Linear and logistic regression

 STAT 4710
Rolling into Unit 3

Unit 1: R for data mining
Unit 2: Prediction fundamentals
Unit 3: Regression-based methods
Unit 4: Tree-based methods
Unit 5: Deep learning

Lecture 1: Linear and logistic regression
Lecture 2: Regression in high dimensions
Lecture 3: Ridge regression
Lecture 4: Lasso regression
Lecture 5: Unit review and quiz in class

Predicting a response based on multiple features

Predicting a response based on multiple features

If we want to predict income, we should not only use age! We might want to consider other factors like education, job type, sex, marital status, race, etc.

Predicting a response based on multiple features

If we want to predict income, we should not only use age! We might want to consider other factors like education, job type, sex, marital status, race, etc.

Given features $X_{1}, X_{2}, \ldots, X_{p-1}$, the most common way to model a response Y is the linear regression model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p-1} X_{p-1}+\epsilon
$$

Predicting a response based on multiple features

If we want to predict income, we should not only use age! We might want to consider other factors like education, job type, sex, marital status, race, etc.

Given features $X_{1}, X_{2}, \ldots, X_{p-1}$, the most common way to model a response Y is the linear regression model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p-1} X_{p-1}+\epsilon
$$

Let's review:

- Continuous and categorical features in linear models
- Interpretation of linear regression coefficients
- How to fit a linear regression model

Continuous and categorical features in linear regression

Continuous and categorical features in linear regression

Features X_{j} must be expressed as numbers for $\beta_{j} X_{j}$ to make sense.

Continuous and categorical features in linear regression

Features X_{j} must be expressed as numbers for $\beta_{j} X_{j}$ to make sense.
Example 1 (continuous feature): $X_{1}=$ age. Continuous features are already numbers, so it makes sense to write $\beta_{1} X_{1}$.

Continuous and categorical features in linear regression

Features X_{j} must be expressed as numbers for $\beta_{j} X_{j}$ to make sense.
Example 1 (continuous feature): $X_{1}=$ age. Continuous features are already numbers, so it makes sense to write $\beta_{1} X_{1}$.

Example 2 (binary feature): $X_{2}=$ sex. It does not make sense to write $\beta_{2} X_{2}$; what does $3 \times$ "male" mean? Instead, use dummy coding: $X_{2}=I$ (sex = male).

Continuous and categorical features in linear regression

Features X_{j} must be expressed as numbers for $\beta_{j} X_{j}$ to make sense.
Example 1 (continuous feature): $X_{1}=$ age. Continuous features are already numbers, so it makes sense to write $\beta_{1} X_{1}$.

Example 2 (binary feature): $X_{2}=$ sex. It does not make sense to write $\beta_{2} X_{2}$; what does $3 \times$ "male" mean? Instead, use dummy coding: $X_{2}=I($ sex $=$ male $)$.

Example 3 (categorical feature): $X_{3}=$ education. It does not make sense to write $\beta_{3} X_{3}$. Instead, map education onto multiple dummy variables:
$X_{3}=I($ education $=$ high school $), X_{4}=I($ education $=$ "college" $)$, etc.

Continuous and categorical features in linear regression

Features X_{j} must be expressed as numbers for $\beta_{j} X_{j}$ to make sense.
Example 1 (continuous feature): $X_{1}=$ age. Continuous features are already numbers, so it makes sense to write $\beta_{1} X_{1}$.

Example 2 (binary feature): $X_{2}=$ sex. It does not make sense to write $\beta_{2} X_{2}$; what does $3 \times$ "male" mean? Instead, use dummy coding: $X_{2}=I(\mathrm{sex}=$ male $)$.

Example 3 (categorical feature): $X_{3}=$ education. It does not make sense to write $\beta_{3} X_{3}$. Instead, map education onto multiple dummy variables:
$X_{3}=I($ education $=$ high school $), X_{4}=I($ education $=$ "college" $)$, etc.
To avoid redundancy, use dummy variables for all levels except one baseline.

