions (aggregation)

Bagging = Bootstrap Aggregation.

How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

• “Shake up” the training data lots of times (bootstrap)

• For each version of the training data, fit a different tree

• Use the average of all these trees to make predictions (aggregation)

Bagging = Bootstrap Aggregation.

Intuition: By averaging a bunch of trees, we are reducing the variance while
keeping the bias about the same. This should yield better predictive performance!

What does it mean to “shake up” the training data?

What does it mean to “shake up” the training data?

What we ideally would have wanted is to get many different random realizations
of the training data, on which we could fit different trees.

What does it mean to “shake up” the training data?

What we ideally would have wanted is to get many different random realizations
of the training data, on which we could fit different trees.

We only get one realization of the training data, but we can still get different
random versions of our data by bootstrapping:

What does it mean to “shake up” the training data?

What we ideally would have wanted is to get many different random realizations
of the training data, on which we could fit different trees.

We only get one realization of the training data, but we can still get different
random versions of our data by bootstrapping:

A bootstrap sample is a new data set with the same number of observations,
generating by sampling observations from the original data with replacement.

What does it mean to “shake up” the training data?

What we ideally would have wanted is to get many different random realizations
of the training data, on which we could fit different trees.

We only get one realization of the training data, but we can still get different
random versions of our data by bootstrapping:

A bootstrap sample is a new data set with the same number of observations,
generating by sampling observations from the original data with replacement.

The idea is that your bootstrap samples are slightly different versions of your
training data, allowing you to fit different trees to these different training sets.

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y

Bootstrap sample 1

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y
5 X5 Y5

Bootstrap sample 1

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y
5 X5 Y5

3 X3 Y3

Bootstrap sample 1

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

Bootstrap sample 1

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

Bootstrap sample 1

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

The bootstrap: An example

Observation ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Observation ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Observation ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

T*b

…

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

T*b

…

T*B

…

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

T*b

…

T*B

…

Aggregation

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

T*b

…

T*B

…

̂f(X) =
1
B

B

∑
b=1

T*b(X)

Regression:

Aggregation

Bagging

Obs ID X Y
1 X1 Y1

2 X2 Y2

3 X3 Y3

4 X4 Y4

5 X5 Y5

Original training data

Obs ID X Y
5 X5 Y5

3 X3 Y3

2 X2 Y2

3 X3 Y3

1 X1 Y1

Bootstrap sample 1

Obs ID X Y
4 X4 Y4

1 X1 Y1

1 X1 Y1

5 X5 Y5

4 X4 Y4

Bootstrap sample B

… …

T*1

T*b

…

T*B

…

̂f(X) =
1
B

B

∑
b=1

T*b(X)

Regression:

̂f(X) = mode({T*b(X)}B
b=1)

Classification:

Aggregation

