
October 26, 2023

Growing decision trees
STAT 4710

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Rolling into a new unit!

Lecture 1: Growing decision trees

Lecture 2: Tree pruning and bagging

Lecture 3: Random forests

Lecture 4: Boosting

Lecture 5: Unit review and quiz in class

Leaving the land of linearity

Leaving the land of linearity

Most methods covered so far based on :̂β 0 + ̂β 1X1 + ⋯ + ̂β p−1Xp−1

• Linear regression

• Logistic regression

• Ridge, lasso, elastic net

Leaving the land of linearity

Most methods covered so far based on :̂β 0 + ̂β 1X1 + ⋯ + ̂β p−1Xp−1

• Linear regression

• Logistic regression

• Ridge, lasso, elastic net

Notable exception: K-nearest neighbors (recall Unit 2)

Leaving the land of linearity

Most methods covered so far based on :̂β 0 + ̂β 1X1 + ⋯ + ̂β p−1Xp−1

• Linear regression

• Logistic regression

• Ridge, lasso, elastic net

Notable exception: K-nearest neighbors (recall Unit 2)

In Unit 4 we will leave the land of linearity.

Entering the land of trees and forests

Entering the land of trees and forests
Decision trees (lectures 1 and 2) are predictive models
based on recursively partitioning the feature space.

Entering the land of trees and forests
Decision trees (lectures 1 and 2) are predictive models
based on recursively partitioning the feature space.

Years < 5

Hits < 118

5.9
100%

5.1
34%

6.4
66%

6
34%

6.7
32%

yes no

Predicting baseball players’ salaries based on years played and
number of hits in the previous year.

Entering the land of trees and forests
Decision trees (lectures 1 and 2) are predictive models
based on recursively partitioning the feature space.

Their prediction rules can be nicely illustrated and are
very interpretable.

Years < 5

Hits < 118

5.9
100%

5.1
34%

6.4
66%

6
34%

6.7
32%

yes no

Predicting baseball players’ salaries based on years played and
number of hits in the previous year.

Entering the land of trees and forests
Decision trees (lectures 1 and 2) are predictive models
based on recursively partitioning the feature space.

Their prediction rules can be nicely illustrated and are
very interpretable.

However, trees are somewhat unstable and do not
give the best prediction performance.

Years < 5

Hits < 118

5.9
100%

5.1
34%

6.4
66%

6
34%

6.7
32%

yes no

Predicting baseball players’ salaries based on years played and
number of hits in the previous year.

Entering the land of trees and forests
Decision trees (lectures 1 and 2) are predictive models
based on recursively partitioning the feature space.

Their prediction rules can be nicely illustrated and are
very interpretable.

However, trees are somewhat unstable and do not
give the best prediction performance.

Nevertheless, trees can be used as building blocks
for state-of-the-art prediction performance:

• Random forests (lecture 3)

• Boosting (lecture 4)

Years < 5

Hits < 118

5.9
100%

5.1
34%

6.4
66%

6
34%

6.7
32%

yes no

Predicting baseball players’ salaries based on years played and
number of hits in the previous year.

Hitters data

Major League Baseball Data from the 1986 and 1987 seasons.

• Observations: 322 MLB players

• Response: Salary (1987 annual salary on opening day in thousands of dollars)

• Features: Assists, AtBat,…,Hits,…,Years (19 total)

Image credit: DALL-E 3

Tree Partition into nested, axis-aligned rectangles⟺

⟺

Years < 5

Hits < 118

5.9
100%

5.1
34%

6.4
66%

6
34%

6.7
32%

yes no

Nodes without any descendants called

leaf nodes or terminal nodes (equivalent)

Each terminal node corresponds to a rectangular region of feature space.

Mathematical expression of the prediction rule

Mathematical expression of the prediction rule

A trained tree consists of:

• regions M ̂R 1, …, ̂R M

• response values ̂c 1, …, ̂c M

Mathematical expression of the prediction rule

A trained tree consists of:

• regions M ̂R 1, …, ̂R M

• response values ̂c 1, …, ̂c M

For a new feature vector , predict
the constant value for region :

Xtest

̂c m ̂R m

.̂Y test = ̂c m if Xtest ∈ ̂R m

(continuous or categorical response)

Partitioning for continuous and categorical features

Partitioning for continuous and categorical features

Suppose we partition on . Xj

Partitioning for continuous and categorical features

Suppose we partition on . Xj

• If is continuous, we just find a split point and split into
 and .