Interpretation of linear regression coefficients

Interpretation of linear regression coefficients

Consider the following linear regression model:

Interpretation of linear regression coefficients

Consider the following linear regression model:
income $=\beta_{0}+\beta_{1} \cdot$ age $+\beta_{2} \cdot I(\operatorname{sex}=" \mathrm{M} ")+\beta_{3} \cdot I($ ed $=" \mathrm{HS} ")+\beta_{4} \cdot I($ ed $=$ "college" $)+\epsilon$

Interpretation of linear regression coefficients

Consider the following linear regression model:

$$
\text { income }=\beta_{0}+\beta_{1} \cdot \text { age }+\beta_{2} \cdot I(\operatorname{sex}=\text { " } \mathrm{M} \text { " })+\beta_{3} \cdot I(\mathrm{ed}=\text { "HS" })+\beta_{4} \cdot I(\mathrm{ed}=\text { "college" })+\epsilon
$$

Example 1 (continuous feature): β_{1} represents increase in mean income associated with extra year of age.

Interpretation of linear regression coefficients

Consider the following linear regression model:

$$
\text { income }=\beta_{0}+\beta_{1} \cdot \text { age }+\beta_{2} \cdot I(\operatorname{sex}=\text { " } \mathrm{M} \text { " })+\beta_{3} \cdot I(\mathrm{ed}=\text { "HS" })+\beta_{4} \cdot I(\mathrm{ed}=\text { "college" })+\epsilon
$$

Example 1 (continuous feature): β_{1} represents increase in mean income associated with extra year of age.

Example 2 (binary feature): β_{2} represents increase in mean income associated with moving from female (baseline) to male.

Interpretation of linear regression coefficients

Consider the following linear regression model:

$$
\text { income }=\beta_{0}+\beta_{1} \cdot \text { age }+\beta_{2} \cdot I(\operatorname{sex}=\text { " } \mathrm{M} \text { " })+\beta_{3} \cdot I(\mathrm{ed}=\text { "HS" })+\beta_{4} \cdot I(\mathrm{ed}=\text { "college" })+\epsilon
$$

Example 1 (continuous feature): β_{1} represents increase in mean income associated with extra year of age.

Example 2 (binary feature): β_{2} represents increase in mean income associated with moving from female (baseline) to male.

Example 3 (categorical feature): β_{3} represents increase in mean income associated with moving from less than HS education (baseline) to HS education.

Interpretation of linear regression coefficients

Consider the following linear regression model:
income $=\beta_{0}+\beta_{1} \cdot$ age $+\beta_{2} \cdot I(\operatorname{sex}=" \mathrm{M} ")+\beta_{3} \cdot I($ ed $=" \mathrm{HS} ")+\beta_{4} \cdot I($ ed $=$ "college" $)+\epsilon$
Example 1 (continuous feature): β_{1} represents increase in mean income associated with extra year of age.

Example 2 (binary feature): β_{2} represents increase in mean income associated with moving from female (baseline) to male.

Example 3 (categorical feature): β_{3} represents increase in mean income associated with moving from less than HS education (baseline) to HS education.

Note: Linear regression coefficients do not necessarily imply causation.

Fitting linear regression via least squares

Fitting linear regression via least squares

We have training data points $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$.

Fitting linear regression via least squares

We have training data points $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$.
Given coefficients β, define prediction $f_{\beta}\left(X_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p-1} X_{i, p-1}$.

