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If we want to predict income, we should not only use age! We might want to 
consider other factors like education, job type, sex, marital status, race, etc.

Given features , the most common way to model a response  
is the linear regression model

X1, X2, …, Xp−1 Y

.Y = β0 + β1X1 + ⋯ + βp−1Xp−1 + ϵ

Let’s review:


• Continuous and categorical features in linear models


• Interpretation of linear regression coefficients


• How to fit a linear regression model



Continuous and categorical features in linear regression



Continuous and categorical features in linear regression

Features  must be expressed as numbers for  to make sense.Xj βjXj



Continuous and categorical features in linear regression

Features  must be expressed as numbers for  to make sense.Xj βjXj

Example 1 (continuous feature): . Continuous features are already  
numbers, so it makes sense to write . 

X1 = age
β1X1



Continuous and categorical features in linear regression

Features  must be expressed as numbers for  to make sense.Xj βjXj

Example 1 (continuous feature): . Continuous features are already  
numbers, so it makes sense to write . 

X1 = age
β1X1

Example 2 (binary feature): . It does not make sense to write ; 
what does  mean? Instead, use dummy coding: .

X2 = sex β2X2
3 × "male" X2 = I(sex = male)



Continuous and categorical features in linear regression

Features  must be expressed as numbers for  to make sense.Xj βjXj

Example 1 (continuous feature): . Continuous features are already  
numbers, so it makes sense to write . 

X1 = age
β1X1

Example 2 (binary feature): . It does not make sense to write ; 
what does  mean? Instead, use dummy coding: .

X2 = sex β2X2
3 × "male" X2 = I(sex = male)

Example 3 (categorical feature): . It does not make sense to 
write . Instead, map education onto multiple dummy variables: 

, , etc. 

X3 = education
β3X3

X3 = I(education = high school) X4 = I(education = "college")



Continuous and categorical features in linear regression

Features  must be expressed as numbers for  to make sense.Xj βjXj

Example 1 (continuous feature): . Continuous features are already  
numbers, so it makes sense to write . 

X1 = age
β1X1

Example 2 (binary feature): . It does not make sense to write ; 
what does  mean? Instead, use dummy coding: .

X2 = sex β2X2
3 × "male" X2 = I(sex = male)

Example 3 (categorical feature): . It does not make sense to 
write . Instead, map education onto multiple dummy variables: 

, , etc. 

X3 = education
β3X3

X3 = I(education = high school) X4 = I(education = "college")

To avoid redundancy, use dummy variables for all levels except one baseline.
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Interpretation of linear regression coefficients
Consider the following linear regression model:

income = β0 + β1 ⋅ age + β2 ⋅ I(sex = "M") + β3 ⋅ I(ed = "HS") + β4 ⋅ I(ed = "college") + ϵ

Example 1 (continuous feature):  represents increase in mean income 
associated with extra year of age.

β1

Example 2 (binary feature):  represents increase in mean income associated 
with moving from female (baseline) to male.

β2

Example 3 (categorical feature):  represents increase in mean income 
associated with moving from less than HS education (baseline) to HS education.

β3

Note: Linear regression coefficients do not necessarily imply causation.
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Fitting linear regression via least squares
We have training data points  for .(Xi, Yi) i = 1,…, n

Given coefficients , define prediction .β fβ(Xi) = β0 + β1Xi1 + ⋯ + βp−1Xi,p−1

Based on the training data, we want to find  such that :̂β Yi ≈ f ̂β (Xi)

.̂β = arg min
β

1
n

n

∑
i=1

(Yi − fβ(Xi))2

This is the method of least squares, or ordinary least squares (OLS). 

The least squares optimization problem can be solved in closed form. 
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Will a person default on their credit card bill?

We build a model to approximate

ℙ[default = Yes |student, balance, income]

and then predict

default = {Yes, if  ̂ℙ [default] ≥ 0.5;
No, if  ̂ℙ [default] < 0.5.

How do we model probability of default?



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

Interpretable coefficients

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

Interpretable coefficients

Probabilities can fall outside [0,1]

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

proportion of K N. N. who defaulted
K-nearest neighbors

Interpretable coefficients

Probabilities can fall outside [0,1]

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

proportion of K N. N. who defaulted
K-nearest neighbors

Interpretable coefficients

Probabilities can fall outside [0,1]

Less interpretable model

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

proportion of K N. N. who defaulted
K-nearest neighbors

Interpretable coefficients

Probabilities can fall outside [0,1]

Less interpretable model

Probabilities fall within [0,1]

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

proportion of K N. N. who defaulted
K-nearest neighbors

Interpretable coefficients

Probabilities can fall outside [0,1]

Less interpretable model

Probabilities fall within [0,1]

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

Logistic regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

logistic(β0 + β1 ⋅ balance)



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

proportion of K N. N. who defaulted
K-nearest neighbors

Interpretable coefficients

Probabilities can fall outside [0,1]

Less interpretable model

Probabilities fall within [0,1]

Interpretable coefficients

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

Logistic regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

logistic(β0 + β1 ⋅ balance)



Start by considering models for :ℙ[default ∣ balance]

Options for modeling probability of default

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

proportion of K N. N. who defaulted
K-nearest neighbors

Interpretable coefficients

Probabilities can fall outside [0,1]

Less interpretable model

Probabilities fall within [0,1]

Interpretable coefficients

Probabilities fall within [0,1]

β0 + β1 ⋅ balance
Linear regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

