Growing decision trees

 STAT 4710
Rolling into a new unit!

Unit 1: R for data mining
Unit 2: Prediction fundamentals
Unit 3: Regression-based methods
Unit 4: Tree-based methods
Unit 5: Deep learning

Lecture 1: Growing decision trees
Lecture 2: Tree pruning and bagging
Lecture 3: Random forests
Lecture 4: Boosting
Lecture 5: Unit review and quiz in class

Leaving the land of linearity

Leaving the land of linearity

Most methods covered so far based on $\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{1}+\cdots+\widehat{\beta}_{p-1} X_{p-1}$:

- Linear regression
- Logistic regression
- Ridge, lasso, elastic net

Leaving the land of linearity

Most methods covered so far based on $\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{1}+\cdots+\widehat{\beta}_{p-1} X_{p-1}$:

- Linear regression
- Logistic regression
- Ridge, lasso, elastic net

Notable exception: K-nearest neighbors (recall Unit 2)

Leaving the land of linearity

Most methods covered so far based on $\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{1}+\cdots+\widehat{\beta}_{p-1} X_{p-1}$:

- Linear regression
- Logistic regression
- Ridge, lasso, elastic net

Notable exception: K-nearest neighbors (recall Unit 2)
In Unit 4 we will leave the land of linearity.

Entering the land of trees and forests

Entering the land of trees and forests

Decision trees (lectures 1 and 2) are predictive models based on recursively partitioning the feature space.

Entering the land of trees and forests

Decision trees (lectures 1 and 2) are predictive models based on recursively partitioning the feature space.

Predicting baseball players' salaries based on years played and number of hits in the previous year.

Entering the land of trees and forests

Decision trees (lectures 1 and 2) are predictive models based on recursively partitioning the feature space.

Predicting baseball players' salaries based on years played and number of hits in the previous year.

Entering the land of trees and forests

Decision trees (lectures 1 and 2) are predictive models based on recursively partitioning the feature space.

Their prediction rules can be nicely illustrated and are very interpretable.

However, trees are somewhat unstable and do not give the best prediction performance.

Predicting baseball players' salaries based on years played and number of hits in the previous year.

Entering the land of trees and forests

Decision trees (lectures 1 and 2) are predictive models based on recursively partitioning the feature space.

Their prediction rules can be nicely illustrated and are very interpretable.

However, trees are somewhat unstable and do not give the best prediction performance.

Nevertheless, trees can be used as building blocks for state-of-the-art prediction performance:

Predicting baseball players' salaries based on years played and number of hits in the previous year.

- Random forests (lecture 3)
- Boosting (lecture 4)

Hitters data

Major League Baseball Data from the 1986 and 1987 seasons.

- Observations: 322 MLB players
- Response: Salary (1987 annual salary on opening day in thousands of dollars)
- Features: Assists, AtBat,...,Hits,...,Years (19 total)

Tree \Longleftrightarrow Partition into nested, axis-aligned rectangles

Each terminal node corresponds to a rectangular region of feature space.

Mathematical expression of the prediction rule

X_{1}

Mathematical expression of the prediction rule

A trained tree consists of:

- M regions $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$
- response values $\hat{c}_{1}, \ldots, \widehat{c}_{M}$

X_{1}

Mathematical expression of the prediction rule

A trained tree consists of:

- M regions $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$
- response values $\hat{c}_{1}, \ldots, \widehat{c}_{M}$

For a new feature vector $X^{\text {test }}$, predict the constant value \widehat{c}_{m} for region \widehat{R}_{m} :

$$
\widehat{Y}^{\text {test }}=\widehat{c}_{m} \text { if } X^{\text {test }} \in \widehat{R}_{m} \text {. }
$$

(continuous or categorical response)

X_{1}

Partitioning for continuous and categorical features

Partitioning for continuous and categorical features

Suppose we partition on X_{j}.

Partitioning for continuous and categorical features

Suppose we partition on X_{j}.

- If X_{j} is continuous, we just find a split point s and split into $\left\{X: X_{j}<s\right\}$ and $\left\{X: X_{j} \geq s\right\}$.

Partitioning for continuous and categorical features

Suppose we partition on X_{j}.

- If X_{j} is continuous, we just find a split point s and split into $\left\{X: X_{j}<s\right\}$ and $\left\{X: X_{j} \geq s\right\}$.
- If X_{j} is categorical, e.g. with levels $\{a, b, c, d, e\}$, then we need to split the levels into two groups, e.g. $\{a, c\}$ and $\{b, d, e\}$, giving the partitions $\left\{X: X_{j} \in\{a, c\}\right\}$ and $\left\{X: X_{j} \in\{b, d, e\}\right\}$.

