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Instructions
Materials and collaboration
The policy on allowed materials and collaboration is as stated on the Syllabus:

“Students are permitted to work together on homework assignments, but must write up and submit
solutions individually. In particular, students may not copy each others’ solutions. Students
may consult all course materials, textbooks, the internet, or AI tools (e.g. ChatGPT or GitHub
Copilot) to complete their homework. Students may not use solutions to problems that may be
available online and/or from past iterations of the course. For each homework, students must
disclose all classmates with whom they collaborated, which AI tools they used, and how they used
them. Failure to do so will result in a 5-point penalty.”

In accordance with this policy,

Please disclose all classmates with whom you collaborated:

Please disclose which AI tools you used, and how you used them:
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Failure to answer the above questions will result in a 5-point penalty.

Writeup
Use this document as a starting point for your writeup, adding your solutions after “Solution”. Add your R
code using code chunks and add your text answers using bold text. Consult the preparing reports guide
for guidance on compilation, creation of figures and tables, and presentation quality. In particular, if the
instructions ask you to “print a table”, you should use kable. If the instructions ask you to “print a tibble”,
you should not use kable and instead print the tibble directly.

Programming
The tidyverse paradigm for data visualization, manipulation, and wrangling is required. No points will be
awarded for code written in base R.

We’ll need to use the following R packages:
library(rpart) # to train decision trees
library(rpart.plot) # to plot decision trees
library(randomForest) # random forests
library(gbm) # boosting
library(tidyverse) # tidyverse
library(stat471) # for cv_tree()
library(kableExtra) # for printing tables
library(cowplot) # for side by side plots

Grading
The point value for each problem sub-part is indicated. Additionally, the presentation quality of the solution
for each problem (as exemplified by the guidelines in Section 4 of the preparing reports guide will be evaluated
on a per-problem basis (e.g. in this homework, there are three problems). There are 100 points possible on
this homework, 83 of which are for correctness and 17 of which are for presentation.

Submission
Compile your writeup to PDF and submit to Gradescope.

Case Study: Spam Filtering
In this homework, we will be looking at data on spam filtering. Each observation corresponds to an email to
George Forman, an employee at Hewlett Packard (HP) who helped compile the data in 1999. The response
spam is 1 or 0 according to whether that email is spam or not, respectively. The 57 features are extracted from
the text of the emails, and are described in the documentation for this data. Quoting from this documentation:

There are 48 continuous real [0,100] attributes of type word_freq_WORD = percentage of words
in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) /
total number of words in e-mail. A “word” in this case is any string of alphanumeric characters
bounded by non-alphanumeric characters or end-of-string.

There are 6 continuous real [0,100] attributes of type char_freq_CHAR = percentage of characters
in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurences) / total characters in
e-mail.

There is 1 continuous real [1,. . . ] attribute of type capital_run_length_average = average length
of uninterrupted sequences of capital letters.
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There is 1 continuous integer [1,. . . ] attribute of type capital_run_length_longest = length of
longest uninterrupted sequence of capital letters.

There is 1 continuous integer [1,. . . ] attribute of type capital_run_length_total = sum of length
of uninterrupted sequences of capital letters = total number of capital letters in the e-mail.

The goal is to build a spam filter, i.e. to classify whether an email is spam based on its text.

Let’s load the data.
spam_data <- read_tsv("spam_data.tsv")

The data contain a test set indicator, which we filter on to create a train-test split.
# extract training data
spam_train <- spam_data |>

filter(test == 0) |>
select(-test)

# extract test data
spam_test <- spam_data |>

filter(test == 1) |>
select(-test)

We will be using spam_train in the first four sections of this homework, and spam_test in the last section.

1 Exploratory Data Analysis (18 points for correctness; 2 points
for presentation)

First, let’s explore the training data.

1.1 Class proportions (3 points)
A good first step when tackling a classification problem is to look at the class proportions.

1. (1 points) What fraction of the training observations are spam?

2. (2 points) Assuming the test data contain the same class proportions, what would be the misclassification
error of a naive classifier that always predicts the majority class?

1.2 Exploring word frequencies (15 points)
There are 48 features based on word frequencies. In this sub-problem we will explore the variation in these
word frequencies, look at most frequent words, as well as the differences between word frequencies in spam
versus non-spam emails.

1.2.1 Overall word frequencies (8 points)

Let’s first take a look at the average word frequencies across all emails. This will require some dplyr
manipulations, which the following two sub-parts will guide you through.

1. (3 points) Produce a tibble called avg_word_freq containing the average frequencies of each word by
calling summarize on spam_train. Print this tibble (no need to use kable.

2. (3 points) Create a tibble called avg_word_freq_long by pivoting avg_word_freq. The result should
have 48 rows and two columns called word and avg_freq, the former containing each word and the latter
containing its average frequency. Print this tibble (no need to use kable). [Hint: Use names_prefix =
"word_freq_" within your pivoting function to remove this prefix.]
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3. (2 points) Produce a histogram or bar plot of the word frequencies. What are the top three most
frequent words? How can it be that a word has a frequency of more than 1? [Note: You can produce
either a histogram of the word frequencies (where the height of the bars is the number of words in that
range of word frequencies) or a bar plot of the word frequencies (where there is one bar per word, whose
height is that word’s frequency). If you do the former, you will need to separately figure out the top
three most frequent words. If you do the latter, you can read this information off directly from the plot.
However, for the latter strategy, please format the plot in a way such that the word labels are easy to
read.]