Logistic regression

0.00

0.25

0.50

0.75

1.00

0 1000 2000
Balance

Pr
ob

ab
ilit

y 
of

 d
ef

au
lt

logistic(β0 + β1 ⋅ balance)



The logistic regression model



The logistic regression model
Use  as a “score”, then map the 
score onto [0,1] using logistic transformation:

β0 + β1 ⋅ balance

 logistic(score) =
escore

1 + escore



The logistic regression model
Use  as a “score”, then map the 
score onto [0,1] using logistic transformation:

β0 + β1 ⋅ balance

 logistic(score) =
escore

1 + escore
score = β0 + β1 ⋅ balance

lo
gi

st
ic

(s
co

re
)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0



The logistic regression model
Use  as a “score”, then map the 
score onto [0,1] using logistic transformation:

β0 + β1 ⋅ balance

 logistic(score) =
escore

1 + escore

Logistic regression model:

ℙ[default ∣ balance] = logistic(β0 + β1 ⋅ balance)

score = β0 + β1 ⋅ balance

lo
gi

st
ic

(s
co

re
)

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0



The logistic regression model
Use  as a “score”, then map the 
score onto [0,1] using logistic transformation:

β0 + β1 ⋅ balance

 logistic(score) =
escore

1 + escore
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Which logistic regression curve fits the data the best?
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Maximum likelihood estimation

The maximum likelihood 
estimate (MLE)  
is defined as the 
maximizer of .

( ̂β 0, ̂β 1)
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It cannot be written in 
closed form; it is found 
via iterative algorithm.
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Multiple logistic regression
Like with linear regression, can include multiple features, e.g.


The logistic regression likelihood, as well as the maximum likelihood 
estimates  are defined analogously.( ̂β 0, ̂β 1, ̂β 2, ̂β 3)

ℙ[default |student, balance, income]
= logistic(β0 + β1 ⋅ student + β2 ⋅ balance + β3 ⋅ income)
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New odds are , so new prob is 2.7/3.7  0.7.

Odds went from  (1/3) to  (2.7), increase by factor of .

e1 ≈ 2.7 = 2.7 : 1 ≈
e−1 e1 e2 ≈ 7.5



Classification via logistic regression

̂ℙ [default] > 0.5 ⟺ ̂β 0 + ̂β 1 ⋅ student + ̂β 2 ⋅ balance + ̂β 3 ⋅ income > 0

default = {Yes, if  ̂ℙ [default] ≥ 0.5;
No, if  ̂ℙ [default] < 0.5.
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Caution: Separable data
When the two classes of response variable can be perfectly separated in feature 
space, logistic regression solution undefined, though perfect predictions possible. 
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Caution: Separable data
When the two classes of response variable can be perfectly separated in feature 
space, logistic regression solution undefined, though perfect predictions possible. 

A similar phenomenon occurs in linear regression under perfect multicollinearity: 
The coefficient estimates are undefined but good prediction still possible.

0.00

0.25

0.50

0.75

1.00

500 1000 1500 2000
balance

de
fa
ul
t



Summary



Summary

Response type Continuous Binary



Summary

Response type Continuous Binary

Most common 
predictive model Linear regression Logistic regression



Summary

Response type Continuous Binary

Most common 
predictive model Linear regression Logistic regression

Measure of fit Mean squared error Likelihood



Summary

Response type Continuous Binary

Most common 
predictive model Linear regression Logistic regression

Measure of fit Mean squared error Likelihood

Estimating 
coefficients Least squares (closed form) Maximum likelihood (iterative)



Summary

Response type Continuous Binary

Most common 
predictive model Linear regression Logistic regression

Measure of fit Mean squared error Likelihood

Estimating 
coefficients Least squares (closed form) Maximum likelihood (iterative)

Interpreting 
coefficients

Unit increase in   

increase in mean of  by 

Xj →
Y βj

Unit increase in   

increase in odds of  by 

Xj →
Y eβj



Summary

Response type Continuous Binary

Most common 
predictive model Linear regression Logistic regression

Measure of fit Mean squared error Likelihood

Estimating 
coefficients Least squares (closed form) Maximum likelihood (iterative)

Interpreting 
coefficients

Unit increase in   

increase in mean of  by 

Xj →
Y βj

Unit increase in   

increase in odds of  by 

Xj →
Y eβj

Quiz Practice

https://canvas.upenn.edu/courses/1741618/assignments/11508314
https://canvas.upenn.edu/courses/1741618/assignments/11508314


Mathematical expression for logistic likelihood
Data

default balance  P[default = 1]  P[observed]

1 $1250

0 $500

1 $2000

1 $1750

0 $1500

eβ0+β1⋅1250

1 + eβ0+β1⋅1250

eβ0+β1⋅500

1 + eβ0+β1⋅500

eβ0+β1⋅2000

1 + eβ0+β1⋅2000

eβ0+β1⋅1750

1 + eβ0+β1⋅1750

eβ0+β1⋅1500

1 + eβ0+β1⋅1500

eβ0+β1⋅1250

1 + eβ0+β1⋅1250

1
1 + eβ0+β1⋅500

eβ0+β1⋅2000

1 + eβ0+β1⋅2000

eβ0+β1⋅1750

1 + eβ0+β1⋅1750

1
1 + eβ0+β1⋅1500

ℒ(β0, β1) =
eβ0+β1⋅1250

1 + eβ0+β1⋅1250
×

1
1 + eβ0+β1⋅500

×
eβ0+β1⋅2000

1 + eβ0+β1⋅2000
×

eβ0+β1⋅1750

1 + eβ0+β1⋅1750
×

1
1 + eβ0+β1⋅1500


