Linear and logistic regression **STAT 4710**

October 3, 2023

Rolling into Unit 3

Unit 1: R for data mining
 Unit 2: Prediction fundamentals
 Unit 3: Regression-based methods
 Unit 4: Tree-based methods
 Unit 5: Deep learning

Lecture 1: Linear and logistic regression

Lecture 2: Regression in high dimensions

Lecture 3: Ridge regression

Lecture 4: Lasso regression

Lecture 5: Unit review and quiz in class

If we want to predict income, we should not only use age! We might want to consider other factors like education, job type, sex, marital status, race, etc.

If we want to predict income, we should not only use age! We might want to consider other factors like education, job type, sex, marital status, race, etc.

is the linear regression model

$$Y = \beta_0 + \beta_1 X_1 \cdot$$

Given features $X_1, X_2, \ldots, X_{p-1}$, the most common way to model a response Y

 $+\cdots + \beta_{p-1}X_{p-1} + \epsilon.$

is the linear regression model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \epsilon.$$

Let's review:

- Continuous and categorical features in linear models
- Interpretation of linear regression coefficients
- How to fit a linear regression model

- If we want to predict income, we should not only use age! We might want to consider other factors like education, job type, sex, marital status, race, etc.
- Given features $X_1, X_2, \ldots, X_{p-1}$, the most common way to model a response Y

Features X_i must be expressed as numbers for $\beta_i X_i$ to make sense.

Features X_i must be expressed as numbers for $\beta_i X_i$ to make sense.

Example 1 (continuous feature): X_1 = age. Continuous features are already numbers, so it makes sense to write $\beta_1 X_1$.

Features X_i must be expressed as numbers for $\beta_i X_i$ to make sense.

Example 1 (continuous feature): X_1 = age. Continuous features are already numbers, so it makes sense to write $\beta_1 X_1$.

Example 2 (binary feature): $X_2 = \text{sex.}$ It does not make sense to write $\beta_2 X_2$; what does $3 \times$ "male" mean? Instead, use dummy coding: $X_2 = I(sex = male)$.

Features X_i must be expressed as numbers for $\beta_i X_i$ to make sense.

Example 1 (continuous feature): X_1 = age. Continuous features are already numbers, so it makes sense to write $\beta_1 X_1$.

Example 2 (binary feature): $X_2 = \text{sex.}$ It does not make sense to write $\beta_2 X_2$; what does $3 \times$ "male" mean? Instead, use dummy coding: $X_2 = I(sex = male)$.

Example 3 (categorical feature): $X_3 =$ education. It does not make sense to write $\beta_3 X_3$. Instead, map education onto multiple dummy variables: $X_3 = I(\text{education} = \text{high school}), X_4 = I(\text{education} = "\text{college"}), \text{ etc.}$

Features X_i must be expressed as numbers for $\beta_i X_i$ to make sense.

Example 1 (continuous feature): X_1 = age. Continuous features are already numbers, so it makes sense to write $\beta_1 X_1$.

Example 2 (binary feature): $X_2 = \text{sex.}$ It does not make sense to write $\beta_2 X_2$; what does $3 \times$ "male" mean? Instead, use dummy coding: $X_2 = I(sex = male)$.

Example 3 (categorical feature): $X_3 =$ education. It does not make sense to write $\beta_3 X_3$. Instead, map education onto multiple dummy variables: $X_3 = I(\text{education} = \text{high school}), X_4 = I(\text{education} = "\text{college"}), \text{ etc.}$

To avoid redundancy, use dummy variables for all levels except one baseline.

Consider the following linear regression model:

Consider the following linear regression model:

income = $\beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot I(\text{sex} = "M") + \beta_3 \cdot I(\text{ed} = "HS") + \beta_4 \cdot I(\text{ed} = "college") + \epsilon$

Consider the following linear regression model:

income = $\beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot I(\text{sex} = "M") + \beta_3 \cdot I(\text{ed} = "HS") + \beta_4 \cdot I(\text{ed} = "college") + \epsilon$

Example 1 (continuous feature): β_1 represents increase in mean income associated with extra year of age.

Consider the following linear regression model:

income = $\beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot I(\text{sex} = "M") + \beta_3 \cdot I(\text{ed} = "HS") + \beta_4 \cdot I(\text{ed} = "college") + \epsilon$

Example 1 (continuous feature): β_1 represents increase in mean income associated with extra year of age.

Example 2 (binary feature): β_2 represents increase in mean income associated with moving from female (baseline) to male.

Consider the following linear regression model:

income = $\beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot I(\text{sex} = "M") + \beta_3 \cdot I(\text{ed} = "HS") + \beta_4 \cdot I(\text{ed} = "college") + \epsilon$

Example 1 (continuous feature): β_1 represents increase in mean income associated with extra year of age.

with moving from female (baseline) to male.

Example 3 (categorical feature): β_3 represents increase in mean income

Example 2 (binary feature): β_2 represents increase in mean income associated

associated with moving from less than HS education (baseline) to HS education.

Consider the following linear regression model:

income = $\beta_0 + \beta_1 \cdot \text{age} + \beta_2 \cdot I(\text{sex} = "M") + \beta_3 \cdot I(\text{ed} = "HS") + \beta_4 \cdot I(\text{ed} = "college") + \epsilon$

Example 1 (continuous feature): β_1 represents increase in mean income associated with extra year of age.

with moving from female (baseline) to male.

Example 3 (categorical feature): β_3 represents increase in mean income

Note: Linear regression coefficients do not necessarily imply causation.

Example 2 (binary feature): β_2 represents increase in mean income associated

associated with moving from less than HS education (baseline) to HS education.

We have training data points (X_i, Y_i) for i = 1, ..., n.

We have training data points (X_i, Y_i) for i = 1, ..., n.

- Given coefficients β , define prediction $f_{\beta}(X_i) = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_{p-1} X_{i,p-1}$.

We have training data points (X_i, Y_i) for i = 1, ..., n.

Given coefficients β , define prediction $f_{\beta}(X_i) = \beta_0 + \beta_1 X_{i1} + \dots + \beta_{p-1} X_{i,p-1}$. Based on the training data, we want to find $\hat{\beta}$ such that $Y_i \approx f_{\hat{\beta}}(X_i)$: $\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_{\beta}(X_i))^2.$

We have training data points (X_i, Y_i) for i = 1, ..., n.

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_{\beta}(X_i))^2$$

This is the method of least squares, or ordinary least squares (OLS).

- Given coefficients β , define prediction $f_{\beta}(X_i) = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_{p-1} X_{i,p-1}$.
- Based on the training data, we want to find $\hat{\beta}$ such that $Y_i \approx f_{\hat{\beta}}(X_i)$:

We have training data points (X_i, Y_i) for i = 1, ..., n.

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_{\beta}(X_i))^2.$$

This is the method of least squares, or ordinary least squares (OLS). The least squares optimization problem can be solved in closed form.

- Given coefficients β , define prediction $f_{\beta}(X_i) = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_{p-1} X_{i,p-1}$.
- Based on the training data, we want to find $\hat{\beta}$ such that $Y_i \approx f_{\hat{\beta}}(X_i)$:

> Default # A tibble: 10,000 x 4 default student balance income <fct> <fct> <dbl> <dbl> 1 **No** 730. <u>44</u>362. No 817. <u>12</u>106. 2 **No** Yes <u>1</u>074. <u>31</u>767. 3 **No** No 529. <u>35</u>704. 4 No No 786. <u>38</u>463. 5 No No 920. <u>7</u>492. 6 No Yes 7 No 826. <u>24</u>905. No 809. <u>17</u>600. 8 No Yes <u>1</u>161. <u>37</u>469. 9 No No <u>29</u>275. 10 No No 0

... with 9,990 more rows

<pre>> Default # A tibbl</pre>	e: 10,000	x 4		Will
	lt student		income	
<fct></fct>	<fct></fct>	<dbl></dbl>	<db1></db1>	
1 No	No	730.	<u>44</u> 362.	
2 No	Yes	817.	<u>12</u> 106.	
3 No	No	<u>1</u> 074.	<u>31</u> 767.	
4 No	No	529.	<u>35</u> 704.	
5 No	No	786.	<u>38</u> 463.	
6 No	Yes	920.	<u>7</u> 492.	
7 No	No	826.	<u>24</u> 905.	
8 No	Yes	809.	<u>17</u> 600.	
9 No	No	<u>1</u> 161.	<u>37</u> 469.	
10 No	No	0	<u>29</u> 275.	
# with	9,990 more	e rows		

a person default on their credit card bill?

Will a		x 4	t Le: 10,000	> Defaul # A tibb
We b	income <dbl></dbl>		lt student <fct></fct>	
	<u>44</u> 362.	730.	No	1 No
г	<u>12</u> 106.	817.	Yes	2 No
ŀ	<u>31</u> 767.	<u>1</u> 074.	No	3 No
	<u>35</u> 704.	529.	No	4 No
and t	<u>38</u> 463.	786.	No	5 No
	<u>7</u> 492.	920.	Yes	6 No
	<u>24</u> 905.	826.	No	7 No
	<u>17</u> 600.	809.	Yes	8 No
C	<u>37</u> 469.	<u>1</u> 161.	No	9 No
	<u>29</u> 275.	0	No	10 No
		e rows	9,990 more	# with

- a person default on their credit card bill?
- build a model to approximate
- $\mathbb{P}[default = Yes | student, balance, income]$
- then predict
- default = $\begin{cases} \text{Yes,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} \ge 0.5; \\ \text{No,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} < 0.5. \end{cases}$

Will a		x 4	e: 10,000	> Defaul # A tibbl
We b	income <dbl></dbl>		t student <fct></fct>	
	<u>44</u> 362.	730.	No	1 No
г	<u>12</u> 106.	817.	Yes	2 No
	<u>31</u> 767.	<u>1</u> 074.	No	3 No
	<u>35</u> 704.	529.	No	4 No
and t	<u>38</u> 463.	786.	No	5 No
	<u>7</u> 492.	920.	Yes	6 No
	<u>24</u> 905.	826.	No	7 No
-	<u>17</u> 600.	809.	Yes	8 No
d	<u>37</u> 469.	<u>1</u> 161.	No	9 No
	<u>29</u> 275.	0	No	10 No
		e rows	9,990 more	# with

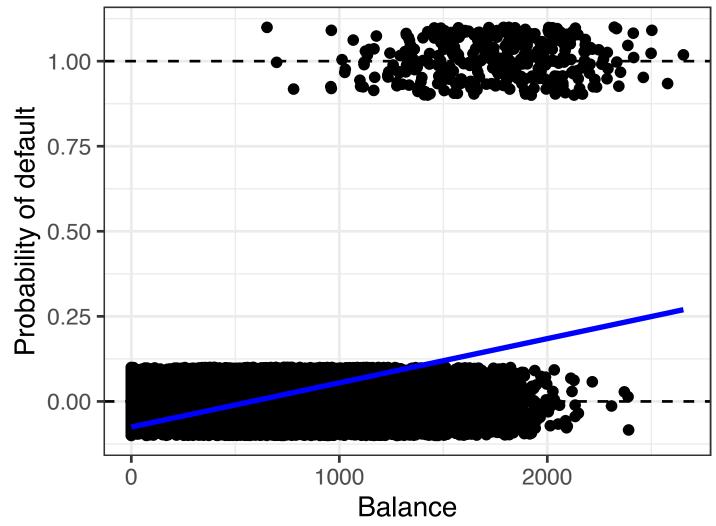
- a person default on their credit card bill?
- uild a model to approximate
- $\mathbb{P}[\text{default} = \text{Yes} | \text{student}, \text{balance}, \text{income}]$
- then predict
- default = $\begin{cases} \text{Yes,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} \ge 0.5; \\ \text{No,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} < 0.5. \end{cases}$
- How do we model probability of default?

