
October 5, 2023

Regression in high dimensions
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Where we are

Lecture 1: Linear and logistic regression


Lecture 2: Regression in high dimensions


Lecture 3: Ridge regression


Lecture 4: Lasso regression


Lecture 5: Unit review and quiz in class

Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods


Unit 5: Deep learning



High-dimensional data



High-dimensional data
Recall:  is the number of training observations and  is the number of features.


Most datasets we’ve considered so far have  much larger than . 
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In modern applications, can collect very 
many features for each observation, e.g.:


• Natural language processing


• Image processing


• Genetics/Genomics


• E-commerce 50
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High-dimensional data
Recall:  is the number of training observations and  is the number of features.


Most datasets we’ve considered so far have  much larger than . 
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In modern applications, can collect very 
many features for each observation, e.g.:


• Natural language processing


• Image processing


• Genetics/Genomics


• E-commerce

High-dimensional data: Data with  or p > n p ≈ n
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Challenges in high dimensions
Let’s consider fitting a linear regression with  observations and  features.


If , the columns of the feature matrix  guaranteed to be multi-collinear, 
so the least squares linear regression estimate is not even defined.


If , linear regression will perfectly fit training set, even with “junk” features.

n p

p > n X

p = n



Challenges in high dimensions
Let’s consider fitting a linear regression with  observations and  features.


If , the columns of the feature matrix  guaranteed to be multi-collinear, 
so the least squares linear regression estimate is not even defined.


If , linear regression will perfectly fit training set, even with “junk” features.

n p

p > n X

p = n



Challenges in high dimensions
Let’s consider fitting a linear regression with  observations and  features.


If , the columns of the feature matrix  guaranteed to be multi-collinear, 
so the least squares linear regression estimate is not even defined.


If , linear regression will perfectly fit training set, even with “junk” features.

n p

p > n X

p = n



Challenges in high dimensions
Let’s consider fitting a linear regression with  observations and  features.


If , the columns of the feature matrix  guaranteed to be multi-collinear, 
so the least squares linear regression estimate is not even defined.


If , linear regression will perfectly fit training set, even with “junk” features.

n p

p > n X

p = n

If , recall that linear regression variance is . 
Therefore, if  then variance will be very high.


Linear models fit using too many features (i.e. too many 
degrees of freedom) perform poorly due to high variance.

p < n σ2p/n
p ≈ n



Linear regression for ;  features unrelated to responsen = 20 p

Challenges in high dimensions (illustration)



The solution

The solution is to constrain the fitted coefficients in some way, e.g.:


1. Make sure fitted coefficients are not too large (ridge regression).


2. Make sure fitted coefficients are mostly equal to zero (lasso regression).


These constraints reduce the degrees of freedom of the fit, reducing variance.


We are still fitting  coefficients, but using fewer than  degrees of freedom.
p p



Penalization: A way of constraining the fit
Recall least squares solution:


.


Here we let  fit the data as close as possible, putting no constraints. 

̂β = arg min
β0,β1,…,βp−1

n

∑
i=1

(yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2

̂β



Penalization: Add a term  that measures how “wild”  is, to incentivize  
not to be too wild:
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Example: L0-penalized regression

Consider the penalized regression


,


with .


The L0 penalty  counts the number of nonzero entries in , and creates sparse 
solutions .


The optimization above is computationally infeasible, so in practice we use a 
different penalty (called the lasso) to achieve sparsity (stay tuned for Lecture 4).

̂β ′￼ = arg min
β0,β1,…,βp−1

n

∑
i=1

(yi − (β0 + β1Xi1 + ⋯ + βp−1Xi,p−1))2 + λ ⋅ P(β)

P(β) = |{j : βj ≠ 0} |

P β̂β



How and when penalization works

Penalization reduces the variance, but increases the bias of the predictions.


 Reduces test error when reduction in variance outweighs increase in bias.


The bias is a function of the complexity of the underlying model, and in high 
dimensions, we can have some very complex underlying models.
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Looking ahead to lectures 3 and 4

Lecture 3: Ridge regression (constraining coefficients not to be too large)


Lecture 4: Lasso regression (constraining coefficients to be sparse)


We’ll learn about the theory and practice of these penalized regression methods.
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Quiz Practice

https://canvas.upenn.edu/courses/1741618/assignments/11508318