Fitting linear regression via least squares

We have training data points $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$.
Given coefficients β, define prediction $f_{\beta}\left(X_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p-1} X_{i, p-1}$.
Based on the training data, we want to find $\widehat{\beta}$ such that $Y_{i} \approx f_{\widehat{\beta}}\left(X_{i}\right)$:

$$
\widehat{\beta}=\underset{\beta}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f_{\beta}\left(X_{i}\right)\right)^{2} .
$$

Fitting linear regression via least squares

We have training data points $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$.
Given coefficients β, define prediction $f_{\beta}\left(X_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p-1} X_{i, p-1}$.
Based on the training data, we want to find $\widehat{\beta}$ such that $Y_{i} \approx f_{\widehat{\beta}}\left(X_{i}\right)$:

$$
\widehat{\beta}=\underset{\beta}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f_{\beta}\left(X_{i}\right)\right)^{2} .
$$

This is the method of least squares, or ordinary least squares (OLS).

Fitting linear regression via least squares

We have training data points $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$.
Given coefficients β, define prediction $f_{\beta}\left(X_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p-1} X_{i, p-1}$.
Based on the training data, we want to find $\widehat{\beta}$ such that $Y_{i} \approx f_{\widehat{\beta}}\left(X_{i}\right)$:

$$
\widehat{\beta}=\underset{\beta}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-f_{\beta}\left(X_{i}\right)\right)^{2} .
$$

This is the method of least squares, or ordinary least squares (OLS).
The least squares optimization problem can be solved in closed form.

What if the response is binary?

> Default
\# A tibble: 10,000 x 4 default student balance income

	<fct>	<fct>	<dbl> <dbl>
1	No	No	730. 44362.
2	No	Yes	817. 12106.
3	No	No	1074. 31767.
4	No	No	529. 35704.
5	No	No	786. 38463.
6	No	Yes	920. 7492.
7	No	No	826. 24905.
8	No	Yes	809. 17600.
9	No	No	1161. 37469.
10	No	No	029275.

\# ... with 9,990 more rows

What if the response is binary?

> Default
\# A tibble: 10,000 x 4 default student balance income

	<fct>	<fct>	<dbl> <dbl>
1	No	No	730. 44362.
2	No	Yes	817. 12106.
3	No	No	1074. 31767.
4	No	No	529. 35704.
5	No	No	786. 38463.
6	No	Yes	920. 7492.
7	No	No	826. 24905.
8	No	Yes	809. 17600.
9	No	No	1161. 37469.
10	No	No	029275.

Will a person default on their credit card bill?

What if the response is binary?

> Default
\# A tibble: 10,000 x 4 default student balance income <fct> <fct> <dbl> <dbl>
1 No 730. 44362.

2 No Yes 817. 12106.
3 No No 1074. 31767.
4 No No 529. 35704 .
5 No No 786. 38463.
6 No Yes 920. 7492.
7 No No 826. 24905.
8 No Yes 809. 17600.
9 No No 1161. 37469 .
10 No No $0 \quad \underline{29275}$.

Will a person default on their credit card bill?

We build a model to approximate
$\mathbb{P}[$ default $=$ Yes \mid student, balance, income $]$
and then predict
default $= \begin{cases}\text { Yes, } & \text { if } \widehat{\mathbb{P}}[\text { default }] \geq 0.5 ; \\ \text { No, } & \text { if } \widehat{\mathbb{P}}[\text { default }]<0.5 .\end{cases}$

What if the response is binary?

> Default
\# A tibble: 10,000 x 4 default student balance income <fct> <fct> <dbl> <dbl>
1 No 730. 44362.

2 No Yes 817. 12106.
3 No No 1074. 31767.
4 No No 529. 35704 .
5 No No 786. 38463.
6 No Yes 920. 7492.
7 No No 826. 24905.
8 No Yes 809. 17600.
9 No No 1161. 37469 .
10 No No $0 \quad \underline{29275}$.

Will a person default on their credit card bill?

We build a model to approximate
$\mathbb{P}[$ default $=$ Yes \mid student, balance, income $]$
and then predict

$$
\text { default }= \begin{cases}\text { Yes, } & \text { if } \widehat{\mathbb{P}}[\text { default }] \geq 0.5 ; \\ \text { No, } & \text { if } \widehat{\mathbb{P}}[\text { default }]<0.5\end{cases}
$$

How do we model probability of default?