Start by considering models for P[default | balance]:

Start by considering models for P[default | balance]:

Linear regression

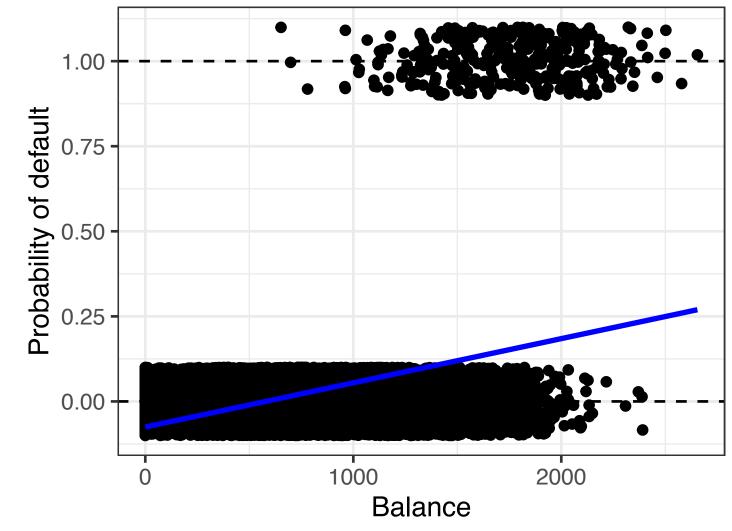
 $\beta_0 + \beta_1 \cdot \text{balance}$



Start by considering models for P[default | balance]:

Linear regression

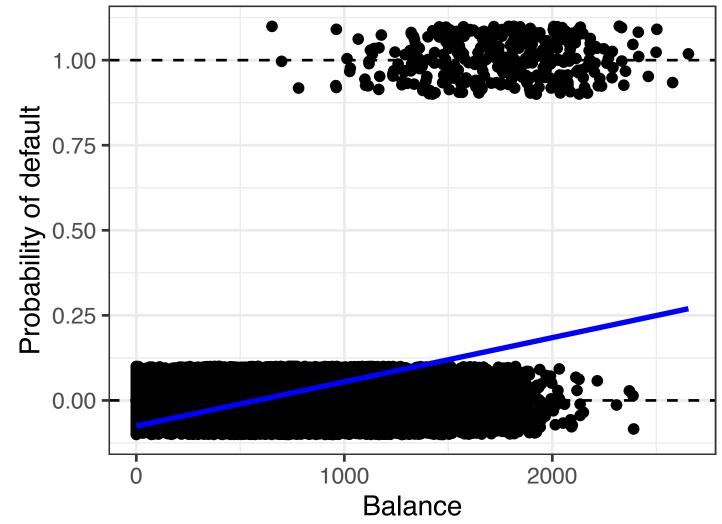
 $\beta_0 + \beta_1 \cdot \text{balance}$



Start by considering models for P[default | balance]:

Linear regression

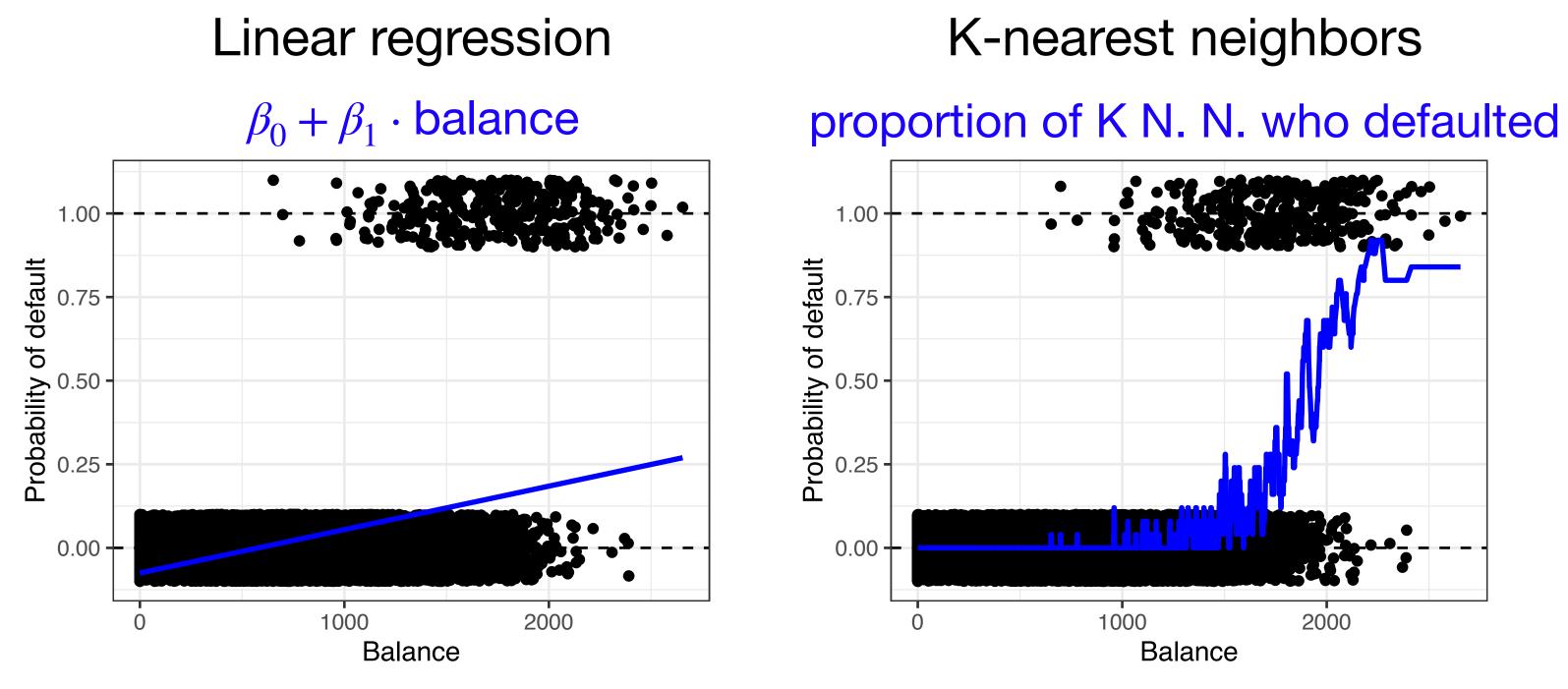
 $\beta_0 + \beta_1 \cdot \text{balance}$



Interpretable coefficients

Probabilities can fall outside [0,1]

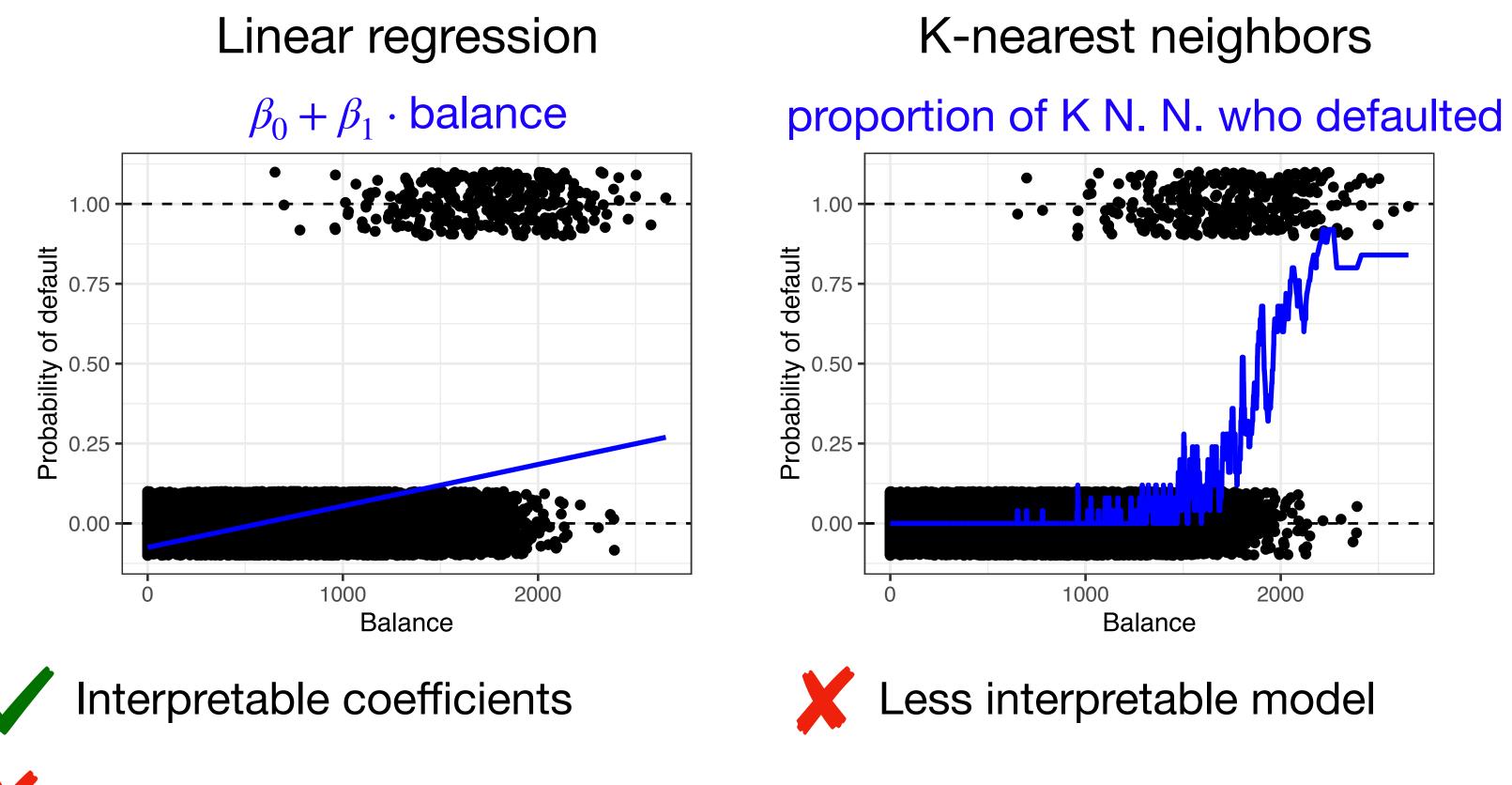
Start by considering models for $\mathbb{P}[default | balance]$:



Interpretable coefficients

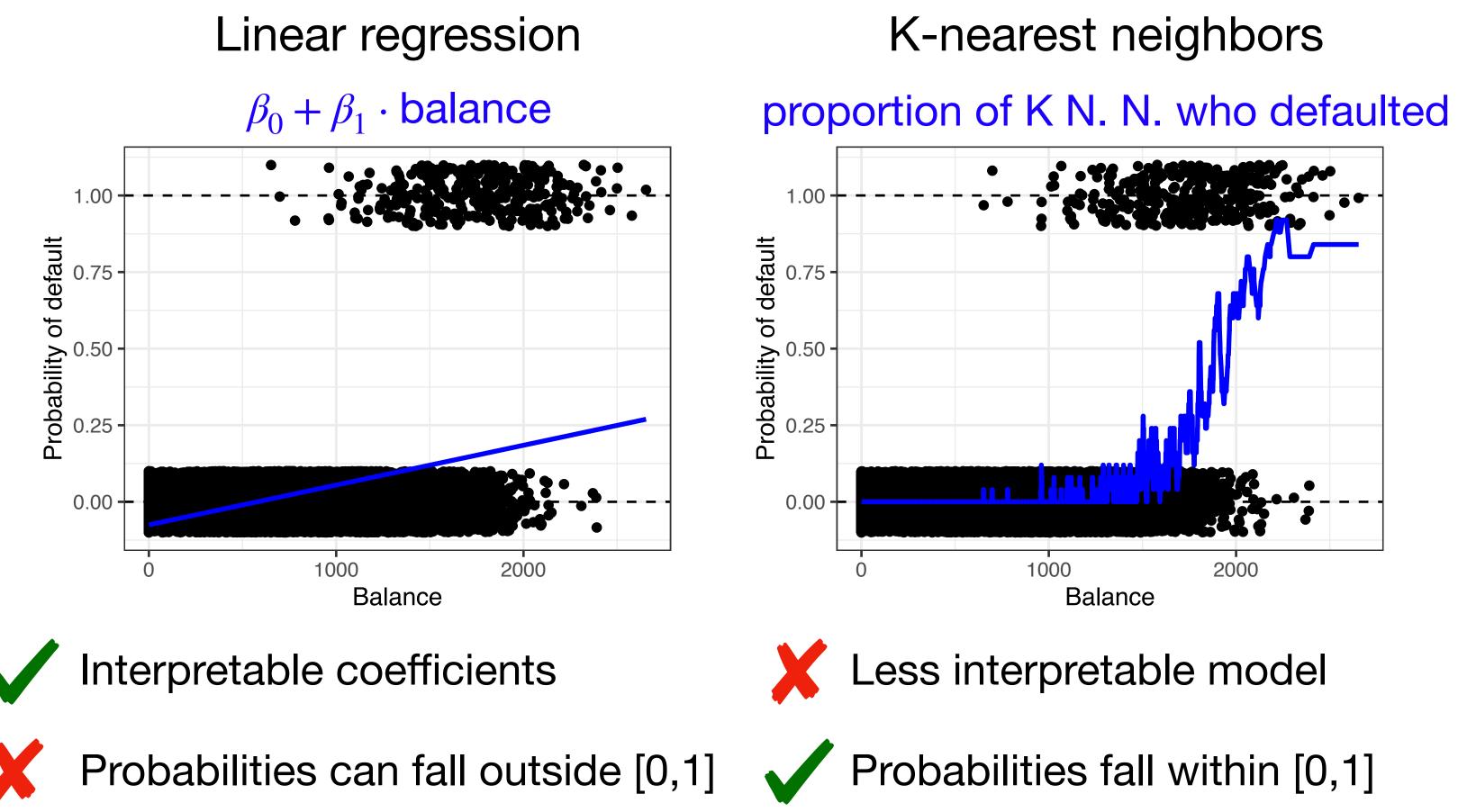
Probabilities can fall outside [0,1]

Start by considering models for $\mathbb{P}[default | balance]$:



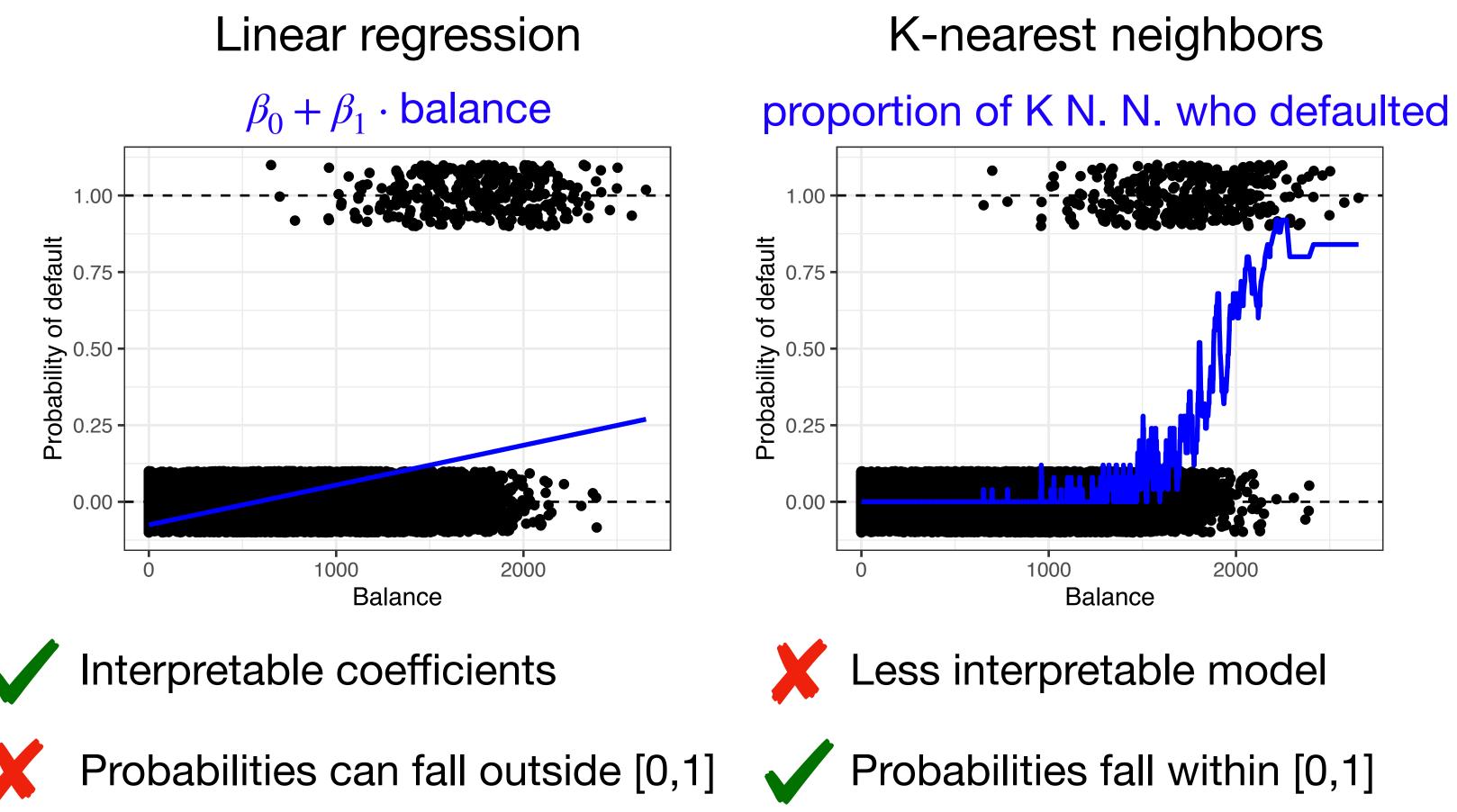
Probabilities can fall outside [0,1]

Start by considering models for $\mathbb{P}[default | balance]$:



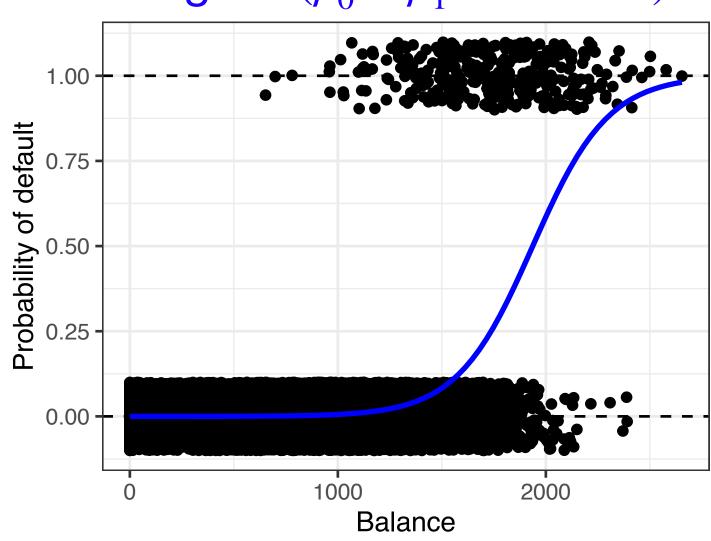
Options for modeling probability of default

Start by considering models for **P**[default | balance]:



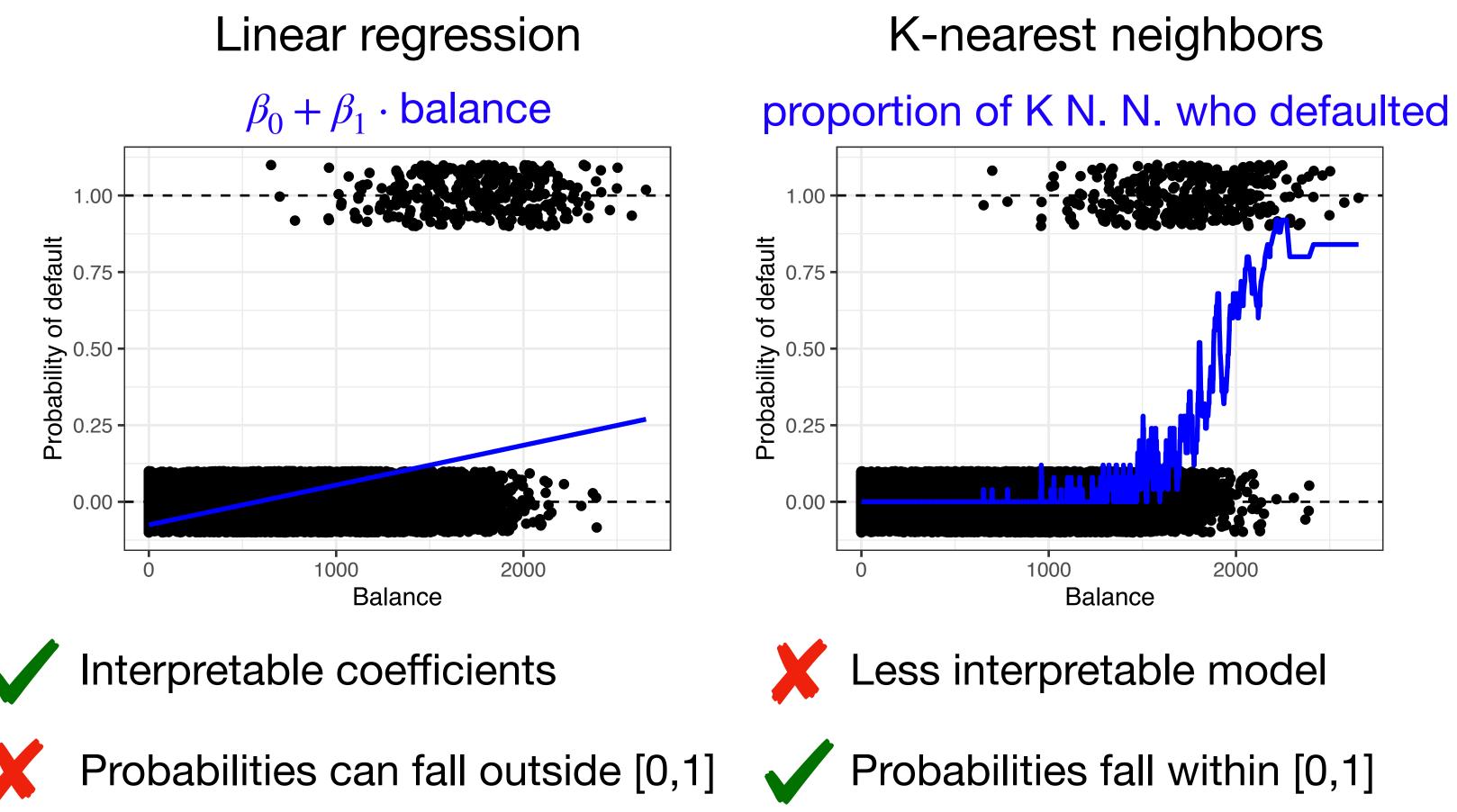
Logistic regression

 $logistic(\beta_0 + \beta_1 \cdot balance)$



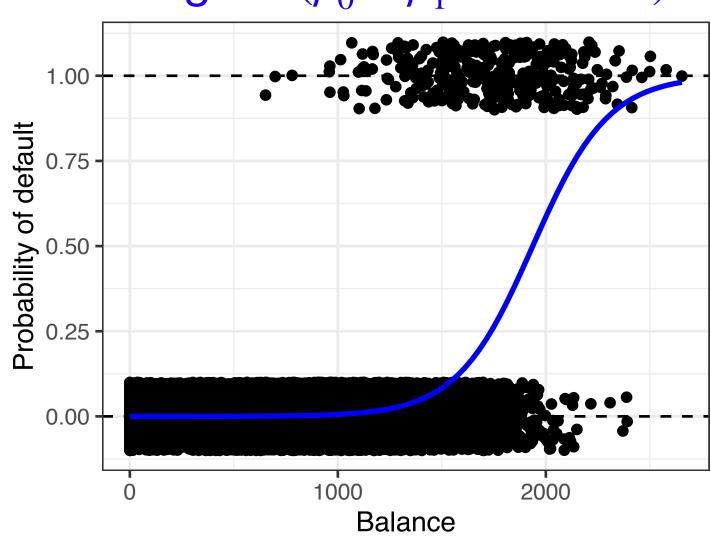
Options for modeling probability of default

Start by considering models for $\mathbb{P}[default | balance]$:



Logistic regression

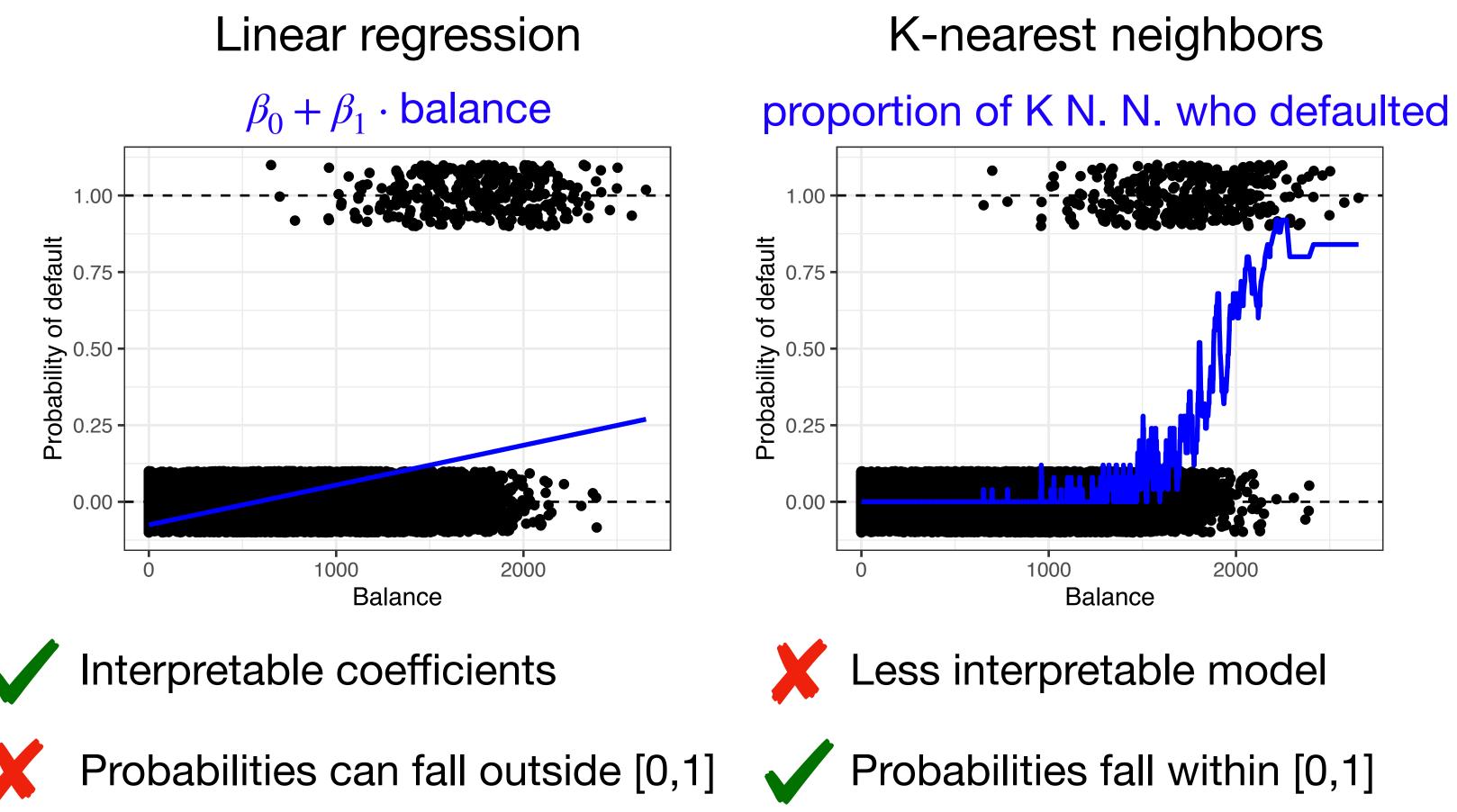
 $logistic(\beta_0 + \beta_1 \cdot balance)$



Interpretable coefficients

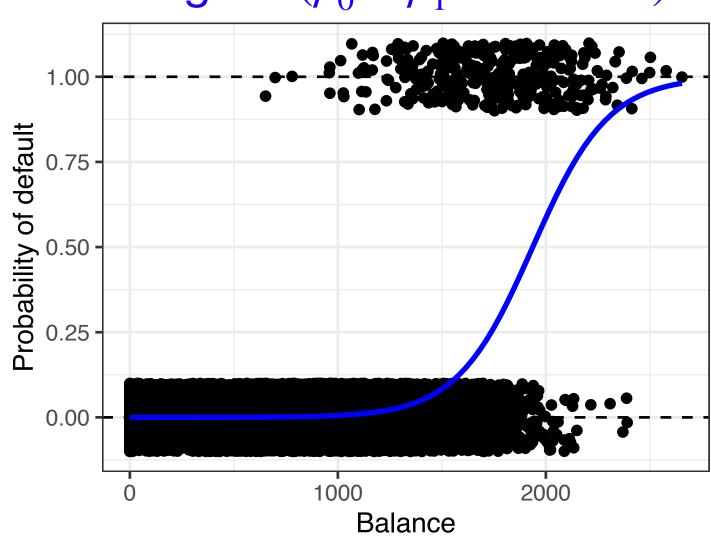
Options for modeling probability of default

Start by considering models for **P**[default | balance]:



Logistic regression

 $logistic(\beta_0 + \beta_1 \cdot balance)$



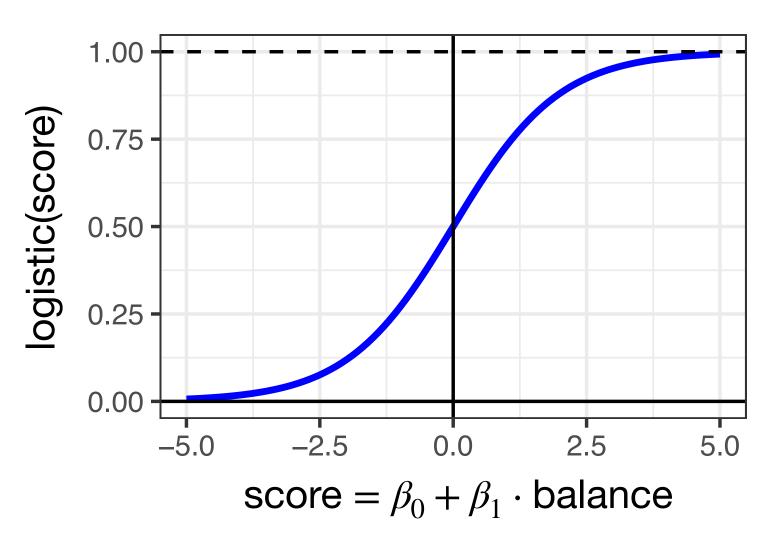
Probabilities fall within [0,1]

Use $\beta_0 + \beta_1 \cdot balance$ as a "score", then map the score onto [0,1] using logistic transformation:

$logistic(score) = \frac{e^{score}}{1 + e^{score}}$

Use $\beta_0 + \beta_1 \cdot$ balance as a "score", then map the score onto [0,1] using logistic transformation:

$logistic(score) = \frac{e^{score}}{1 + e^{score}}$

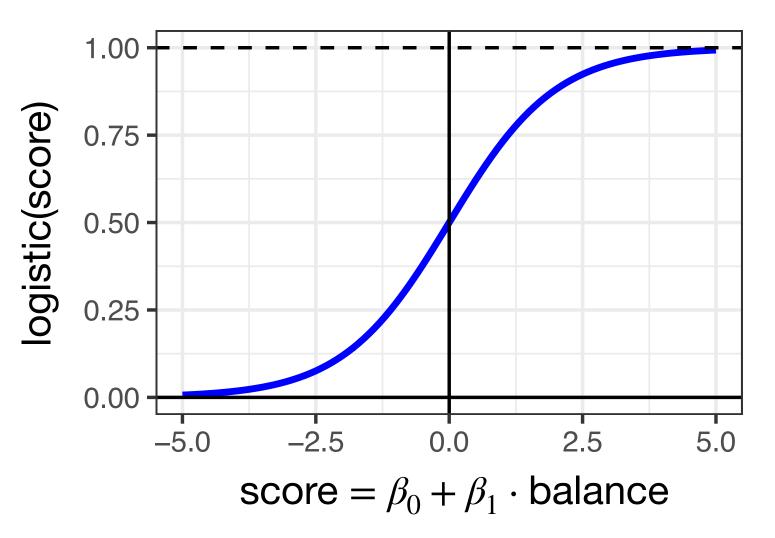


Use $\beta_0 + \beta_1 \cdot$ balance as a "score", then map the score onto [0,1] using logistic transformation:

$logistic(score) = \frac{e^{score}}{1 + e^{score}}$

Logistic regression model:

 $\mathbb{P}[\text{default} \mid \text{balance}] = \text{logistic}(\beta_0 + \beta_1 \cdot \text{balance})$



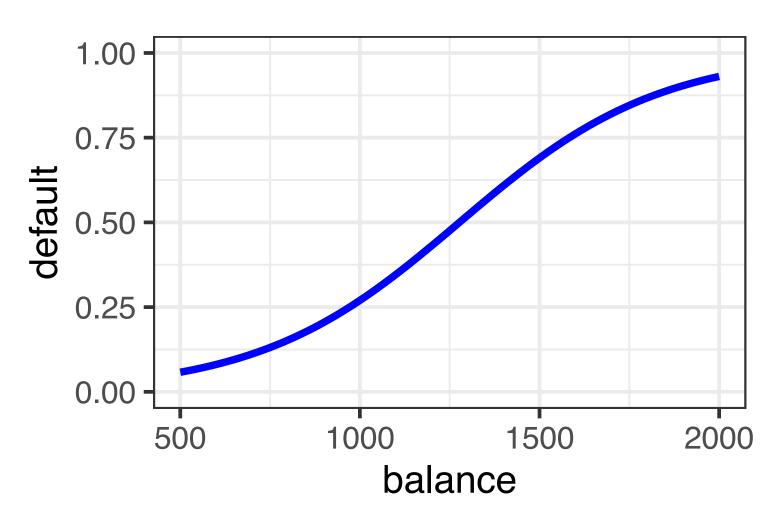
Use $\beta_0 + \beta_1 \cdot$ balance as a "score", then map the score onto [0,1] using logistic transformation:

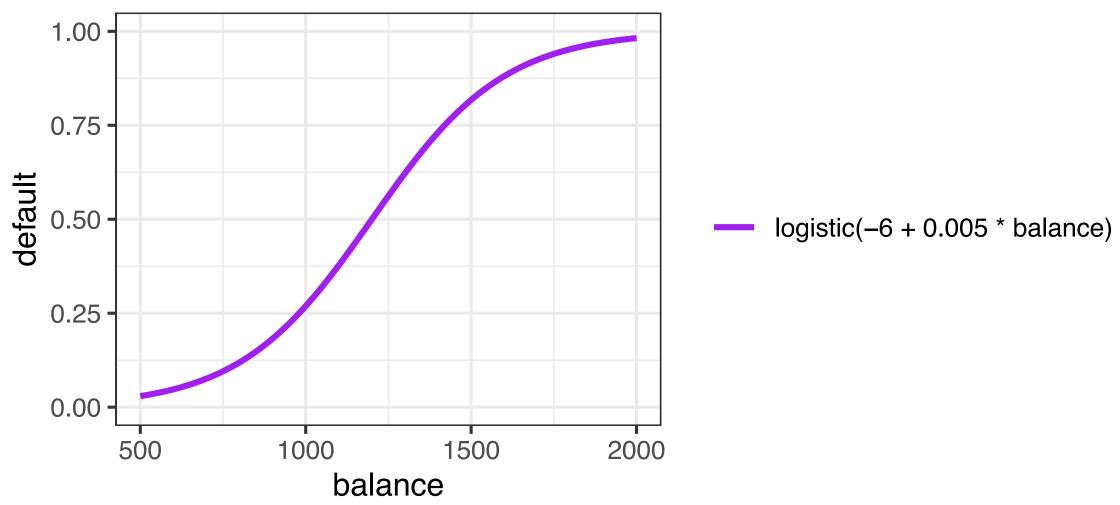
$logistic(score) = \frac{e^{score}}{1 + e^{score}}$

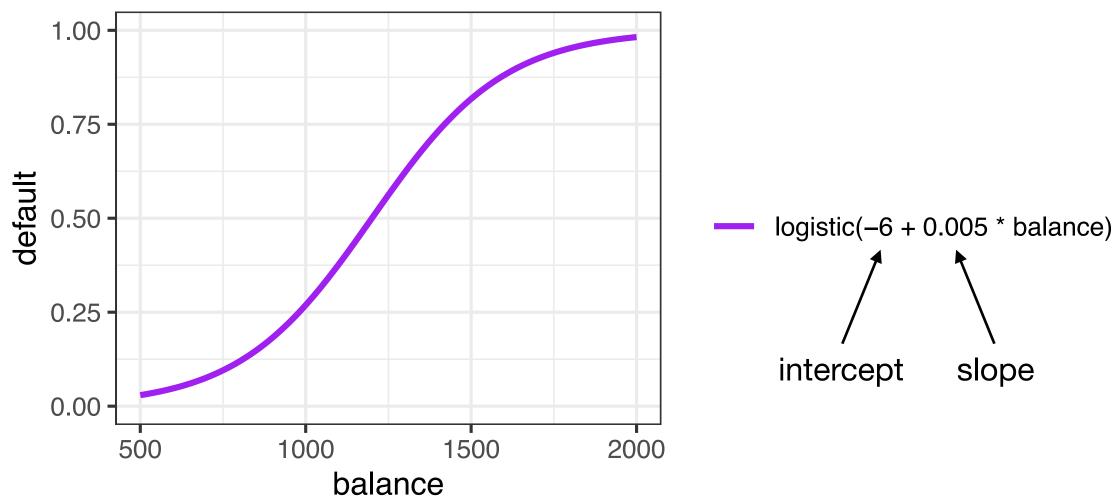
Logistic regression model:

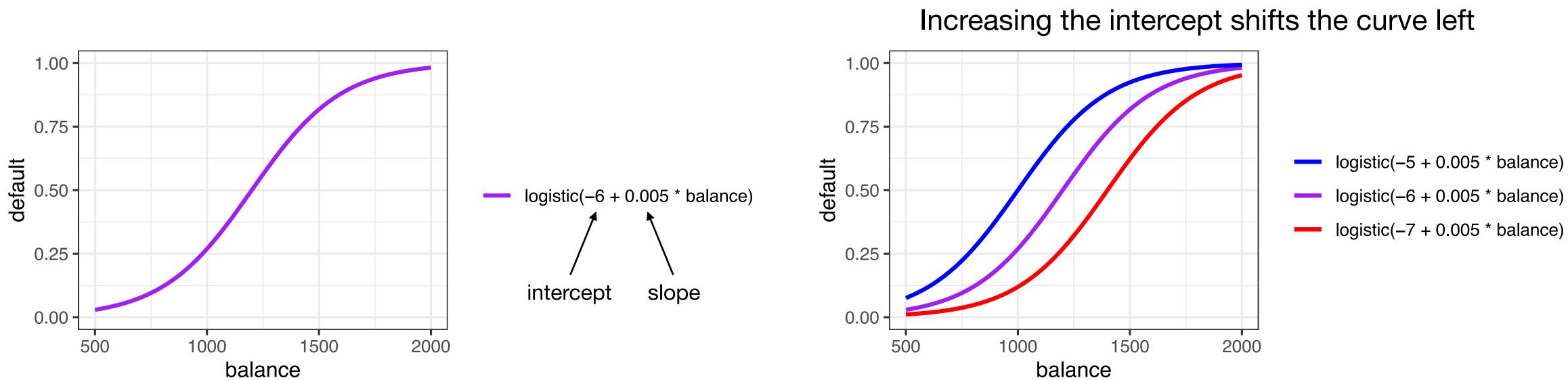
 $\mathbb{P}[\text{default} \mid \text{balance}] = \text{logistic}(\beta_0 + \beta_1 \cdot \text{balance})$

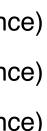
ogistic(score) 0.75 0.50 0.25 0.00 -5.0-2.5 2.5 0.0 5.0 score = $\beta_0 + \beta_1 \cdot balance$