1.2.2 Differencies in word frequencies between spam and non-spam (7 points)

Perhaps even more important than overall average word frequencies are the differences in average word
frequencies between spam and non-spam emails.

4. (4 points) For each word, compute the difference between its average frequency among spam and
non-spam emails (i.e. average frequency in spam emails minus average frequency in non-spam emails).
Store these differences in a tibble called diff_avg_word_freq, with columns word and diff_avg_freq.
Print this tibble (no need to use kable).

[Full credit will be given for any logically correct method of doing this. See if you can accomplish this
using one continuous sequence of pipes.]

5. (3 points) Plot a histogram of these word frequency differences. Which three words are most overrep-
resented in spam emails? Which three are most underrepresented in spam emails? Do these make
sense?

2 Classification trees (20 points for correctness; 5 points presen-
tation)

In this problem, we will train classification trees on spam_train to get some more insight into the relationships
between the features and the response.

2.1 Growing the default classification tree (8 points)
1. (1 point) Fit a classification tree with splits based on the Gini index, with default control parameters.

Plot this tree.

2. (2 points) How many splits are there in this tree? How many terminal nodes does the tree have?

3. (5 points) What sequence of splits (specify the feature, the split point, and the direction) leads to the
terminal node that has the largest fraction of spam observations? Does this sequence of splits make
sense as flagging likely spam emails? What fraction of the observations in this node are spam? What
fraction of the training observations are in this node?

2.2 Finding a tree of optimal size via pruning and cross-validation (12 points)
Now let’s find the optimal tree size.

2.2.1 Fitting a large tree T0 (9 points)

1. (2 points) While we could simply prune back the default tree, there is a possibility the default tree is
not large enough. In terms of the bias-variance tradeoff, why would it be a problem if the default tree
were not large enough?

2. (2 points) First let us fit the deepest possible tree. In class we talked about the arguments minsplit
and minbucket to rpart.control. What values of these parameters will lead to the deepest possible

4



tree? There is also a third parameter cp. Read about this parameter by typing ?rpart.control. What
value of this parameter will lead to the deepest possible tree?

3. (1 point) Fit the deepest possible tree T0 based on the minsplit, minbucket, and cp parameters from
the previous sub-part. Print the CP table for this tree (using kable).
set.seed(1) # for reproducibility (DO NOT CHANGE)

4. (4 points) How many distinct trees are there in the sequence of trees produced in part iii? How many
splits does the biggest tree have? How many average observations per terminal node does it have, and
why is it not 1?

2.2.2 Tree-pruning and cross-validation (3 points)

1. (1 points) Produce the CV plot based on the information in the CP table printed above. For cleaner visu-
alization, plot only trees with nsplit at least 2, and put the x-axis on a log scale using scale_x_log10().

2. (1 point) Using the one-standard-error rule, how many terminal nodes does the optimal tree have? Is
this smaller or larger than the number of terminal nodes in the default tree above?

3. (1 point) Extract this optimal tree into an object called optimal_tree which we can use for prediction
on the test set (see the last problem in this homework).

3 Random forests (25 points for correctness; 5 points for presen-
tation)

Note: from this point onward, your code will be somewhat time-consuming. It is recommended that you
cache your code chunks using the option cache = TRUE in the chunk header. This way, the results of these
code chunks will be saved the first time you compile them (or after you change them), making subsequent
compilations much faster.

3.1 Running a random forest with default parameters (4 points)
1. (2 points) Train a random forest with default settings on spam_train. What value of mtry was used?

set.seed(1) # for reproducibility (DO NOT CHANGE)

2. (2 points) Plot the OOB error as a function of the number of trees. Roughly for what number of trees
does the OOB error stabilize?

3.2 Computational cost of random forests (7 points)
You may have noticed in the previous part that it took a little time to train the random forest. In this
problem, we will empirically explore the computational cost of random forests.

3.2.1 Dependence on whether variable importance is calculated

Recall that the purity-based variable importance is calculated automatically but the OOB-based variable
importance measure is only computed if importance = TRUE is specified. This is done for computational
purposes.

Hint: This question asks you to run code and report how long it took. The runtime of code varies from run
to run, and setting a seed in this case will not help. In particular, the answers will be different when you run
the code chunks in R Markdown and when you compile to PDF. For consistent answers in your PDF, you can
save any relevant variables in the R code chunk and then reference them in your answer using inline code.
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1. (1 point) How long does it take to train the random forest with default parameter settings, with
importance = FALSE? You can use the command system.time(randomForest(...))["elapsed"];
see ?system.time for more details.

2. (1 point) How long does it take to train the random forest with default parameter settings except
importance = TRUE? How many times faster is the computation when importance = FALSE?

