
Unit 3 Lecture 3: Ridge regression

October 10, 2023

In this R demo, we will learn about the glmnetUtils package and how to run a cross-validated ridge regression
using the cv.glmnet() function.
library(tidyverse)
library(glmnetUtils) # for cv.glmnet()
library(stat471) # for plot_glmnet(), coef_tidy()

We will be applying ridge regression to study the effect of 97 socioeconomic factors on violent crimes per
capita based on data from 90 communities in Florida:
crime_data <- read_csv("CrimeData_FL.csv")
crime_data

## # A tibble: 90 x 98
## population household.size race.pctblack race.pctwhite race.pctasian
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 16023 2.63 13.8 83.9 1.42
## 2 29721 2.34 3.52 95.1 1.03
## 3 10205 2.46 1.06 97.4 1.04
## 4 124773 2.47 29.1 68.2 1.75
## 5 13024 2.25 31.3 67.2 0.5
## 6 280015 2.44 25.0 70.9 1.35
## 7 79443 2.94 3.48 93.1 2.12
## 8 16444 2.57 5.38 91.2 1.96
## 9 46194 2.28 20.1 77.7 0.63
## 10 14044 2.17 0.48 98.3 0.58
## # i 80 more rows
## # i 93 more variables: race.pcthisp <dbl>, age.pct12to21 <dbl>,
## # age.pct12to29 <dbl>, age.pct16to24 <dbl>, age.pct65up <dbl>,
## # pct.urban <dbl>, med.income <dbl>, pct.wage.inc <dbl>,
## # pct.farmself.inc <dbl>, pct.inv.inc <dbl>, pct.socsec.inc <dbl>,
## # pct.pubasst.inc <dbl>, pct.retire <dbl>, med.family.inc <dbl>,
## # percap.inc <dbl>, white.percap <dbl>, black.percap <dbl>, ...

Let’s split the data into training and testing, as usual:
set.seed(471)
train_samples <- sample(1:nrow(crime_data), 0.8 * nrow(crime_data))
crime_train <- crime_data |> filter(row_number() %in% train_samples)
crime_test <- crime_data |> filter(!(row_number() %in% train_samples))

Running a cross-validated ridge regression
We call cv.glmnet on crime_train:
set.seed(471)
ridge_fit <- cv.glmnet(
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violentcrimes.perpop ~ ., # formula notation, as usual
alpha = 0, # alpha = 0 for ridge (stay tuned for more)
nfolds = 10, # number of folds
data = crime_train # data to run ridge on

)

A few things to note:

• the sequence of penalty parameters is automatically chosen for you
• alpha = 0 means “ridge regression” (we’ll discuss other values of alpha next lecture)
• nfolds specifies the number of folds for cross-validation
• the columns of the matrix X are being standardized for you behind the scenes; there is no need to

standardize yourself

Inspecting the results
The glmnetUtils package has a plot() function to produce the CV plot:
plot(ridge_fit)
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The ridge_fit object has several fields with information about the fit:
# lambda sequence
head(ridge_fit$lambda)

## [1] 713062.9 680653.1 649716.3 620185.7 591997.3 565090.1
# CV estimates
head(ridge_fit$cvm)

## [1] 723198.4 708573.4 698343.2 693646.9 692021.4 690326.8
# CV standard errors
head(ridge_fit$cvsd)

## [1] 110115.5 111834.4 107008.7 104828.4 104651.7 104467.4
# lambda achieving minimum CV error
ridge_fit$lambda.min
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## [1] 7130.629
# lambda based on one-standard-error rule
ridge_fit$lambda.1se

## [1] 12460.98

To get the fitted coefficients at the selected value of lambda, we can use the coef_tidy() function from the
stat471 package:
coef_tidy(ridge_fit, s = "lambda.1se")