1500

balance

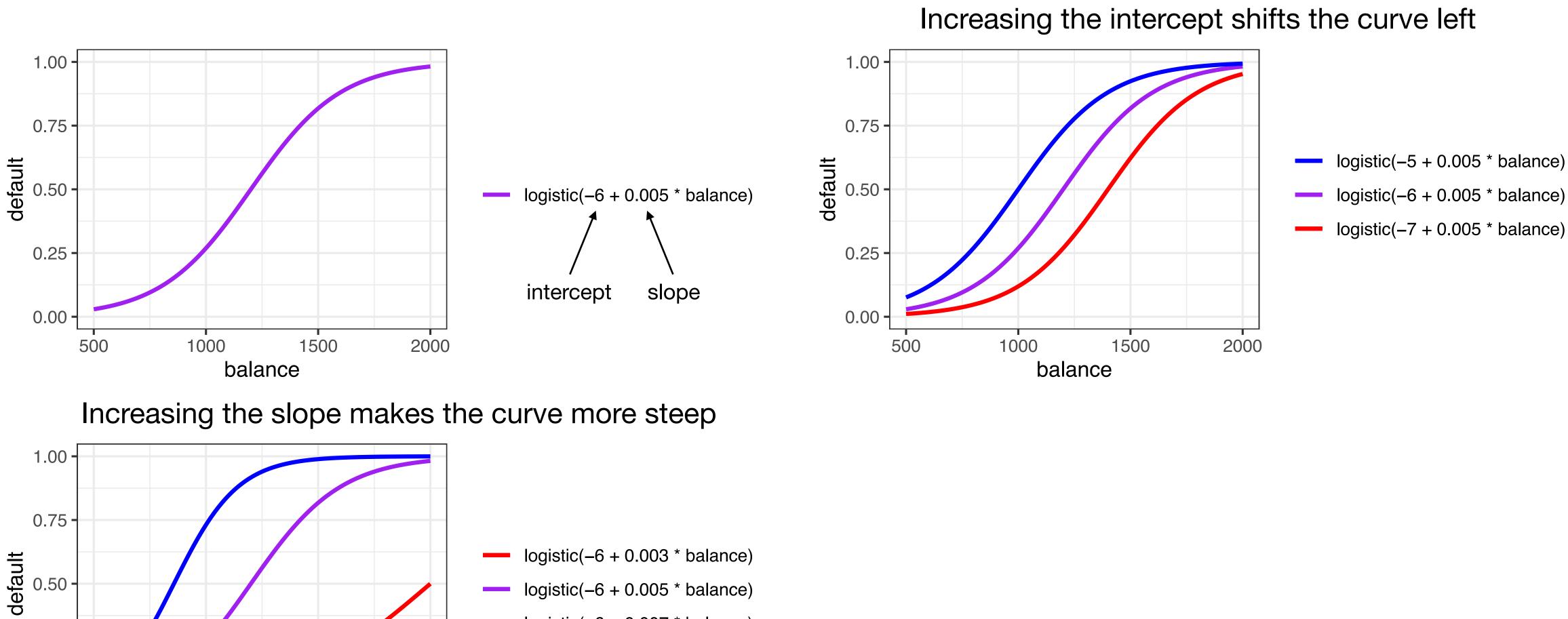
2000

1000

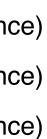
0.25

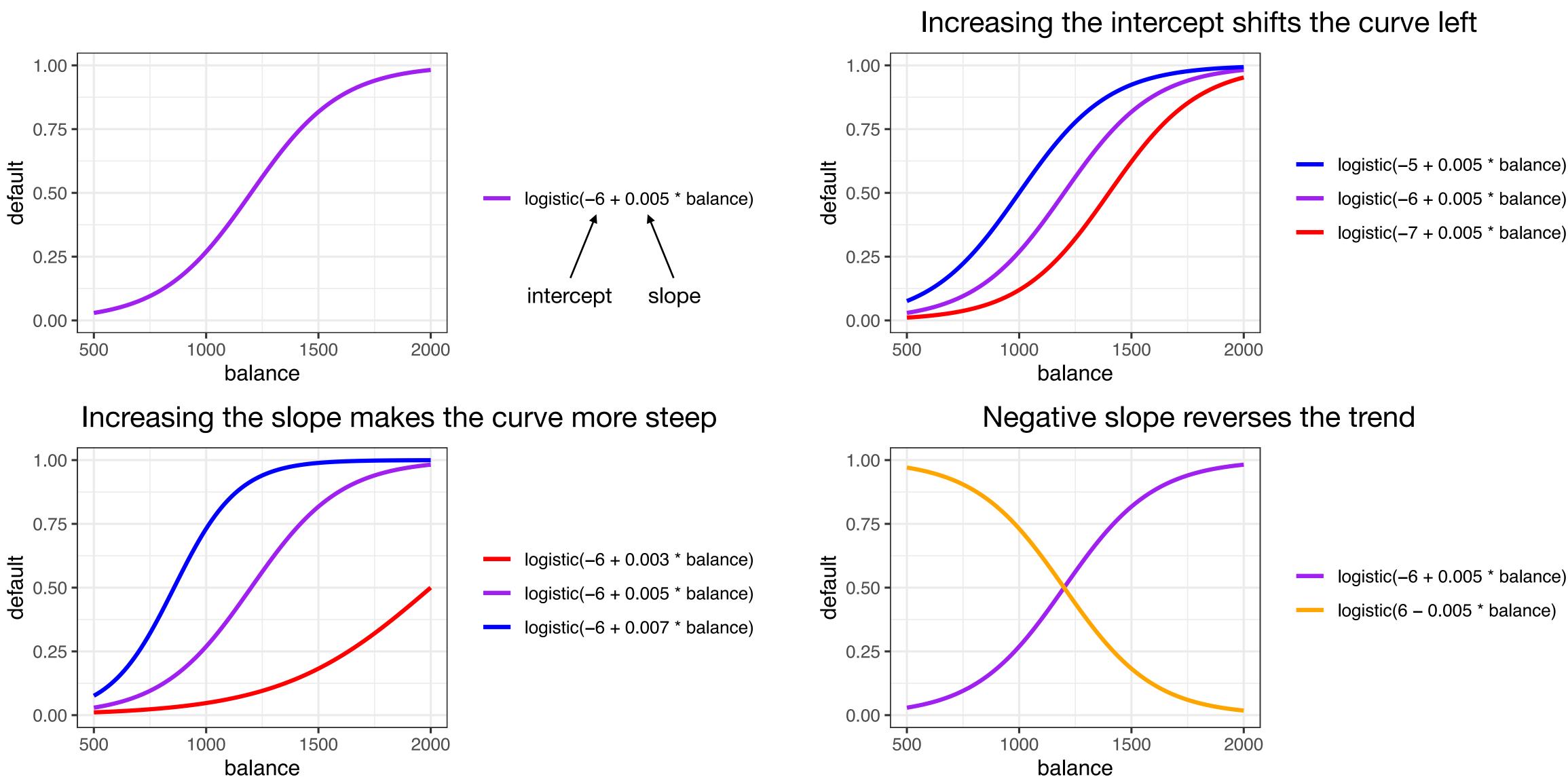
0.00

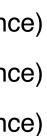
500



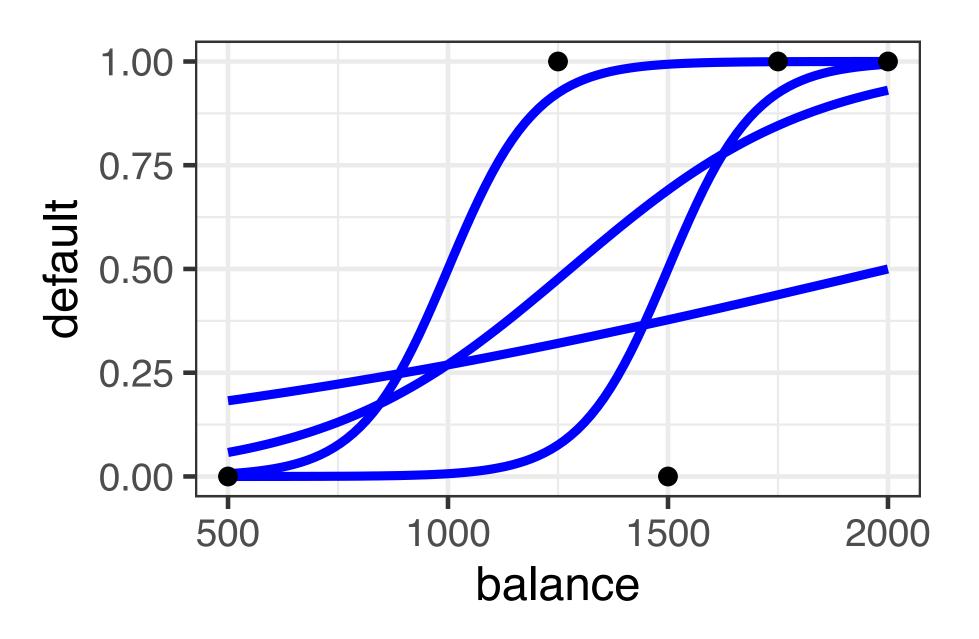
- logistic(-6 + 0.005 * balance)
- logistic(-6 + 0.007 * balance)





