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Where we are

Lecture 1: Linear and logistic regression


Lecture 2: Regression in high dimensions


Lecture 3: Ridge regression


Lecture 4: Lasso regression
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Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods
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Ridge regression is defined even if , as long as .p > n λ > 0
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Mathematical expression for the df of ridge regression is complicated; we skip it.
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The bias-variance tradeoff for ridge regression

In practice,  is chosen by cross-validation.λ

mean squared bias

mean variance

expected test error



The importance of feature scaling



The importance of feature scaling

Suppose  is height. Does it matter if it’s measured in inches or feet?X1



The importance of feature scaling

Suppose  is height. Does it matter if it’s measured in inches or feet?X1

For least squares, does not matter. If , then .X1 → 12X1
̂β 1 →

1
12

̂β 1



The importance of feature scaling

Suppose  is height. Does it matter if it’s measured in inches or feet?X1

For least squares, does not matter. If , then .X1 → 12X1
̂β 1 →

1
12

̂β 1

̂β least squares = arg min
β

n

∑
i=1

(Yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2



The importance of feature scaling

Suppose  is height. Does it matter if it’s measured in inches or feet?X1

For least squares, does not matter. If , then .X1 → 12X1
̂β 1 →

1
12

̂β 1

̂β least squares = arg min
β

n

∑
i=1

(Yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2

For ridge regression, it does matter! Implicitly, all features assumed on the same scale.



The importance of feature scaling

Suppose  is height. Does it matter if it’s measured in inches or feet?X1

For least squares, does not matter. If , then .X1 → 12X1
̂β 1 →

1
12

̂β 1

̂β least squares = arg min
β

n

∑
i=1

(Yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2

For ridge regression, it does matter! Implicitly, all features assumed on the same scale.

̂β ridge = arg min
β {

n

∑
i=1

(Yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2+λ
p−1

∑
j=1

β2
j }



Feature standardization



Feature standardization
To put features on the same scale, center each feature and divide by its std. dev.:

.Xstd
ij =

Xij − ̂μ j

̂σ j
; ̂μ j =

1
n

n

∑
i=1

Xij; ̂σ 2
j =

1
n

n

∑
i=1

(Xij − Xj)2



Feature standardization
To put features on the same scale, center each feature and divide by its std. dev.:

.Xstd
ij =

Xij − ̂μ j

̂σ j
; ̂μ j =

1
n

n

∑
i=1

Xij; ̂σ 2
j =

1
n

n

∑
i=1

(Xij − Xj)2

Feature standardization is recommended before applying ridge regression:

̂β ridge = arg min
β {

n

∑
i=1

(Yi − (β0 + β1Xstd
i1 + ⋯ + βp−1Xstd

i,p−1))
2+λ

p−1

∑
j=1

β2
j }



Feature standardization
To put features on the same scale, center each feature and divide by its std. dev.:

.Xstd
ij =

Xij − ̂μ j

̂σ j
; ̂μ j =

1
n

n

∑
i=1

Xij; ̂σ 2
j =

1
n

n

∑
i=1

(Xij − Xj)2

Feature standardization is recommended before applying ridge regression:

̂β ridge = arg min
β {

n

∑
i=1

(Yi − (β0 + β1Xstd
i1 + ⋯ + βp−1Xstd

i,p−1))
2+λ

p−1

∑
j=1

β2
j }

So, mean response changes by  when  is increased by a standard deviation.βj Xj
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(OLS stands for ordinary least squares).

̂βOLS
j = Yj

̂β ridge
j = Yj /(1 + λ)

So , i.e. the ridge estimate is 

obtained by shrinking the OLS estimate by a factor of .
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Treatment of correlated features
Linear regression coefficients for correlated features tend to be unstable. 

Ridge regression is more stable, “splitting the credit” among correlated features.

For example, consider the linear regression 

,y = β1X1 + β2X1 + ϵ

where we’ve accidentally added the same feature twice. 

• Linear regression is undefined because  and  give the 
same RSS for each . 

(β1, β2) (β1 − c, β2 + c)
c

• Ridge regression will obtain  from , and set ̂β y = βX1 + ϵ ̂β 1 = ̂β 2 =
1
2

̂β .
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Logistic regression with ridge penalty
Logistic regression can be penalized, just like linear regression!

Recall , the logistic regression likelihood. We can view  as 
analogous to the linear regression RSS. Continuing the analogy, we can define

ℒ(β) −log ℒ(β)

.̂β ridge = arg min
β

−log ℒ(β) + λ
p−1

∑
j=1

β2
j

Subtle point: While  is trained based on a (penalized) log-likelihood, 
during cross-validation we should choose  based on whatever measure of test 
error we care about (e.g. weighted misclassification error).

̂β ridge
λ
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Summary: Ridge Regression

• Penalized regression method encouraging coefficients not to be too large.

• The penalty parameter  controls the degrees of freedom of the fit, with larger 
 giving fewer degrees of freedom.

λ
λ

• Bias-variance trade-off: larger  gives higher bias but lower variance.λ

• Features need to be standardized prior to the application of ridge regression.

• Ridge regression tends to split the credit among correlated features.

• Ridge penalization can be applied to logistic regression as well.