Training a regression tree

The squared error objective

Training a regression tree

The squared error objective

As usual, we are given a training dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
For a fixed M, we seek rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ and values
$\widehat{c}_{1}, \ldots, \widehat{c}_{M}$ to minimize the residual sum of squares (RSS):

$$
\widehat{R}_{1}, \ldots, \widehat{R}_{M}, \widehat{c}_{1}, \ldots, \widehat{c}_{M}=\underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}
$$

Training a regression tree

The squared error objective

As usual, we are given a training dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
For a fixed M, we seek rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ and values
$\widehat{c}_{1}, \ldots, \widehat{c}_{M}$ to minimize the residual sum of squares (RSS):

$$
\begin{aligned}
& \widehat{R}_{1}, \ldots, \widehat{R}_{M}, \widehat{c}_{1}, \ldots, \widehat{c}_{M}=\underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} \\
= & \underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min }\left\{\sum_{i: X_{i} \in R_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i}-c_{M}\right)^{2}\right\}
\end{aligned}
$$

X_{1}

Training a regression tree

The squared error objective

As usual, we are given a training dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
For a fixed M, we seek rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ and values $\widehat{c}_{1}, \ldots, \widehat{c}_{M}$ to minimize the residual sum of squares (RSS):

$$
\begin{aligned}
& \widehat{R}_{1}, \ldots, \widehat{R}_{M}, \widehat{c}_{1}, \ldots, \widehat{c}_{M}=\underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min } \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2} \\
& =\underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min }\{\underbrace{\sum_{i: X_{i} \in R_{1}}\left(Y_{i}-c_{1}\right)^{2}}_{\mathrm{RSS} \text { for } R_{1}}+\cdots+\underbrace{\sum_{i: X_{i} \in R_{M}}\left(Y_{i}-c_{M}\right)^{2}}_{\mathrm{RSS} \text { for } R_{M}}\}
\end{aligned}
$$

X_{1}

Training a regression tree
 Optimal \widehat{c}_{m} given \widehat{R}_{m}

First let's consider a simpler problem, where rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ are given:

Training a regression tree

Optimal \widehat{c}_{m} given \widehat{R}_{m}

First let's consider a simpler problem, where rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ are given:

Training a regression tree

Optimal \widehat{c}_{m} given \widehat{R}_{m}

First let's consider a simpler problem, where rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ are given:

Training a regression tree

Finding the rectangles \widehat{R}_{m}

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

$$
\text { RSS }=\sum_{i: X_{i} \in \widehat{R_{1}}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

X_{1}

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

X_{1}

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

X_{1}

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.

$$
\text { RSS }=\sum_{i: X_{i} \in \widehat{R_{1}}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

X_{1}

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.
4. Repeat until there are M regions.

$$
\mathrm{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

X_{1}

Training a regression tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm:

1. Fit constant model to the entire space and calculate RSS.
2. Find split of the whole region that decreases RSS the most.
3. Find the split for each rectangle that decreases its RSS the most. Among these, choose best.
4. Repeat until there are M regions.

$$
\operatorname{RSS}=\sum_{i: X_{i} \in \widehat{R}_{1}}\left(Y_{i}-c_{1}\right)^{2}+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i}-c_{M}\right)^{2}
$$

X_{1}

Training a regression tree

Final output

Training a classification tree

The misclassification error objective

Training a classification tree

The misclassification error objective

As usual, we are given a training dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, where the response Y is binary.

For a fixed M, we seek rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ and values
$\widehat{c}_{1}, \ldots, \widehat{c}_{M}$ to minimize the misclassification error:

$$
\widehat{R}_{1}, \ldots, \widehat{R}_{M}, \widehat{c}_{1}, \ldots, \widehat{c}_{M}=\underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} I\left(Y_{i} \neq \widehat{Y}_{i}\right)
$$

Training a classification tree

The misclassification error objective

As usual, we are given a training dataset $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, where the response Y is binary.

