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It turns out that changing the penalty in this way leads to  for many .̂β lasso

j = 0 j



The effect of the penalty parameter λ

.


• The larger  is, the more of a penalty there is. 


• For , we get back ordinary least squares (if OLS solution exists)


• For , we get , leaving only the intercept (which is not 
penalized).


We should think of  as controlling the flexibility of the lasso regression fit, like the 
degrees of freedom in a spline fit. However, larger  means fewer degrees of freedom.

̂β lasso = arg min
β {

n

∑
i=1

(Yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2+λ
p−1

∑
j=1

|βj |}
λ

λ = 0

λ = ∞ β1 = ⋯ = βp−1 = 0

λ
λ
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The bias-variance tradeoff for lasso regression

mean squared bias

mean variance

expected test error

In practice,  is chosen by cross-validation.λ
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Sparsity and interpretability

Lasso solution  is called sparse 
because  for many .

̂β lasso
̂β lasso

j = 0 j

Lasso is therefore a variable selection tool.

Sparse coefficient vectors are interpretable; 
they suggest which features are important.

NOTE: Cannot attach a measure of statistical 
significance to the selected variables.

Example: Crime Data



Lasso trace plot (compared to ridge)
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Lasso regression in a simple case

Consider fitting lasso regression without intercept:

.̂β lasso = arg min
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∑
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In this simple case,  and ̂β OLS
j = Yj

̂β lasso
j =

Yj − λ/2, if Yj ≥ λ/2
0, if  |Yj | ≤ λ/2
Yj + λ/2, if Yj ≤ − λ/2

Suppose that  and  , i.e. .n = p Xij = {1 if i = j
0 if i ≠ j

Yj = βj + ϵj

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

E.g. X =

LASSO = Least Angle Shrinkage and Selection Operator.

 obtained by soft-thresholding OLS estimate.̂β lasso



Feature scaling and standardization

Like for ridge regression, feature scaling matters for the lasso;


Feature standardization is recommended before running the lasso.
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Treatment of correlated features
Linear regression coefficients for correlated features tend to be unstable. 

Lasso coefficients are also unstable for correlated features.

For example, consider the linear regression 

,y = β1X1 + β2X1 + ϵ

where we’ve accidentally added the same feature twice. 

• Linear regression is undefined because  and  give 
the same RSS for each .

(β1, β2) (β1 − c, β2 + c)
c

• The lasso penalty does not help “break the tie.” In practice, lasso often 
chooses one of the two features arbitrarily.

Note: Coefficient instability doesn’t necessarily translate into prediction instability.
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Logistic regression with lasso penalty
Logistic regression can be penalized, just like linear regression!

Recall , the logistic regression likelihood. We can view  as 
analogous to the linear regression RSS. Continuing the analogy, we can define

ℒ(β) −log ℒ(β)

.̂β lasso = arg min
β

−log ℒ(β) + λ
p−1

∑
j=1

|βj |

Subtle point: While  is trained based on a (penalized) log-likelihood, 
during cross-validation we should choose  based on whatever measure of test 
error we care about (e.g. weighted misclassification error).

̂β lasso
λ



Ridge versus lasso



Ridge versus lasso

Least squares Ridge Lasso



Ridge versus lasso

Least squares Ridge Lasso

Penalty None
p−1

∑
j=1

β2
j

p−1

∑
j=1

|βj |



Ridge versus lasso

Least squares Ridge Lasso

Penalty None

Penalty effect N/A Shrinkage Shrinkage and 
selection

p−1

∑
j=1

β2
j

p−1

∑
j=1

|βj |



Ridge versus lasso

Least squares Ridge Lasso

Penalty None

Penalty effect N/A Shrinkage Shrinkage and 
selection

Sparsity No No Yes

p−1

∑
j=1

β2
j

p−1

∑
j=1

|βj |



Ridge versus lasso

Least squares Ridge Lasso

Penalty None

Penalty effect N/A Shrinkage Shrinkage and 
selection

Sparsity No No Yes

Correlated 
features (Unstable) Splits the credit 

(stable)
Chooses one 

arbitrarily (unstable)

p−1

∑
j=1

β2
j

p−1

∑
j=1

|βj |



Ridge versus lasso

Least squares Ridge Lasso

Penalty None

Penalty effect N/A Shrinkage Shrinkage and 
selection

Sparsity No No Yes

Correlated 
features (Unstable) Splits the credit 

(stable)
Chooses one 

arbitrarily (unstable)
Performs 

better when
Many features 

have small effects
Few features have 

large effects

p−1

∑
j=1

β2
j

p−1

∑
j=1

|βj |

 is largen/p



Ridge versus lasso

Least squares Ridge Lasso

Penalty None

Penalty effect N/A Shrinkage Shrinkage and 
selection

Sparsity No No Yes

Correlated 
features (Unstable) Splits the credit 

(stable)
Chooses one 

arbitrarily (unstable)
Performs 

better when
Many features 

have small effects
Few features have 

large effects

Works when 
 No Yes Yes

p−1

∑
j=1

β2
j

p−1

∑
j=1

|βj |

 is largen/p

p > n



Elastic net regression
Get the benefits of ridge and lasso regression by combining the two penalties:


Penalty = 


• When , we get ridge regression


• When , we get lasso regression


• When , we get ridge-like shrinkage as well as lasso-like selection


Elastic net gives sparse solutions as long as .


How to choose ? Can cross-validate over  and : First choose  to minimize CV 
error, then choose  according to the one-standard-error rule.

(1 − α)
p

∑
j=1

β2
j + α

p

∑
j=1

|βj |

α = 0

α = 1

0 < α < 1

α > 0

α α λ α
λ
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Summary: Lasso Regression
• Penalized regression method encouraging coefficients to be sparse.

• Like ridge:

•  controls the degrees of freedom; larger  gives fewer degrees of freedom.λ λ

• Bias-variance trade-off: larger  gives higher bias but lower variance.λ
• Features need to be standardized.

• Can be applied to logistic regression as well.

• Unlike ridge:

• Sets some coefficients exactly to zero, achieving variable selection.

• Coefficient estimates unstable in the presence of correlated features.

• Can be combined with ridge (elastic net).