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:
Linear regression

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:
Linear regression

- Interpretable coefficients

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:
Linear regression

Interpretable coefficients
X Probabilities can fall outside $[0,1]$

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

K-nearest neighbors
proportion of K N. N. who defaulted

, Interpretable coefficients
X Probabilities can fall outside $[0,1]$

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

- Interpretable coefficients

K-nearest neighbors
proportion of K N. N. who defaulted

X Less interpretable model

X Probabilities can fall outside $[0,1]$

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

- Interpretable coefficients

X
Probabilities can fall outside $[0,1]$

K-nearest neighbors
proportion of K N. N. who defaulted

K Less interpretable model
Probabilities fall within $[0,1]$

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

- Interpretable coefficients
X
Probabilities can fall outside $[0,1]$

K-nearest neighbors proportion of K N. N. who defaulted

K Less interpretable model

- Probabilities fall within $[0,1]$

Logistic regression

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

Interpretable coefficients
Probabilities can fall outside $[0,1]$

K-nearest neighbors proportion of K N. N. who defaulted

Less interpretable model
Probabilities fall within $[0,1]$

Logistic regression

Interpretable coefficients

Options for modeling probability of default

Start by considering models for \mathbb{P} [default | balance]:

Interpretable coefficients
Probabilities can fall outside $[0,1]$

K-nearest neighbors proportion of K N. N. who defaulted

Less interpretable model
Probabilities fall within $[0,1]$

Logistic regression

Interpretable coefficients
Probabilities fall within $[0,1]$

The logistic regression model

The logistic regression model

Use $\beta_{0}+\beta_{1} \cdot$ balance as a "score", then map the score onto $[0,1]$ using logistic transformation:

$$
\text { logistic }(\text { score })=\frac{e^{\mathrm{score}}}{1+e^{\mathrm{score}}}
$$

The logistic regression model

Use $\beta_{0}+\beta_{1} \cdot$ balance as a "score", then map the score onto $[0,1]$ using logistic transformation:

$$
\text { logistic }(\text { score })=\frac{e^{\mathrm{score}}}{1+e^{\mathrm{score}}}
$$

The logistic regression model

Use $\beta_{0}+\beta_{1} \cdot$ balance as a "score", then map the score onto $[0,1]$ using logistic transformation:

$$
\text { logistic }(\text { score })=\frac{e^{\mathrm{score}}}{1+e^{\mathrm{score}}}
$$

Logistic regression model:
$\mathbb{P}[$ default \mid balance $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ balance $)$

The logistic regression model

Use $\beta_{0}+\beta_{1} \cdot$ balance as a "score", then map the score onto [0,1] using logistic transformation:

$$
\text { logistic }(\text { score })=\frac{e^{\mathrm{score}}}{1+e^{\mathrm{score}}}
$$

Logistic regression model:
$\mathbb{P}[$ default \mid balance $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ balance $)$

Different logistic curves

Different logistic curves

Different logistic curves

- logistic($-6+0.005$ * balance $)$

Increasing the intercept shifts the curve left

- logistic(-5 + 0.005 * balance $)$
- logistic(-6 + 0.005 * balance)
- logistic(-7+0.005 * balance)

Different logistic curves

- logistic(-6 + 0.005 * balance)

Increasing the slope makes the curve more steep

Increasing the intercept shifts the curve left

- logistic($-5+0.005^{*}$ balance)
- logistic(-6 + 0.005^{*} balance)
- logistic($-7+0.005$ * balance)

Different logistic curves

- logistic(-6 + 0.005 * balance)
$\overbrace{\text { intercept }}^{\sim}$

Increasing the slope makes the curve more steep

- logistic (-6 + 0.003 * balance)
- logistic($-6+0.005$ * balance)
- logistic($-6+0.007$ * balance)

Increasing the intercept shifts the curve left

- logistic($-5+0.005$ * balance)
- logistic(-6 + 0.005 * balance)
- logistic(-7 + 0.005 * balance)

Negative slope reverses the trend

- logistic(-6 + 0.005^{*} balance)
- logistic(6-0.005 * balance)

Fitting logistic regression models to data

Fitting logistic regression models to data

Each choice of $\left(\beta_{0}, \beta_{1}\right)$ traces out a different logistic regression curve fit $\mathbb{P}[$ default \mid balance $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ balance $)$.