For a fixed M, we seek rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ and values
$\widehat{c}_{1}, \ldots, \widehat{c}_{M}$ to minimize the misclassification error:

$$
\begin{aligned}
& \widehat{R}_{1}, \ldots, \widehat{R}_{M}, \widehat{c}_{1}, \ldots, \widehat{c}_{M}=\underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} I\left(Y_{i} \neq \widehat{Y}_{i}\right) \\
= & \underset{R_{1}, \ldots, R_{M}, c_{1}, \ldots, c_{M}}{\arg \min } \frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\}
\end{aligned}
$$

$$
X_{2}
$$

X_{1}

Training a classification tree

Optimal \widehat{c}_{m} given \widehat{R}_{m}
First let's consider a simpler problem, where rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ are given:
$\hat{c}_{1}, \ldots, \hat{c}_{M}=\underset{\substack{c_{1}, \ldots, c_{M}}}{\arg \min } \frac{1}{n}\left\{\sum_{i: x_{i} \in \widehat{R}_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i x_{1} \in \widehat{R}_{M}}\left(Y_{i} \neq c_{M}\right)\right\}$

Training a classification tree

Optimal \widehat{c}_{m} given \widehat{R}_{m}

First let's consider a simpler problem, where rectangles $\widehat{R}_{1}, \ldots, \widehat{R}_{M}$ are given:
$\widehat{c}_{1}, \ldots, \widehat{c}_{M}=\underset{c_{1}, \ldots, c_{M}}{\arg \min } \frac{1}{n}\left\{\sum_{i: X_{i} \in \widehat{R}_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in \widehat{R}_{M}}\left(Y_{i} \neq c_{M}\right)\right\}$
We're fitting the same category to each region, so the solution is the majority vote:

$$
\widehat{c}_{m}=\operatorname{mode}\left(\left\{Y_{i}: X_{i} \in \widehat{R}_{m}\right\}\right) .
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Inadequacy of misclassification error

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Inadequacy of misclassification error

Misclassification error:

$$
\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Inadequacy of misclassification error

Misclassification error:
$\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\}$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Inadequacy of misclassification error

Misclassification error:

$$
\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Inadequacy of misclassification error

Misclassification error:
$\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\}$

Misclassification error not sensitive enough to find good split points at each step.

Training a classification tree

Finding the rectangles \widehat{R}_{m} : The Gini index (measure of node impurity)

Training a classification tree

Finding the rectangles \widehat{R}_{m} : The Gini index (measure of node impurity)
If \hat{p}_{m} is region m class 1 proportion, misclassification error in that region is $\min \left(\hat{p}_{m}, 1-\hat{p}_{m}\right)$.

Training a classification tree

Finding the rectangles \widehat{R}_{m} : The Gini index (measure of node impurity)
If \hat{p}_{m} is region m class 1 proportion, misclassification error in that region is $\min \left(\hat{p}_{m}, 1-\hat{p}_{m}\right)$.
If n_{m} is the number of training observations in that region, then
Total misclassification error $=\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\}$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : The Gini index (measure of node impurity)
If \hat{p}_{m} is region m class 1 proportion, misclassification error in that region is $\min \left(\hat{p}_{m}, 1-\hat{p}_{m}\right)$.
If n_{m} is the number of training observations in that region, then

$$
\begin{aligned}
\text { Total misclassification error } & =\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\} \quad x \\
& =\frac{1}{n}\left\{n_{1} \min \left(\hat{p}_{1}, 1-\hat{p}_{1}\right)+\cdots+n_{M} \min \left(\hat{p}_{M}, 1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : The Gini index (measure of node impurity)
If \hat{p}_{m} is region m class 1 proportion, misclassification error in that region is $\min \left(\hat{p}_{m}, 1-\hat{p}_{m}\right)$.
If n_{m} is the number of training observations in that region, then

$$
\begin{aligned}
\text { Total misclassification error } & =\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\} \quad X \\
& =\frac{1}{n}\left\{n_{1} \min \left(\hat{p}_{1}, 1-\hat{p}_{1}\right)+\cdots+n_{M} \min \left(\hat{p}_{M}, 1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Replace misclassification error $\min \left(\widehat{p}_{m}, 1-\widehat{p}_{m}\right)$ by the Gini index $=2 \widehat{p}_{m}\left(1-\widehat{p}_{m}\right)$:

Training a classification tree

Finding the rectangles \widehat{R}_{m} : The Gini index (measure of node impurity)
If \hat{p}_{m} is region m class 1 proportion, misclassification error in that region is $\min \left(\hat{p}_{m}, 1-\hat{p}_{m}\right)$.
If n_{m} is the number of training observations in that region, then
$\begin{aligned} \text { Total misclassification error } & =\frac{1}{n}\left\{\sum_{i: X_{i} \in R_{1}} I\left(Y_{i} \neq c_{1}\right)+\cdots+\sum_{i: X_{i} \in R_{M}}\left(Y_{i} \neq c_{M}\right)\right\} \quad X_{2} \\ & =\frac{1}{n}\left\{n_{1} \min \left(\hat{p}_{1}, 1-\hat{p}_{1}\right)+\cdots+n_{M} \min \left(\hat{p}_{M}, 1-\hat{p}_{M}\right)\right\} \quad X_{1}\end{aligned}$
Replace misclassification error $\min \left(\widehat{p}_{m}, 1-\widehat{p}_{m}\right)$ by the Gini index $=2 \widehat{p}_{m}\left(1-\widehat{p}_{m}\right)$:

$$
\text { Total Gini index }=\frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\} .
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

- Gini index - Misclassification error

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Rises more sharply away from 0 and 1, promoting node purity

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Tree
Total Misclass. error

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Tree
Total Misclass. error
No splits

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

One split

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Tree
Tree Total Misclass. error Total Gini index

Rises more sharply away from 0 and 1, promoting node purity

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Rises more sharply away from 0 and 1, promoting node purity

Tree	Tota
No splits	$\frac{1}{4}$
One split	$\frac{1}{4}$

1

X_{1}
Total Gini index
$\frac{1}{8}\left(8 \cdot 2 \cdot \frac{1}{4} \cdot \frac{3}{4}\right)=\frac{3}{8}$

Training a classification tree

Finding the rectangles \widehat{R}_{m} : Gini index versus misclassification error

Tree

No splits Total Misclass. error Total Gini index

No splits	$\frac{1}{4}$	$\frac{1}{8}\left(8 \cdot 2 \cdot \frac{1}{4} \cdot \frac{3}{4}\right)=\frac{3}{8}$
One split	$\frac{1}{4}$	$\frac{1}{8}\left(5 \cdot 2 \cdot \frac{2}{5} \cdot \frac{3}{5}+3 \cdot 0\right)=\frac{3}{10}$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

> Total Gini index =

$$
\frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

X_{2}

X_{1}

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.
4. Repeat until there are M regions.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Finding the rectangles \widehat{R}_{m}

The optimal set of rectangles is computationally intractable to find. In practice, we employ a greedy top-down algorithm based on total Gini index:

1. Fit constant model to the entire space and calculate (total) Gini index.
2. Find split of the whole region that decreases total Gini index the most.
3. Find the split for each rectangle that decreases its Gini index the most. Among these, choose largest decrease in $n_{m} \cdot 2 \hat{p}_{m}\left(1-\hat{p}_{m}\right)$.
4. Repeat until there are M regions.

$$
\begin{aligned}
& \text { Total Gini index }= \\
& \frac{1}{n}\left\{n_{1} \cdot 2 \hat{p}_{1}\left(1-\hat{p}_{1}\right)+\cdots+n_{M} \cdot 2 \hat{p}_{M}\left(1-\hat{p}_{M}\right)\right\}
\end{aligned}
$$

Training a classification tree

Final output

Example: Heart disease data set.

- 303 patients with chest pain
- Binary response HD (heart disease)
- 13 demographic and clinical features

Training a classification tree

Final output

Example: Heart disease data set.

- 303 patients with chest pain
- Binary response HD (heart disease)
- 13 demographic and clinical features

Note: Classification trees extend seamlessly to more than two classes!

Tree-based models versus linear models

 Which perform better?
Tree-based models versus linear models

 Which perform better?Neither tree-based nor linear models dominate the other.

Tree-based models versus linear models

 Which perform better?Neither tree-based nor linear models dominate the other.

Each prediction method works better when the underlying trend in the data matches its modeling choice.

Tree-based models versus linear models

 Which perform better?Neither tree-based nor linear models dominate the other.

Each prediction method works better when the underlying trend in the data matches its modeling choice.

Tree-based models versus linear models

Which perform better?

Neither tree-based nor linear models dominate the other.

Each prediction method works better when the underlying trend in the data matches its modeling choice.
E.g. for classification:

- Linear model \rightarrow linear decision boundary
- Decision tree \rightarrow unions of rectangles

Summary

- Decision trees partition the feature space into axis-aligned nested rectangles, producing a constant prediction for feature vectors in each rectangle.
- Decision trees are built by recursively choosing
- The optimal rectangle to split
- The optimal feature to split that rectangle on
- The optimal split-point for that feature
- Regression and classification trees aim to minimize squared error and misclassification error, respectively.

