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Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods


Unit 5: Deep learning

Rolling into a new unit!

Lecture 1: Growing decision trees


Lecture 2: Tree pruning and bagging


Lecture 3: Random forests


Lecture 4: Boosting


Lecture 5: Unit review and quiz in class
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Leaving the land of linearity

Most methods covered so far based on :̂β 0 + ̂β 1X1 + ⋯ + ̂β p−1Xp−1

• Linear regression

• Logistic regression

• Ridge, lasso, elastic net

Notable exception: K-nearest neighbors (recall Unit 2)

In Unit 4 we will leave the land of linearity.
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Entering the land of trees and forests
Decision trees (lectures 1 and 2) are predictive models 
based on recursively partitioning the feature space.

Their prediction rules can be nicely illustrated and are 
very interpretable.

However, trees are somewhat unstable and do not 
give the best prediction performance.

Nevertheless, trees can be used as building blocks 
for state-of-the-art prediction performance: 

• Random forests (lecture 3)

• Boosting (lecture 4)
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Hitters data

Major League Baseball Data from the 1986 and 1987 seasons.


• Observations: 322 MLB players


• Response: Salary (1987 annual salary on opening day in thousands of dollars)


• Features: Assists, AtBat,…,Hits,…,Years (19 total)


 

Image credit: DALL-E 3



Tree  Partition into nested, axis-aligned rectangles⟺

⟺

Years < 5

Hits < 118
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Nodes without any descendants called

leaf nodes or terminal nodes (equivalent)

Each terminal node corresponds to a rectangular region of feature space.



Mathematical expression of the prediction rule



Mathematical expression of the prediction rule

A trained tree consists of:

•  regions  M ̂R 1, …, ̂R M

• response values ̂c 1, …, ̂c M



Mathematical expression of the prediction rule

A trained tree consists of:

•  regions  M ̂R 1, …, ̂R M

• response values ̂c 1, …, ̂c M

For a new feature vector , predict 
the constant value  for region :

Xtest

̂c m ̂R m

.̂Y test = ̂c m if Xtest ∈ ̂R m

(continuous or categorical response)
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Partitioning for continuous and categorical features

Suppose we partition on . Xj

• If  is continuous, we just find a split point  and split into            
 and .

Xj s
{X : Xj < s} {X : Xj ≥ s}

• If  is categorical, e.g. with levels , then we need to split the 
levels into two groups, e.g.  and , giving the partitions 

 and .

Xj {a, b, c, d, e}
{a, c} {b, d, e}

{X : Xj ∈ {a, c}} {X : Xj ∈ {b, d, e}}
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The squared error objective

As usual, we are given a training dataset .(X1, Y1), …, (Xn, Yn)

For a fixed , we seek rectangles  and values 
 to minimize the residual sum of squares (RSS):
M ̂R 1, …, ̂R M̂c 1, …, ̂c M

̂R 1, …, ̂R M, ̂c 1, …, ̂c M = arg min
R1,…,RM,c1,…,cM

n

∑
i=1

(Yi − ̂Yi)2

= arg min
R1,…,RM,c1,…,cM

∑
i:Xi∈R1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈RM

(Yi − cM)2
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X2

R1 R2

R3 R4

RSS for R1 RSS for RM
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Training a regression tree
Optimal  given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles  are given:̂R 1, …, ̂R M

X1

X2

̂R 1 ̂R 2

̂R 3 ̂R 4

̂c 1, …, ̂c M = arg min
c1,…,cM

∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

We’re fitting a constant to each region, so the solution is

.̂c m = mean ({Yi : Xi ∈ ̂R m})
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Optimal  given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles  are given:
̂R 1, …, ̂R M

̂c 1, …, ̂c M = arg min
c1,…,cM

1
n ∑

i:Xi∈ ̂R 1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈ ̂R M

(Yi ≠ cM)

X1

X2

We’re fitting the same category to each region, so the 
solution is the majority vote:


.̂c m = mode ({Yi : Xi ∈ ̂R m})

̂R 1 ̂R 2

̂R 3 ̂R 4
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Finding the rectangles : Inadequacy of misclassification error̂R m

Misclassification error:

1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

In example at right, no choice of split point decreases 
misclassification error.

Misclassification error not sensitive enough to find good 
split points at each step.

X1

X2



Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m



Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If  is region  class  proportion, misclassification error in that region is .̂p m m 1 min( ̂p m,1 − ̂p m)

X1

X2



Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If  is region  class  proportion, misclassification error in that region is .̂p m m 1 min( ̂p m,1 − ̂p m)

If  is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

X1

X2



Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If  is region  class  proportion, misclassification error in that region is .̂p m m 1 min( ̂p m,1 − ̂p m)

If  is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

total misclassification error =
1
n {n1 min( ̂p1,1 − ̂p1) + ⋯ + nM min( ̂pM,1 − ̂pM)} X1

X2



Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If  is region  class  proportion, misclassification error in that region is .̂p m m 1 min( ̂p m,1 − ̂p m)

If  is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

total misclassification error =
1
n {n1 min( ̂p1,1 − ̂p1) + ⋯ + nM min( ̂pM,1 − ̂pM)}

Replace misclassification error  by the Gini index :min( ̂p m,1 − ̂p m) = 2 ̂p m(1 − ̂p m)

X1

X2



Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If  is region  class  proportion, misclassification error in that region is .̂p m m 1 min( ̂p m,1 − ̂p m)

If  is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

total misclassification error =
1
n {n1 min( ̂p1,1 − ̂p1) + ⋯ + nM min( ̂pM,1 − ̂pM)}

Replace misclassification error  by the Gini index :min( ̂p m,1 − ̂p m) = 2 ̂p m(1 − ̂p m)

Total Gini index .=
1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m



Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2



Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



No splits

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



No splits
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



No splits

One split

1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



No splits

One split

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



Total Gini index

No splits

One split

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



Total Gini index

No splits

One split

1
8 (8 ⋅ 2 ⋅

1
4

⋅
3
4 ) =

3
8

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



Total Gini index

No splits

One split

1
8 (8 ⋅ 2 ⋅

1
4

⋅
3
4 ) =

3
8

1
8 (5 ⋅ 2 ⋅

2
5

⋅
3
5

+ 3 ⋅ 0) =
3

10

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity



Training a classification tree
Finding the rectangles ̂R m

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

4. Repeat until there are  regions.M

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally 
intractable to find. In practice, we employ a greedy 
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and 
calculate (total) Gini index.

2. Find split of the whole region that decreases total 
Gini index the most.

3. Find the split for each rectangle that decreases 
its Gini index the most. Among these, choose 
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

4. Repeat until there are  regions.M

Total Gini index = 

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2



Training a classification tree
Final output

Example: Heart disease data set.


• 303 patients with chest pain


• Binary response HD         
(heart disease)


• 13 demographic and clinical 
features
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• 13 demographic and clinical 
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Note: Classification trees extend seamlessly to more than two classes!
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Tree-based models versus linear models
Which perform better?

Classification based on two features                                    
(colors indicate the two classes).

Neither tree-based nor linear models dominate 
the other.

Each prediction method works better when 
the underlying trend in the data matches its 
modeling choice.

E.g. for classification:

• Linear model  linear decision boundary→

• Decision tree  unions of rectangles→



Summary
• Decision trees partition the feature space into axis-aligned nested rectangles, 

producing a constant prediction for feature vectors in each rectangle.


• Decision trees are built by recursively choosing


• The optimal rectangle to split


• The optimal feature to split that rectangle on


• The optimal split-point for that feature


• Regression and classification trees aim to minimize                                                 
squared error and misclassification error, respectively.

X1

X2