Fitting logistic regression models to data

Each choice of $\left(\beta_{0}, \beta_{1}\right)$ traces out a different logistic regression curve fit $\mathbb{P}[$ default \mid balance $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ balance $)$.

Which logistic regression curve fits the data the best?

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}
-2.0	0.001

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities
-2.0	0.001	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities	
-2.0	0.001	0.8	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities	
-2.0	0.001	0.8	0.3

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities	
-2.0	0.001	0.8	0.30 .6

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			
-2.0	0.001	0.8	0.3	0.6	0.4

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities				$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$	
-2.0	0.001	0.8	0.3	0.6	0.4	0.5	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004				

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004				

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

| β_{0} | β_{1} | Predicted probabilities | | | | $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2.0 | 0.001 | 0.8 | \times | $0.3 \times 0.6 \times 0.4 \times 0.5$ $=0.03$
 -4.6 0.004 0.9 0.5

 0.3 | | |

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}		Predicted probabilities		
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}		Predicted probabilities		
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01				

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}		Predicted probabilities		
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01				

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01	1.0		0.10 .50 .91 .0	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01	1.0	\times	$0.1 \times 0.5 \times 0.9 \times 1.0$	

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01	1.0	\times	$0.1 \times 0.5 \times 0.9 \times 1.0$	$=0.05$

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01	1.0	\times	$0.1 \times 0.5 \times 0.9 \times 1.0$	$=0.05$

Mathematical expression for logistic likelhood

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

The maximum likelihood estimate (MLE) ($\widehat{\beta}_{0}, \widehat{\beta}_{1}$) is defined as the maximizer of $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$.

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01	1.0	\times	$0.1 \times 0.5 \times 0.9 \times 1.0$	$=0.05$

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

The maximum likelihood estimate (MLE) ($\widehat{\beta}_{0}, \widehat{\beta}_{1}$) is defined as the maximizer of $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$.

β_{0}	β_{1}	Predicted probabilities			$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$
-2.0	0.001	0.8	\times	$0.3 \times 0.6 \times 0.4 \times 0.5$	$=0.03$
-4.6	0.004	0.9	\times	$0.5 \times 0.3 \times 0.8 \times 0.9$	$=0.1$
-15.0	0.01	1.0	\times	$0.1 \times 0.5 \times 0.9 \times 1.0$	$=0.05$

Maximum likelihood estimation

Given candidate parameters $\left(\beta_{0}, \beta_{1}\right)$, we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

The maximum likelihood estimate (MLE) ($\widehat{\beta}_{0}, \widehat{\beta}_{1}$) is defined as the maximizer of $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$.

$\left(\right.$| β_{0} | β_{1} | Predicted probabilities | | | $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $\begin{array}{cc}-2.0 & 0.001\end{array}$ | 0.8 | \times | $0.3 \times 0.6 \times 0.4 \times 0.5$ | $=0.03$ | |
| -4.6, | $0.004)$ | 0.9 | \times | $0.5 \times 0.3 \times 0.8 \times 0.9$ | $=0.1$ |
| -15.0 | 0.01 | 1.0 | \times | $0.1 \times 0.5 \times 0.9 \times 1.0$ | $=0.05$ |

Maximum likelihood estimation

Given candidate parameters (β_{0}, β_{1}), we define the likelihood $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ as the probability of observing the data under the corresponding model:

The maximum likelihood estimate (MLE) $\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)$ is defined as the maximizer of $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$.