Xj s
{X : Xj < s} {X : Xj ≥ s}

Partitioning for continuous and categorical features

Suppose we partition on . Xj

• If is continuous, we just find a split point and split into
 and .

Xj s
{X : Xj < s} {X : Xj ≥ s}

• If is categorical, e.g. with levels , then we need to split the
levels into two groups, e.g. and , giving the partitions

 and .

Xj {a, b, c, d, e}
{a, c} {b, d, e}

{X : Xj ∈ {a, c}} {X : Xj ∈ {b, d, e}}

Training a regression tree
The squared error objective

X1

X2

R1 R2

R3 R4

Training a regression tree
The squared error objective

As usual, we are given a training dataset .(X1, Y1), …, (Xn, Yn)

For a fixed , we seek rectangles and values
 to minimize the residual sum of squares (RSS):
M ̂R 1, …, ̂R M̂c 1, …, ̂c M

̂R 1, …, ̂R M, ̂c 1, …, ̂c M = arg min
R1,…,RM,c1,…,cM

n

∑
i=1

(Yi − ̂Yi)2

X1

X2

R1 R2

R3 R4

Training a regression tree
The squared error objective

As usual, we are given a training dataset .(X1, Y1), …, (Xn, Yn)

For a fixed , we seek rectangles and values
 to minimize the residual sum of squares (RSS):
M ̂R 1, …, ̂R M̂c 1, …, ̂c M

̂R 1, …, ̂R M, ̂c 1, …, ̂c M = arg min
R1,…,RM,c1,…,cM

n

∑
i=1

(Yi − ̂Yi)2

= arg min
R1,…,RM,c1,…,cM

∑
i:Xi∈R1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈RM

(Yi − cM)2
X1

X2

R1 R2

R3 R4

Training a regression tree
The squared error objective

As usual, we are given a training dataset .(X1, Y1), …, (Xn, Yn)

For a fixed , we seek rectangles and values
 to minimize the residual sum of squares (RSS):
M ̂R 1, …, ̂R M̂c 1, …, ̂c M

̂R 1, …, ̂R M, ̂c 1, …, ̂c M = arg min
R1,…,RM,c1,…,cM

n

∑
i=1

(Yi − ̂Yi)2

= arg min
R1,…,RM,c1,…,cM

∑
i:Xi∈R1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈RM

(Yi − cM)2
X1

X2

R1 R2

R3 R4

RSS for R1 RSS for RM

Training a regression tree
Optimal given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles are given:̂R 1, …, ̂R M

X1

X2

̂R 1 ̂R 2

̂R 3 ̂R 4

Training a regression tree
Optimal given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles are given:̂R 1, …, ̂R M

X1

X2

̂R 1 ̂R 2

̂R 3 ̂R 4

̂c 1, …, ̂c M = arg min
c1,…,cM

∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Optimal given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles are given:̂R 1, …, ̂R M

X1

X2

̂R 1 ̂R 2

̂R 3 ̂R 4

̂c 1, …, ̂c M = arg min
c1,…,cM

∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

We’re fitting a constant to each region, so the solution is

.̂c m = mean ({Yi : Xi ∈ ̂R m})

Training a regression tree
Finding the rectangles ̂R m

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

4. Repeat until there are regions.M

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a
greedy top-down algorithm:

1. Fit constant model to the entire space and
calculate RSS.

2. Find split of the whole region that decreases
RSS the most.

3. Find the split for each rectangle that decreases
its RSS the most. Among these, choose best.

4. Repeat until there are regions.M

X1

X2

RSS = ∑
i:Xi∈ ̂R 1

(Yi − c1)2 + ⋯ + ∑
i:Xi∈ ̂R M

(Yi − cM)2

Training a regression tree
Final output

Years < 5

Years < 4

Hits < 114 Runs < 75

Hits < 118

Walks < 22

Years < 7

Walks < 61

5.9
100%

5.1
34%

4.9
24%

4.7
16%

5.3
7%

5.6
11%

5.4
8%

6.2
3%

6.4
66%

6
34%

5.7
10%

6.1
24%

5.7
7%

6.3
17%

6.7
32%

6.6
19%

7
13%

yes no

Training a classification tree
The misclassification error objective

X1

X2

R1 R2

R3 R4

Training a classification tree
The misclassification error objective

As usual, we are given a training dataset , where
the response is binary.