## # A tibble: 98 x 2
## feature coefficient
## <chr> <dbl>
## 1 (Intercept) 4336.
## 2 population 0.000102
## 3 household.size 2.87
## 4 race.pctblack 1.17
## 5 race.pctwhite -1.20
## 6 race.pctasian -7.83
## 7 race.pcthisp 0.774
## 8 age.pct12to21 1.67
## 9 age.pct12to29 1.31
## 10 age.pct16to24 2.02
## # i 88 more rows
coef_tidy(ridge_fit, s = "lambda.min")

## # A tibble: 98 x 2
## feature coefficient
## <chr> <dbl>
## 1 (Intercept) 5226.
## 2 population 0.000137
## 3 household.size 1.34
## 4 race.pctblack 1.42
## 5 race.pctwhite -1.46
## 6 race.pctasian -11.3
## 7 race.pcthisp 0.959
## 8 age.pct12to21 2.07
## 9 age.pct12to29 1.62
## 10 age.pct16to24 2.64
## # i 88 more rows

If s is not specified then s = lambda.1se will be chosen by default:
coef_tidy(ridge_fit)

## # A tibble: 98 x 2
## feature coefficient
## <chr> <dbl>
## 1 (Intercept) 4336.
## 2 population 0.000102
## 3 household.size 2.87
## 4 race.pctblack 1.17
## 5 race.pctwhite -1.20
## 6 race.pctasian -7.83
## 7 race.pcthisp 0.774
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## 8 age.pct12to21 1.67
## 9 age.pct12to29 1.31
## 10 age.pct16to24 2.02
## # i 88 more rows

NOTE: cv.glmnet() standardized the features behind the scenes, but returns coefficients that should
be interpreted in the context of the original scale of the features. For instance, a coefficient of 2.9 for
household.size means that violentcrimes.perpop increases by 2.9 on average when the household size
goes up by one household member.

Side note: coef_tidy() works for usual linear model fits as well:
lm_fit <- lm(violentcrimes.perpop ~ ., data = crime_train)
coef_tidy(lm_fit)

## # A tibble: 98 x 2
## feature coefficient
## <chr> <dbl>
## 1 (Intercept) -461686.
## 2 population -0.0242
## 3 household.size -26507.
## 4 race.pctblack 2670.
## 5 race.pctwhite 2152.
## 6 race.pctasian -12.0
## 7 race.pcthisp 459.
## 8 age.pct12to21 2740.
## 9 age.pct12to29 2325.
## 10 age.pct16to24 -4122.
## # i 88 more rows

Note that some of the coefficients are undefined because p > n:
lm_fit |>
coef_tidy() |>
summarise(num_NA_coeffs = sum(is.na(coefficient)))

## # A tibble: 1 x 1
## num_NA_coeffs
## <int>
## 1 26

To visualize the fitted ridge coefficients as a function of lambda, we can make a trace plot like we saw in class.
To do this, we can use the plot_glmnet() function from the stat471 package, which by default shows a
dashed line at the lambda value chosen using the one-standard-error rule:
plot_glmnet(glmnet_fit = ridge_fit, data = crime_train)
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NOTE: We must pass in the data as well as the fit object into plot_glmnet().

If we want to annotate the features with the top few coefficients, we can use the features_to_plot argument:
plot_glmnet(ridge_fit, crime_train, features_to_plot = 7)
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pct.fam2parents pct.kids.nvrmarried pct.kids2parents

pct.people.ownoccup.hh pct.pop.underpov pct.teens2parents

pct.youngkids2parents
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NOTE: Unlike the output of coef_tidy(), the coefficients plotted by plot_glmnet() are for the standardized
features. For example, let’s see what is the standard deviation of household.size:
crime_train |>

summarize(sd(household.size))

## # A tibble: 1 x 1
## `sd(household.size)`
## <dbl>
## 1 0.273

So if we have a coefficient of 0.78 for the standardized version of this variable, it means that when the
household size increases by one standard deviation (i.e. by 0.27 household members), the response increases
by 0.8. We can translate this back to the unnormalized scale by noting that increasing the household size by
one household member will increase the response by 0.8/0.27 = 2.9, which is the unnormalized coefficient we
found before.