It cannot be written in closed form; it is found via iterative algorithm.

$\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)=$| β_{0} | β_{1} | Predicted probabilities | | | $\mathscr{L}\left(\beta_{0}, \beta_{1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :--- |
| -2.0 | 0.001 | 0.8 | \times | $0.3 \times 0.6 \times 0.4 \times 0.5$ | $=0.03$ |
| -4.6, | $0.004)$ | 0.9 | \times | $0.5 \times 0.3 \times 0.8 \times 0.9$ | $=0.1$ |
| -15.0 | 0.01 | 1.0 | \times | $0.1 \times 0.5 \times 0.9 \times 1.0$ | $=0.05$ |

Multiple logistic regression

Like with linear regression, can include multiple features, e.g.
\mathbb{P} [default|student, balance, income]
$=$ logistic $\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
The logistic regression likelihood, as well as the maximum likelihood estimates ($\widehat{\beta}_{0}, \widehat{\beta}_{1}, \widehat{\beta}_{2}, \widehat{\beta}_{3}$) are defined analogously.

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
For given (student, balance, income),
suppose $\mathbb{P}[$ default $]=1 / 4$.

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\Downarrow \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }]=1 / 4 .\end{aligned}$
$\log \frac{\mathbb{P}[\text { default }]}{1-\mathbb{P}[\text { default }]}=\beta_{0}+\beta_{1} \cdot$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\| \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }]=1 / 4 .\end{aligned}$
$\log \frac{\mathbb{P}[\text { default }]}{1-\mathbb{P}[\text { default }]}=\beta_{0}+\beta_{1} \cdot$

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\| \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }]=1 / 4 .\end{aligned}$

$\log \frac{\mathbb{P}[\text { default }]}{1-\mathbb{P}[\text { default }]}=\beta_{0}+\beta_{1} \cdot$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income
log-odds (the score from before)

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\downarrow l \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }=1 / 4 .\end{aligned}$
$\log \frac{\mathbb{P}[\text { default }]}{1-\mathbb{P}[\text { default }]}=\beta_{0}+\beta_{1} \cdot$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income
log-odds (the score from before)

$$
\text { Then, odds }=1: 3=1 / 3 \text { and } \log -\text { odds }=\log (1 / 3) \approx-1
$$

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\Downarrow \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { defautult }\end{aligned}=1 / 4$.

\mathbb{P} [default]

 Increasing balance by 500 while controlling for the other features tends to (additively) increase the log-odds of default by $500 \cdot \beta_{2}$.

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\Downarrow \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }]=1 / 4 .\end{aligned}$
\mathbb{P} [default]

DIYTHEODISBEETERIT
yourinour

Increasing balance by 500 while controlling for the other features tends to (additively) increase the log-odds of default by $500 \cdot \beta_{2}$.

If $\beta_{2}=1 / 250$, then increasing balance by $\$ 500$
Increases log-odds by 2; new log-odds is $-1+2=1$.

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\Downarrow \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }]=1 / 4 .\end{aligned}$

P[default]

 $=\beta_{0}+\beta_{1} \cdot$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income log-ódds (the score from before) $\downarrow$$$
\text { Then, odds }=1: 3=1 / 3 \text { and } \log \text {-odds }=\log (1 / 3) \approx-1 \text {. }
$$ Increasing balance by 500 while controlling for the other features tends to (additively) increase the log-odds of default by $500 \cdot \beta_{2}$.

$$
\| \begin{aligned}
& \text { If } \beta_{2}=1 / 250 \text {, then increasing balance by } \$ 500 \\
& \text { Increases log-odds by } 2 \text {; new log-odds is }-1+2=1 \text {. }
\end{aligned}
$$

Increasing balance by 500 while controlling for the other features tends to (multiplicatively) increase the odds of default by $e^{500 \cdot \beta_{2}}$.