3.2.2 Dependence on the number of trees

Another setting influencing the computational cost of running randomForest is the number of trees; the
default is ntree = 500.

1. (3 points) Train five random forests, with ntree = 100,200,300,400,500 (and importance = FALSE).
Record the time it takes to train each one, and plot the time against ntree.

2. (2 points) What relationship between runtime and number of trees do you observe? Does it make sense
in the context of the training algorithm for random forests?

3.3 Tuning the random forest (8 points)
1. (2 points) Since tuning the random forest is somewhat time consuming, we want to be careful about

tuning it smartly. To this end, does it make sense to tune the random forest with importance = FALSE
or importance = TRUE? Based on OOB error plot from above, what would be a reasonable number
of trees to grow without significantly compromising prediction accuracy? [Note: You can answer this
question “by eye”; there is no need to be too precise here. The OOB curve is somewhat noisy, so there
is not an exact right answer here.]

2. (2 points) About how many minutes would it take to train a random forest with 500 trees for every
possible value of m? (For the purposes of this question, you may assume for the sake of simplicity that
the choice of m does not impact the training time too much.) Suppose you only have enough patience
to wait about 15 seconds to tune your random forest, and you use the reduced number of trees from
part 1. How many values of m can you afford to try?

3. (2 points) Tune the random forest based on the choices in parts 1 and 2, choosing the values of m to be
roughly equally spaced between 1 and p (and including these two boundary values). Make a plot of
OOB error versus m, and identify the best value of m. How does it compare to the default value of m?
[Hint: You can generate roughly equally spaced integer values using the seq.int() function.]
set.seed(1) # for reproducibility (DO NOT CHANGE)

4. (2 points) Using the optimal value of m selected above, train a random forest on 500 trees just to
make sure the OOB error has flattened out. Also switch to importance = TRUE so that we can better
interpret the random forest ultimately used to make predictions. Plot the OOB error of this random
forest as a function of the number of trees and comment on whether the error has flattened out.
set.seed(1) # for reproducibility (DO NOT CHANGE)

3.4 Variable importance (6 points)
1. (2 points) Produce the variable importance plot for the random forest trained on the optimal value of

m. Please plot the variable importances only for the top ten features, using the argument n.var = 10.

2. (4 points) In order, what are the top three features by each metric? How many features appear in both
lists? Choose one of these top features and comment on why you might expect it to be predictive of
spam, including whether you would expect an increased frequency of this feature to indicate a greater
or lesser probability of spam.
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4 Boosting (12 points for correctness; 3 points for presentation)
4.1 Model tuning (4 points)

1. (2 points) Fit boosted tree models with interaction depths 1, 2, and 3. For each, use a shrinkage factor
of 0.1, 1000 trees, and 5-fold cross-validation. Set n.cores = 1.
set.seed(1) # for reproducibility (DO NOT CHANGE)
# TODO: Fit random forest with interaction depth 1

set.seed(1) # for reproducibility (DO NOT CHANGE)
# TODO: Fit random forest with interaction depth 2

set.seed(1) # for reproducibility (DO NOT CHANGE)
# TODO: Fit random forest with interaction depth 3

2. (2 points) Plot the CV errors against the number of trees for each interaction depth. These three curves
should be on the same plot with different colors. Also plot horizontal dashed lines at the minima of
these three curves. What are the optimal interaction depth and number of trees?

4.2 Model interpretation (8 points)
1. (4 points) Print the first ten rows of the relative influence table for the optimal boosting model found

above (using kable). What are the top three features? To what extent do these align with the top three
features of the random forest trained above?

2. (4 points) Produce partial dependence plots for the top three features based on relative influence.
Comment on the nature of the relationship with the response and whether it makes sense.

5 Test set evaluation and comparison (8 points for correctness; 2
points for presentation)

1. (2 points) Compute the test misclassification errors of the tuned decision tree, random forest, and
boosting classifiers, and print these using kable. Which method performs best?

2. (3 points) We might want to see how the test misclassification errors of random forests and boosting
vary with the number of trees. The following code chunk is provided to compute these; it assumes
that the tuned random forest and boosting classifiers are named rf_fit_tuned and gbm_fit_tuned,
respectively. Set eval = TRUE in the chunk header.
rf_test_err <- apply(

t(apply(
predict(rf_fit_tuned,

newdata = spam_test,
type = "response",
predict.all = TRUE

)$individual,
1,
function(row) (as.numeric(cummean(as.numeric(row)) > 0.5))

)),
2,
function(pred) (mean(pred != spam_test$spam))

)

gbm_test_err <- apply(
predict(gbm_fit_tuned,
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newdata = spam_test,
type = "response",
n.trees = 1:500

),
2,
function(p) (mean(as.numeric(p > 0.5) != spam_test$spam))

)

Produce a plot showing the misclassification errors of the random forest and boosting classifiers as a
function of the number of trees, as well as a horizontal line at the misclassification error of the optimal
pruned tree. Put the y axis on a logarithmic scale for clearer visualization.

3. (3 points) Between random forests and boosting, which method’s misclassification error drops more
quickly as a function of the number of trees? Why does this make sense?
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