Making predictions
To make predictions on the test data, we can use the predict function (which we’ve seen before):
ridge_predictions <- predict(ridge_fit, newdata = crime_test, s = "lambda.1se")
ridge_predictions

## lambda.1se
## [1,] 1728.4273
## [2,] 1342.5847
## [3,] 1040.6852
## [4,] 771.8934
## [5,] 681.1764
## [6,] 700.3370
## [7,] 981.5614
## [8,] 814.8565
## [9,] 841.2080
## [10,] 749.3758
## [11,] 555.5066
## [12,] 1381.7639
## [13,] 1251.6341
## [14,] 1258.0162
## [15,] 1442.3838
## [16,] 710.4379
## [17,] 703.6399
## [18,] 711.3818

We can cast this to a vector using as.numeric():
ridge_predictions <- as.numeric(ridge_predictions)
ridge_predictions

## [1] 1728.4273 1342.5847 1040.6852 771.8934 681.1764 700.3370 981.5614
## [8] 814.8565 841.2080 749.3758 555.5066 1381.7639 1251.6341 1258.0162
## [15] 1442.3838 710.4379 703.6399 711.3818

We can evaluate the root-mean-squared-error as before:
RMSE <- sqrt(mean((ridge_predictions - crime_test$violentcrimes.perpop)ˆ2))
RMSE
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## [1] 397.7994

Ridge logistic regression
We can also use cv.glmnet() to run a ridge-penalized logistic regression. Let’s try it out on a binarized
version of crime_data:
crime_train_binary <- crime_train |>
mutate(high_crime = as.numeric(violentcrimes.perpop > 2000)) |>
select(-violentcrimes.perpop)

crime_test_binary <- crime_test |>
mutate(high_crime = as.numeric(violentcrimes.perpop > 2000)) |>
select(-violentcrimes.perpop)

To run the logistic ridge regression, we call cv.glmnet as before, adding the argument family = binomial
to specify that we want to do a logistic regression and the argument type.measure = "class: to specify
that we want to use the misclassification error during cross-validation.
set.seed(471)
ridge_fit <- cv.glmnet(

high_crime ~ ., # formula notation, as usual
alpha = 0, # alpha = 0 means ridge
nfolds = 10, # number of CV folds
family = "binomial", # to specify logistic regression
type.measure = "class", # use misclassification error in CV
data = crime_train_binary # train on crime_train_binary data

)

We can then take a look at the CV plot and the trace plot as before:
plot(ridge_fit)
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plot_glmnet(ridge_fit, crime_train_binary)
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To predict using the fitted model, we can use the predict function again, this time specifying type =
"response" to get the predictions on the probability scale (as opposed to the log-odds scale).
probabilities <- predict(

ridge_fit, # fit object
newdata = crime_test_binary, # new data to test on
s = "lambda.1se", # which value of lambda to use
type = "response" # to output probabilities

) |>
as.numeric() # convert to vector

head(probabilities)

## [1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

We can threshold the probabilities at 0.5 to get binary predictions as we did with regular logistic regression.

Exercise: Weighted ridge logistic regression
1. What fraction of the observations in crime_train_binary are high crime?

2. Use coef_tidy() to find the ridge coefficients for the ridge logistic regression above. Why did cross-
validation choose the value of lambda that gave these coefficients?

3. Use the results of the first two problems to explain why the predicted probabilities of high_crime
obtained above are all equal to 0.1666667.

4. Let’s weight the positive training observations five-fold:
weights <- 1*(crime_train_binary$high_crime == 0) + 5*(crime_train_binary$high_crime == 1)

Rerun a logistic ridge regression, additionally passing the above weight vector to the weights argument
of cv.glmnet(). Store the result in an object called ridge_fit_weighted.

5. Produce the CV plot, and comment on how and why it differs from that of the unweighted logistic
ridge regression.
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