Interpreting logistic regression coefficients

$\mathbb{P}[$ default $]=\operatorname{logistic}\left(\beta_{0}+\beta_{1} \cdot\right.$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ income $)$
$\Downarrow \begin{aligned} & \text { For given (student, balance, income), } \\ & \text { suppose } \mathbb{P}[\text { default }]=1 / 4 .\end{aligned}$

$\mathbb{P}[$ default $]$

 $=\beta_{0}+\beta_{1} \cdot$ student $+\beta_{2} \cdot$ balance $+\beta_{3} \cdot$ incomelog-ódds (the score from before) \downarrow

$$
\text { Then, odds }=1: 3=1 / 3 \text { and } \log \text {-odds }=\log (1 / 3) \approx-1 \text {. }
$$

Increasing balance by 500 while controlling for the other features tends to (additively) increase the log-odds of default by $500 \cdot \beta_{2}$.

$$
\| \begin{aligned}
& \text { If } \beta_{2}=1 / 250 \text {, then increasing balance by } \$ 500 \\
& \text { Increases log-odds by } 2 \text {; new log-odds is }-1+2=1 \text {. }
\end{aligned}
$$

Increasing balance by 500 while controlling for the other features tends to (multiplicatively) increase the odds of default by $e^{500 \cdot \beta_{2}}$.

[^0]
Classification via logistic regression

default $= \begin{cases}\text { Yes, } & \text { if } \widehat{\mathbb{P}}[\text { default }] \geq 0.5 ; \\ \text { No, } & \text { if } \widehat{\mathbb{P}}[\text { default }]<0.5 .\end{cases}$
$\widehat{\mathbb{P}}[$ default $]>0.5 \Longleftrightarrow \widehat{\beta}_{0}+\widehat{\beta}_{1} \cdot$ student $+\widehat{\beta}_{2} \cdot$ balance $+\widehat{\beta}_{3} \cdot$ income >0

Classification via logistic regression

default $= \begin{cases}\text { Yes, } & \text { if } \widehat{\mathbb{P}}[\text { default }] \geq 0.5 ; \\ \text { No, } & \text { if } \widehat{\mathbb{P}}[\text { default }]<0.5 .\end{cases}$
$\widehat{\mathbb{P}}[$ default $]>0.5 \Longleftrightarrow \widehat{\beta}_{0}+\widehat{\beta}_{1} \cdot$ student $+\widehat{\beta}_{2} \cdot$ balance $+\widehat{\beta}_{3} \cdot$ income >0
Logistic regression has a linear decision boundary.

Classification via logistic regression

default $= \begin{cases}\text { Yes, } & \text { if } \widehat{\mathbb{P}}[\text { default }] \geq 0.5 ; \\ \text { No, } & \text { if } \widehat{\mathbb{P}}[\text { default }]<0.5 .\end{cases}$
$\widehat{\mathbb{P}}[$ default $]>0.5 \Longleftrightarrow \widehat{\beta}_{0}+\widehat{\beta}_{1} \cdot$ student $+\widehat{\beta}_{2} \cdot$ balance $+\widehat{\beta}_{3} \cdot$ income >0
Logistic regression has a linear decision boundary.

Classification via logistic regression

default $= \begin{cases}\text { Yes, } & \text { if } \widehat{\mathbb{P}}[\text { default }] \geq 0.5 ; \\ \text { No, } & \text { if } \widehat{\mathbb{P}}[\text { default }]<0.5 .\end{cases}$
$\widehat{\mathbb{P}}$ [default $>0.5 \Longleftrightarrow \widehat{\beta}_{0}+\widehat{\beta}_{1} \cdot$ student $+\widehat{\beta}_{2} \cdot$ balance $+\widehat{\beta}_{3} \cdot$ income >0
Logistic regression has a linear decision boundary.

Caution: Separable data

When the two classes of response variable can be perfectly separated in feature space, logistic regression solution undefined, though perfect predictions possible.