(X1, Y1), …, (Xn, Yn)
Y

For a fixed , we seek rectangles and values
 to minimize the misclassification error:
M ̂R 1, …, ̂R M̂c 1, …, ̂c M

̂R 1, …, ̂R M, ̂c 1, …, ̂c M = arg min
R1,…,RM,c1,…,cM

1
n

n

∑
i=1

I(Yi ≠ ̂Yi)

X1

X2

R1 R2

R3 R4

Training a classification tree
The misclassification error objective

As usual, we are given a training dataset , where
the response is binary.

(X1, Y1), …, (Xn, Yn)
Y

For a fixed , we seek rectangles and values
 to minimize the misclassification error:
M ̂R 1, …, ̂R M̂c 1, …, ̂c M

̂R 1, …, ̂R M, ̂c 1, …, ̂c M = arg min
R1,…,RM,c1,…,cM

1
n

n

∑
i=1

I(Yi ≠ ̂Yi)

= arg min
R1,…,RM,c1,…,cM

1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM) X1

X2

R1 R2

R3 R4

Training a classification tree
Optimal given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles are given:
̂R 1, …, ̂R M

̂c 1, …, ̂c M = arg min
c1,…,cM

1
n ∑

i:Xi∈ ̂R 1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈ ̂R M

(Yi ≠ cM)

X1

X2

̂R 1 ̂R 2

̂R 3 ̂R 4

Training a classification tree
Optimal given ̂c m ̂R m

First let’s consider a simpler problem, where rectangles are given:
̂R 1, …, ̂R M

̂c 1, …, ̂c M = arg min
c1,…,cM

1
n ∑

i:Xi∈ ̂R 1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈ ̂R M

(Yi ≠ cM)

X1

X2

We’re fitting the same category to each region, so the
solution is the majority vote:

.̂c m = mode ({Yi : Xi ∈ ̂R m})

̂R 1 ̂R 2

̂R 3 ̂R 4

Training a classification tree
Finding the rectangles : Inadequacy of misclassification error̂R m

X1

X2

Training a classification tree
Finding the rectangles : Inadequacy of misclassification error̂R m

Misclassification error:

1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

X1

X2

Training a classification tree
Finding the rectangles : Inadequacy of misclassification error̂R m

Misclassification error:

1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

In example at right, no choice of split point decreases
misclassification error.

X1

X2

Training a classification tree
Finding the rectangles : Inadequacy of misclassification error̂R m

Misclassification error:

1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

In example at right, no choice of split point decreases
misclassification error.

X1

X2

Training a classification tree
Finding the rectangles : Inadequacy of misclassification error̂R m

Misclassification error:

1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

In example at right, no choice of split point decreases
misclassification error.

Misclassification error not sensitive enough to find good
split points at each step.

X1

X2

Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If is region class proportion, misclassification error in that region is .̂p m m 1 min(̂p m,1 − ̂p m)

X1

X2

Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If is region class proportion, misclassification error in that region is .̂p m m 1 min(̂p m,1 − ̂p m)

If is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

X1

X2

Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If is region class proportion, misclassification error in that region is .̂p m m 1 min(̂p m,1 − ̂p m)

If is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

total misclassification error =
1
n {n1 min(̂p1,1 − ̂p1) + ⋯ + nM min(̂pM,1 − ̂pM)} X1

X2

Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If is region class proportion, misclassification error in that region is .̂p m m 1 min(̂p m,1 − ̂p m)

If is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

total misclassification error =
1
n {n1 min(̂p1,1 − ̂p1) + ⋯ + nM min(̂pM,1 − ̂pM)}

Replace misclassification error by the Gini index :min(̂p m,1 − ̂p m) = 2 ̂p m(1 − ̂p m)

X1

X2

Training a classification tree
Finding the rectangles : The Gini index (measure of node impurity)̂R m

If is region class proportion, misclassification error in that region is .̂p m m 1 min(̂p m,1 − ̂p m)

