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Recall: Decision trees

• Create a partition of feature space by 
recursively splitting on different features

• Regression and classification trees

• Terminal nodes in the tree correspond to 
the rectangles in the partition

• Predict a single number (category) for 
each terminal node in a regression 
(classification) tree
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Complexity of a decision tree

The more terminal nodes (regions), the more flexibly the tree fits training data:

• if there are as many terminal nodes as training points, training error = 0

• If there is just one terminal node, we are fitting a constant model

As with any prediction method, there is a bias-variance tradeoff based on model 
complexity.

How to choose the best model complexity? Cross-validation.
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T ⊆ T0

A family of decision trees of varying complexity

• First grow out our tree about as far as we 
can to obtain a big tree .T0

• We can then consider any subtree .T ⊆ T0

Note: There are several subtrees  for each 
complexity value.

T

In other model selection scenarios, we have 
just had one model for each complexity.
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Finding a sequence of trees of increasing complexity

Let  be number of terminal nodes in tree . Fixing some , consider |T | T α ≥ 0

.Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Like lasso, varying  leads to sequence of trees; higher  leads to smaller trees.α α

Unlike lasso, discrete set of  values gives all possible solutions as  varies.α α
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• Grow a full tree  on the whole training dataT0

• Prune the tree to get a discrete sequence of trees Tα

• Split the training samples into  foldsK

• For each fold , k

• grow a full tree  on the out-of-fold dataT−k
0

• find the sequence of subtrees  of  by pruning (but using same )T−k
α T−k

0 α

• using these trees, make predictions for each in-fold observation  and each i α

• Find CV estimates and standard errors as usual; choose  based on 1-standard-error rulêα

• Output the final decision tree  (based on sequence of trees grown on full training data)T ̂α

• Key insight: Cross-validating to find 
optimal ; trees with same  across 
CV folds may be different.

α α

• Analogy with lasso: The variables 
selected for the same  across 
different CV folds might be different.

λ

• Fitting to entire training data happens 
at the beginning of the process (for 
trees) rather than at the end (for lasso).



Illustration: Tree growing and pruning
Step 1: Grow tree on whole training data in greedy fashion to get .T0



Illustration: Tree growing and pruning

Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 2: Consider penalized objective function.



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 3: Sweep  from 0 to infinity, giving a nested sequence of trees.α



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 3: Sweep  from 0 to infinity, giving a nested sequence of trees.α

T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 4: Choose a representative value of  for each tree.α

T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 5: Cross-validate over the representative values of .α

C
V 

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 6: Use one-standard-error rule to choose .α

C
V 

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 6: Use one-standard-error rule to choose .α

C
V 

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇



Illustration: Tree growing and pruning

0 α2 α3 α4 α5 α6α1Tα = arg min
T⊆T0

{RSS(T) + α |T |}

Step 6: Use one-standard-error rule to choose .α

C
V 

er
ro

r
T0 T1 T2 T3 T4 T5 T6⊇ ⊇ ⊇ ⊇ ⊇ ⊇



Tree growing versus tree pruning



Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.



Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

For regression trees, growing and pruning are both based on RSS.



Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

For regression trees, growing and pruning are both based on RSS.

For classification trees, growing based on Gini index but pruning based on 
misclassification error. 



Tree growing versus tree pruning

Growing proceeds from smaller to larger trees; pruning from larger to smaller.

For regression trees, growing and pruning are both based on RSS.

For classification trees, growing based on Gini index but pruning based on 
misclassification error. 

Growing and pruning both define a sequence of trees, but it may not be the 
same sequence. The sequence of trees for growing not used except to get the 
big tree ; the sequence of trees for pruning is the one used for cross-validation.T0
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Summary: Decision Trees

• Nonlinear method for regression or classification 
based on recursive partitioning of feature space

• Trees grown in greedy top-down fashion, 
choosing feature and split point to maximally 
improve purity of terminal nodes.

• The complexity of a tree increases with the 
number of terminal nodes.

• A sequence of trees of varying complexities 
obtained from cost complexity pruning of a 
maximally-grown tree.

• Final tree chosen by cross-validation on penalty 
parameter .α

Pros

Easily interpretable

Captures non-linear 
relationships

Cons
Tree structure very sensitive to 

training data 
High variance predictions; 

suboptimal predictive performance
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How can we reduce the variance of trees?

When it comes to prediction accuracy, trees suffer because of their high variance.

Here’s an idea for how we can obtain a prediction method with lower variance:

• “Shake up” the training data lots of times (bootstrap)

• For each version of the training data, fit a different tree

• Use the average of all these trees to make predictions (aggregation)

Bagging = Bootstrap Aggregation.

Intuition: By averaging a bunch of trees, we are reducing the variance while 
keeping the bias about the same. This should yield better predictive performance!
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What does it mean to “shake up” the training data?

What we ideally would have wanted is to get many different random realizations 
of the training data, on which we could fit different trees.

We only get one realization of the training data, but we can still get different 
random versions of our data by bootstrapping:

A bootstrap sample is a new data set with the same number of observations, 
generating by sampling observations from the original data with replacement.

The idea is that your bootstrap samples are slightly different versions of your 
training data, allowing you to fit different trees to these different training sets.
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