Caution: Separable data

When the two classes of response variable can be perfectly separated in feature space, logistic regression solution undefined, though perfect predictions possible.

A similar phenomenon occurs in linear regression under perfect multicollinearity: The coefficient estimates are undefined but good prediction still possible.

Summary

Summary

Response type	Continuous	Binary

Summary

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression

Summary

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood

Summary

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood
Estimating coefficients	Least squares (closed form)	Maximum likelihood (iterative)

Summary

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood
Estimating coefficients	Least squares (closed form)	Maximum likelihood (iterative)
Interpreting coefficients	Unit increase in $X_{j} \rightarrow$ increase in mean of Y by β_{j}	Unit increase in $X_{j} \rightarrow$ increase in odds of Y by $e^{\beta_{j}}$

Summary

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood
Estimating coefficients	Least squares (closed form)	Maximum likelihood (iterative)
Interpreting coefficients	Unit increase in $X_{j} \rightarrow$ increase in mean of Y by β_{j}	Unit increase in $X_{j} \rightarrow$ increase in odds of Y by $e^{\beta_{j}}$

Quiz Practice

Mathematical expression for logistic likelihood

Data

default balance $\mathrm{P}[$ default $=1] \quad \mathrm{P}[$ observed $]$

1	$\$ 1250$	$\frac{e^{\beta_{0}+\beta_{1} \cdot 1250}}{1+e^{\beta_{0}+\beta_{1} \cdot 1250}}$	$\frac{e^{\beta_{0}+\beta_{1} \cdot 1250}}{1+e^{\beta_{0}+\beta_{1} \cdot 1250}}$
0	$\$ 500$	$\frac{e^{\beta_{0}+\beta_{1} \cdot 500}}{1+e^{\beta_{0}+\beta_{1} \cdot 500}}$	$\frac{1}{1+e^{\beta_{0}+\beta_{1} \cdot 500}}$
1	$\$ 2000$	$\frac{e^{\beta_{0}+\beta_{1} \cdot 2000}}{1+e^{\beta_{0}+\beta_{1} \cdot 2000}}$	$\frac{e^{\beta_{0}+\beta_{1} \cdot 2000}}{1+e^{\beta_{0}+\beta_{1} \cdot 2000}}$
1	$\$ 1750$	$\frac{e^{\beta_{0}+\beta_{1} 1750}}{1+e^{\beta_{0}+\beta_{1} \cdot 1750}}$	$\frac{e^{\beta_{0}+\beta_{1} 1750}}{1+e^{\beta_{0}+\beta_{1} \cdot 1750}}$
0	$\$ 1500$	$\frac{e^{\beta_{0}+\beta_{1} 1500}}{1+e^{\beta_{0}+\beta_{1} \cdot 1500}}$	$\frac{1}{1+e^{\beta_{0}+\beta_{1} \cdot 1500}}$

$\mathscr{L}\left(\beta_{0}, \beta_{1}\right)=\frac{e^{\beta_{0}+\beta_{1} \cdot 1250}}{1+e^{\beta_{0}+\beta_{1} \cdot 1250}} \times \frac{1}{1+e^{\beta_{0}+\beta_{1} \cdot 500}} \times \frac{e^{\beta_{0}+\beta_{1} \cdot 2000}}{1+e^{\beta_{0}+\beta_{1} \cdot 2000}} \times \frac{e^{\beta_{0}+\beta_{1} \cdot 1750}}{1+e^{\beta_{0}+\beta_{1} \cdot 1750}} \times \frac{1}{1+e^{\beta_{0}+\beta_{1} \cdot 1500}}$

[^0]: New odds are $e^{1} \approx 2.7=2.7: 1$, so new prob is $2.7 / 3.7 \approx 0.7$.
 Odds went from $e^{-1}(1 / 3)$ to $e^{1}(2.7)$, increase by factor of $e^{2} \approx 7.5$