If is the number of training observations in that region, thennm

Total misclassification error =
1
n ∑

i:Xi∈R1

I(Yi ≠ c1) + ⋯ + ∑
i:Xi∈RM

(Yi ≠ cM)

total misclassification error =
1
n {n1 min(̂p1,1 − ̂p1) + ⋯ + nM min(̂pM,1 − ̂pM)}

Replace misclassification error by the Gini index :min(̂p m,1 − ̂p m) = 2 ̂p m(1 − ̂p m)

Total Gini index .=
1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

No splits

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

No splits
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

No splits

One split

1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

No splits

One split

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

Total Gini index

No splits

One split

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

Total Gini index

No splits

One split

1
8 (8 ⋅ 2 ⋅

1
4

⋅
3
4) =

3
8

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

Total Gini index

No splits

One split

1
8 (8 ⋅ 2 ⋅

1
4

⋅
3
4) =

3
8

1
8 (5 ⋅ 2 ⋅

2
5

⋅
3
5

+ 3 ⋅ 0) =
3

10

1
4
1
4

Tree Total Misclass. error

Training a classification tree
Finding the rectangles : Gini index versus misclassification error̂R m

X1

X2

Rises more sharply away from 0 and 1, promoting node purity

Training a classification tree
Finding the rectangles ̂R m

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

4. Repeat until there are regions.M

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Finding the rectangles ̂R m

The optimal set of rectangles is computationally
intractable to find. In practice, we employ a greedy
top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and
calculate (total) Gini index.

2. Find split of the whole region that decreases total
Gini index the most.

3. Find the split for each rectangle that decreases
its Gini index the most. Among these, choose
largest decrease in .nm ⋅ 2 ̂pm(1 − ̂pm)

4. Repeat until there are regions.M

Total Gini index =

1
n {n1 ⋅ 2 ̂p1(1 − ̂p1) + ⋯ + nM ⋅ 2 ̂pM(1 − ̂pM)}

X1

X2

Training a classification tree
Final output

Example: Heart disease data set.

• 303 patients with chest pain

• Binary response HD
(heart disease)

• 13 demographic and clinical
features

ChestPain = nonanginal,nontypical,typical

Ca < 1

Slope < 2

Thal = normal

Ca < 1

No
0.46
100%

No
0.20
53%

No
0.09
36%

No
0.44
17%

No
0.24
10%

Yes
0.75
7%

Yes
0.76
47%

No
0.49
17%

No
0.25
10%

Yes
0.82
7%

Yes
0.92
30%

yes no

Training a classification tree
Final output

Example: Heart disease data set.

• 303 patients with chest pain

• Binary response HD
(heart disease)

• 13 demographic and clinical
features

Note: Classification trees extend seamlessly to more than two classes!

ChestPain = nonanginal,nontypical,typical

Ca < 1

Slope < 2

Thal = normal

Ca < 1

No
0.46
100%

No
0.20
53%

No
0.09
36%

No
0.44
17%

No
0.24
10%

Yes
0.75
7%

Yes
0.76
47%

No
0.49
17%

No
0.25
10%

Yes
0.82
7%

Yes
0.92
30%

yes no

Tree-based models versus linear models
Which perform better?

Tree-based models versus linear models
Which perform better?

Neither tree-based nor linear models dominate
the other.

Tree-based models versus linear models
Which perform better?

Neither tree-based nor linear models dominate
the other.

Each prediction method works better when
the underlying trend in the data matches its
modeling choice.

Tree-based models versus linear models
Which perform better?

Classification based on two features
(colors indicate the two classes).

Neither tree-based nor linear models dominate
the other.

Each prediction method works better when
the underlying trend in the data matches its
modeling choice.

Tree-based models versus linear models
Which perform better?

Classification based on two features
(colors indicate the two classes).

Neither tree-based nor linear models dominate
the other.

Each prediction method works better when
the underlying trend in the data matches its
modeling choice.

E.g. for classification:

• Linear model linear decision boundary→

• Decision tree unions of rectangles→

Summary
• Decision trees partition the feature space into axis-aligned nested rectangles,

producing a constant prediction for feature vectors in each rectangle.

• Decision trees are built by recursively choosing

• The optimal rectangle to split

• The optimal feature to split that rectangle on

• The optimal split-point for that feature

• Regression and classification trees aim to minimize
squared error and misclassification error, respectively.

X1

X2