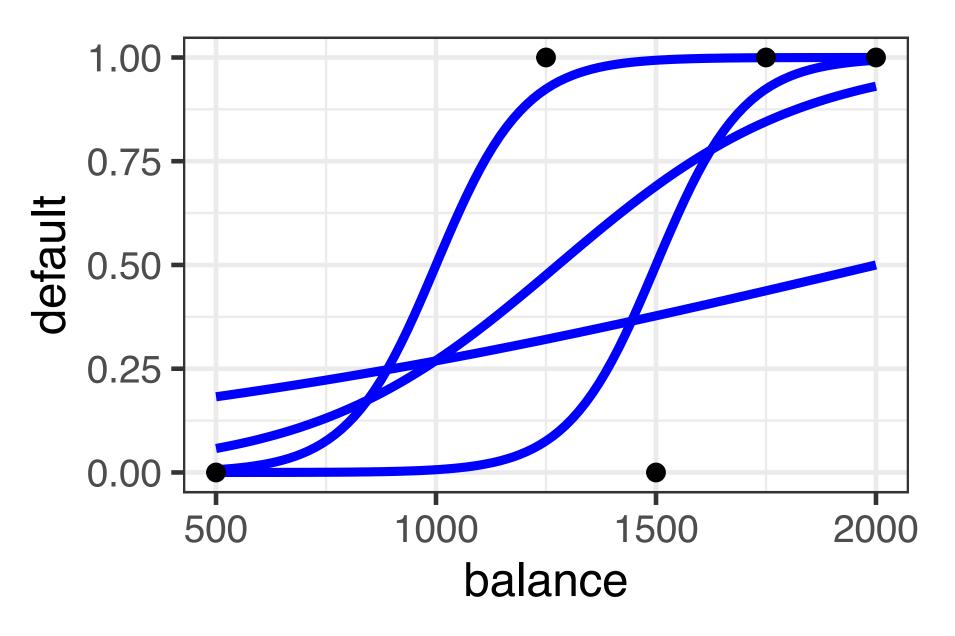


Fitting logistic regression models to data



Fitting logistic regression models to data

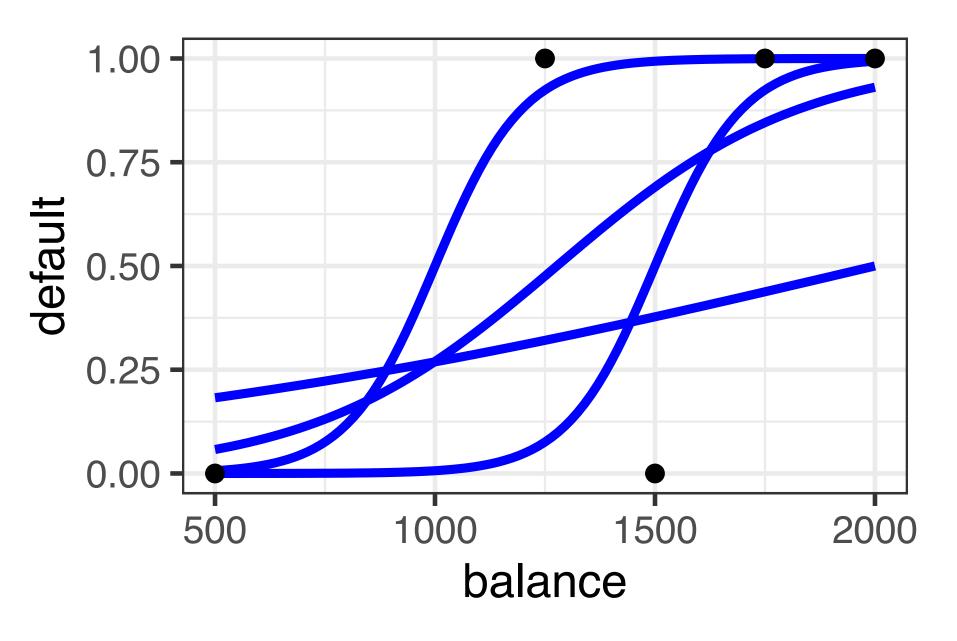
Each choice of (β_0, β_1) traces out a different logistic regression curve fit



 $\mathbb{P}[\text{default} \mid \text{balance}] = \text{logistic}(\beta_0 + \beta_1 \cdot \text{balance}).$

Fitting logistic regression models to data

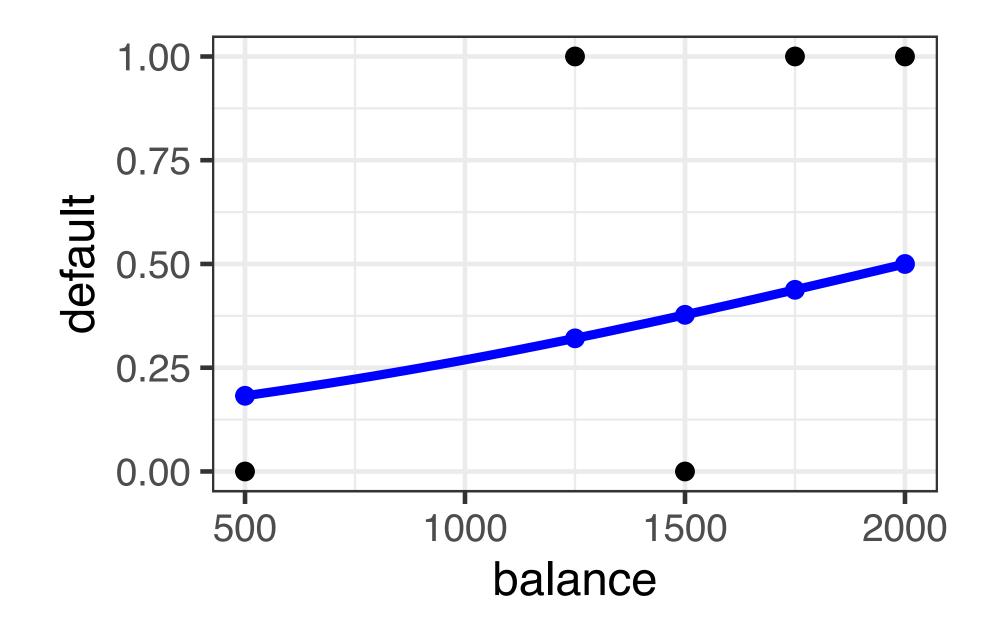
Each choice of (β_0, β_1) traces out a different logistic regression curve fit



Which logistic regression curve fits the data the best?

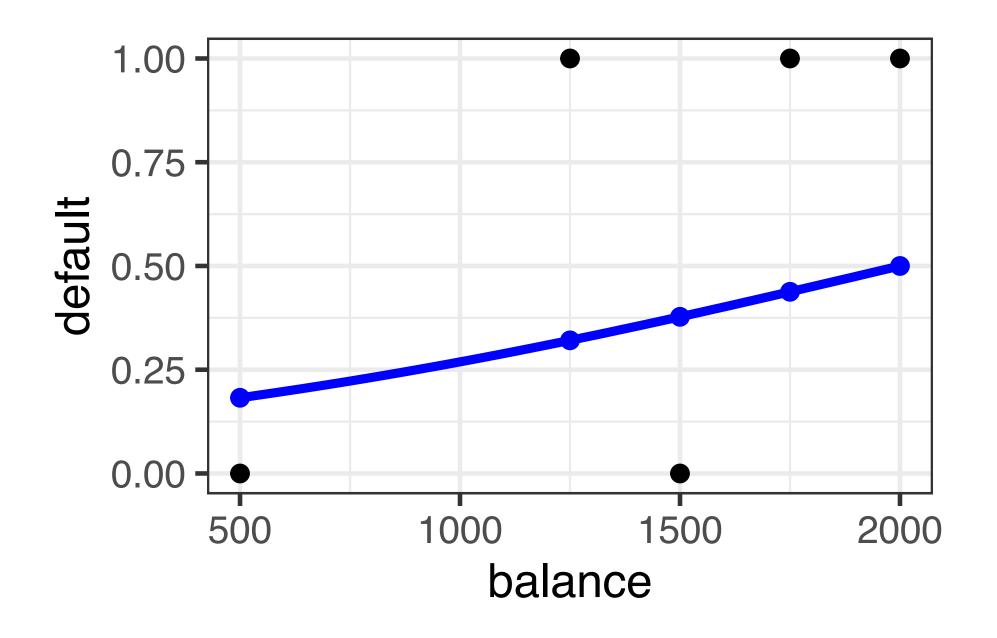
 $\mathbb{P}[\text{default} \mid \text{balance}] = \text{logistic}(\beta_0 + \beta_1 \cdot \text{balance}).$

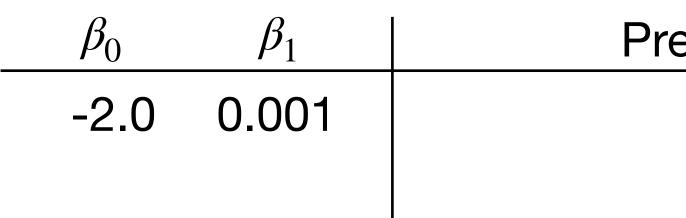
probability of observing the data under the corresponding model:



 β_1 β_0 -2.0 0.001

probability of observing the data under the corresponding model:

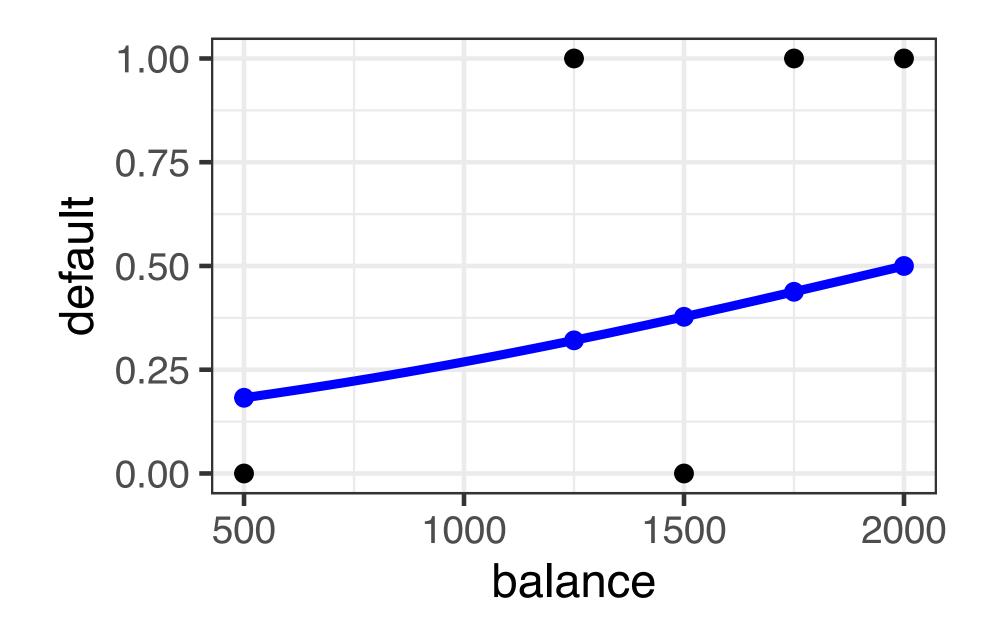


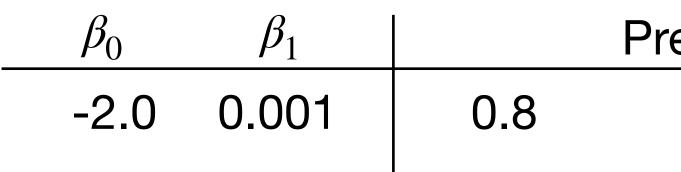


Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

Predicted probabilities

probability of observing the data under the corresponding model:

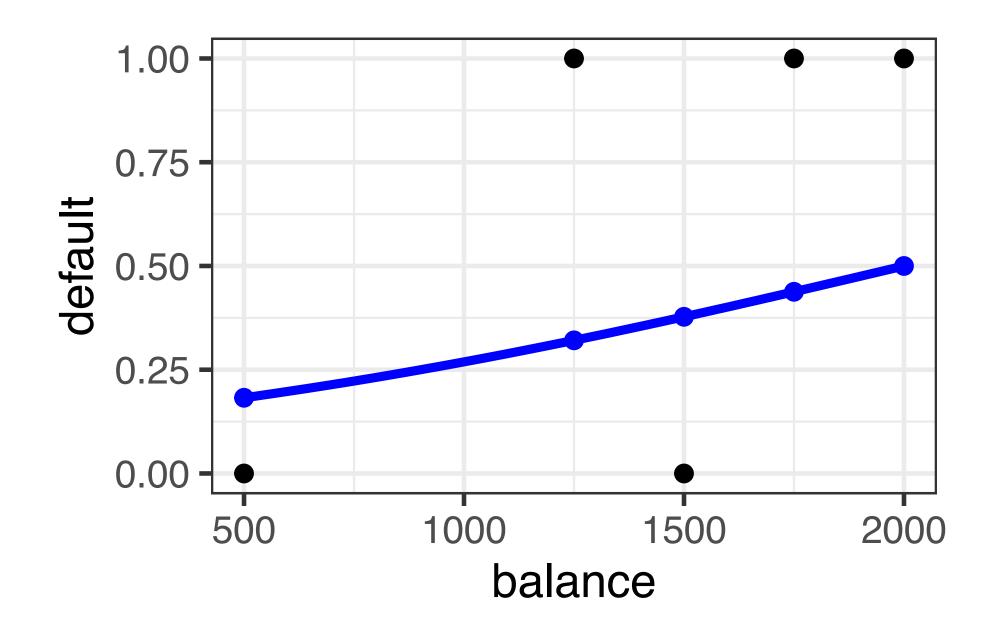


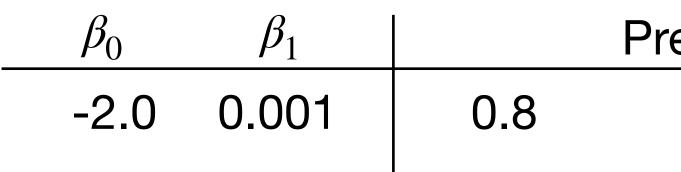


Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

Predicted probabilities

probability of observing the data under the corresponding model:



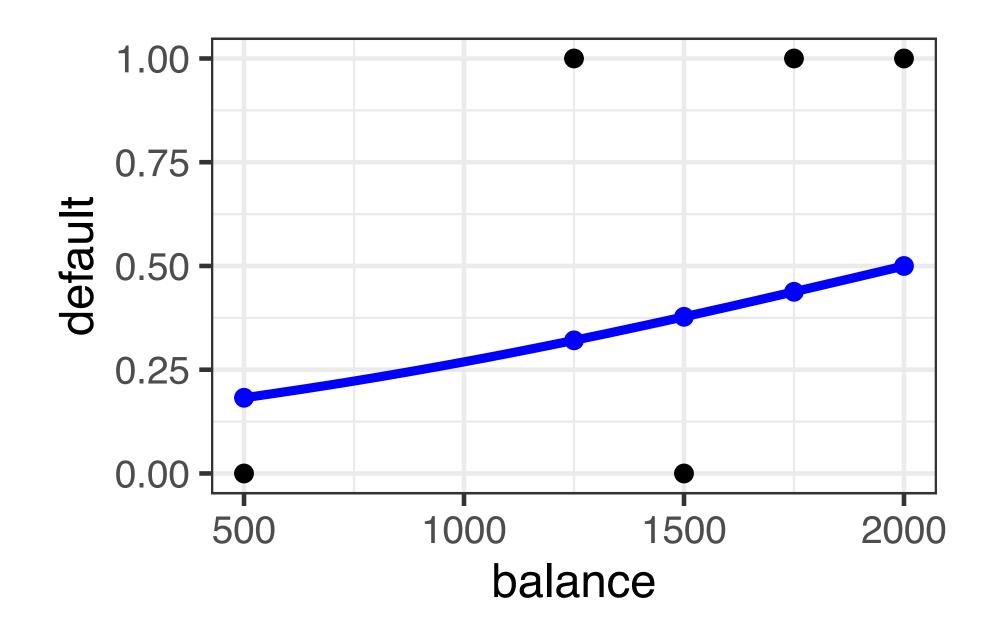


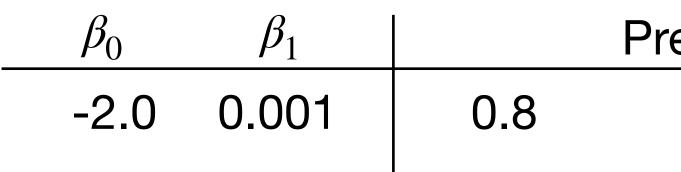
Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

Predicted probabilities

0.3

probability of observing the data under the corresponding model:



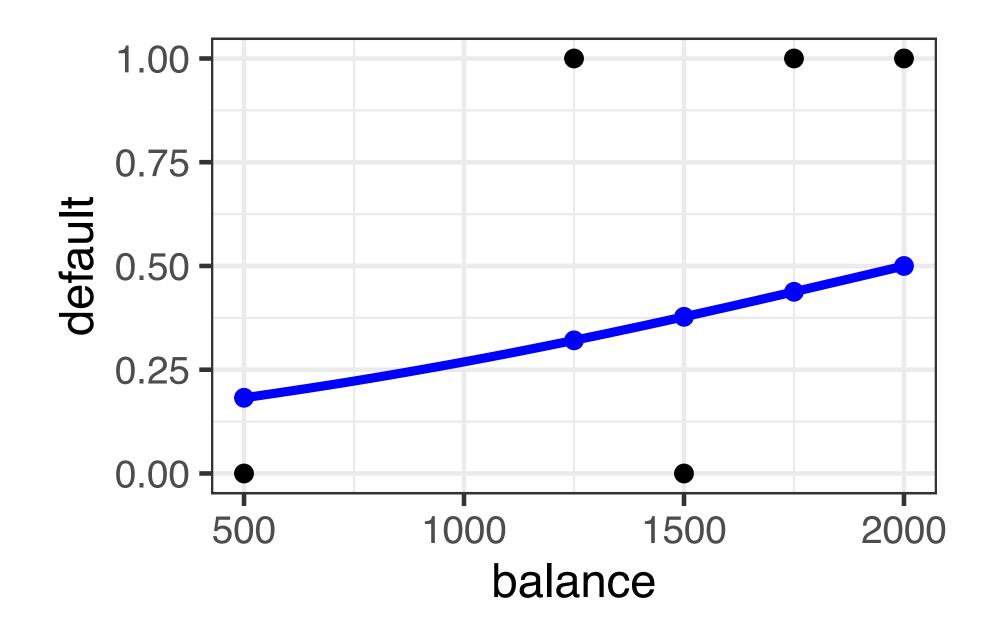


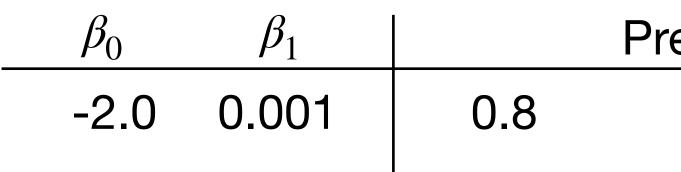
Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

Predicted probabilities

0.3 0.6

probability of observing the data under the corresponding model:



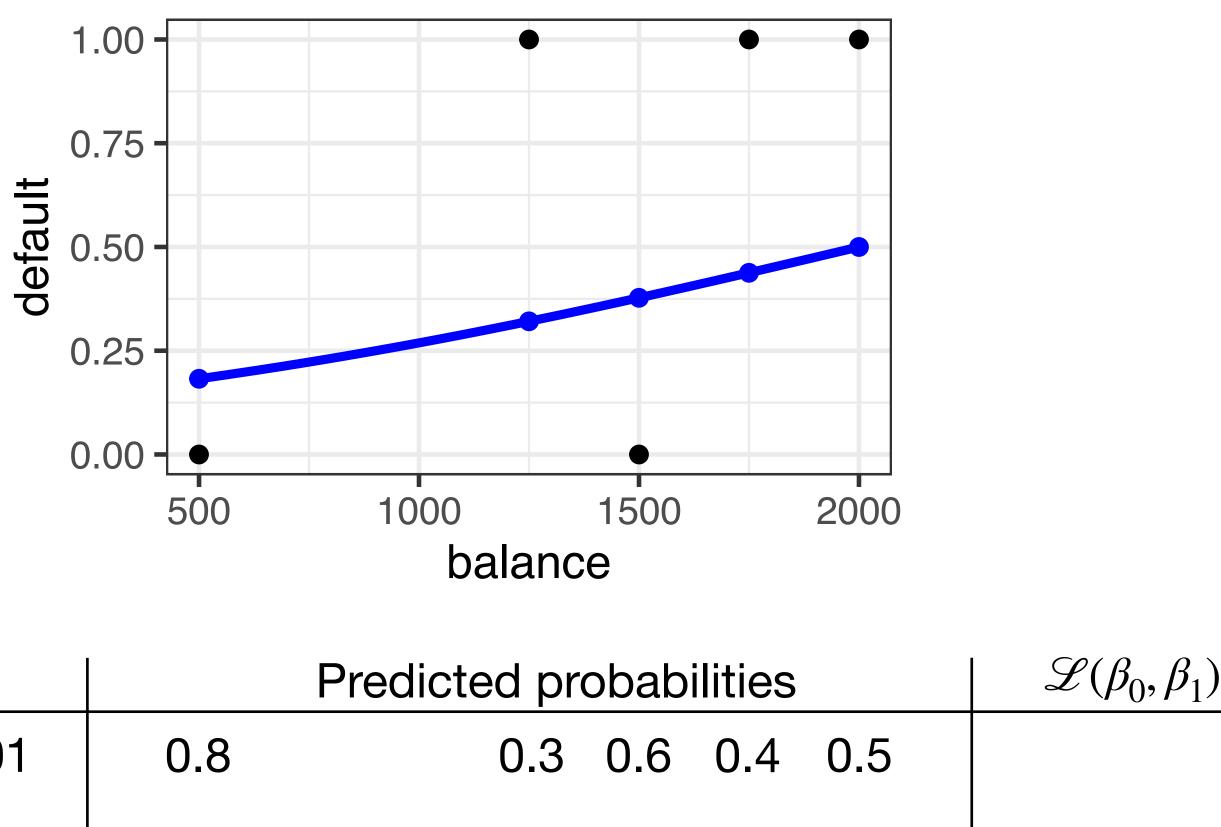


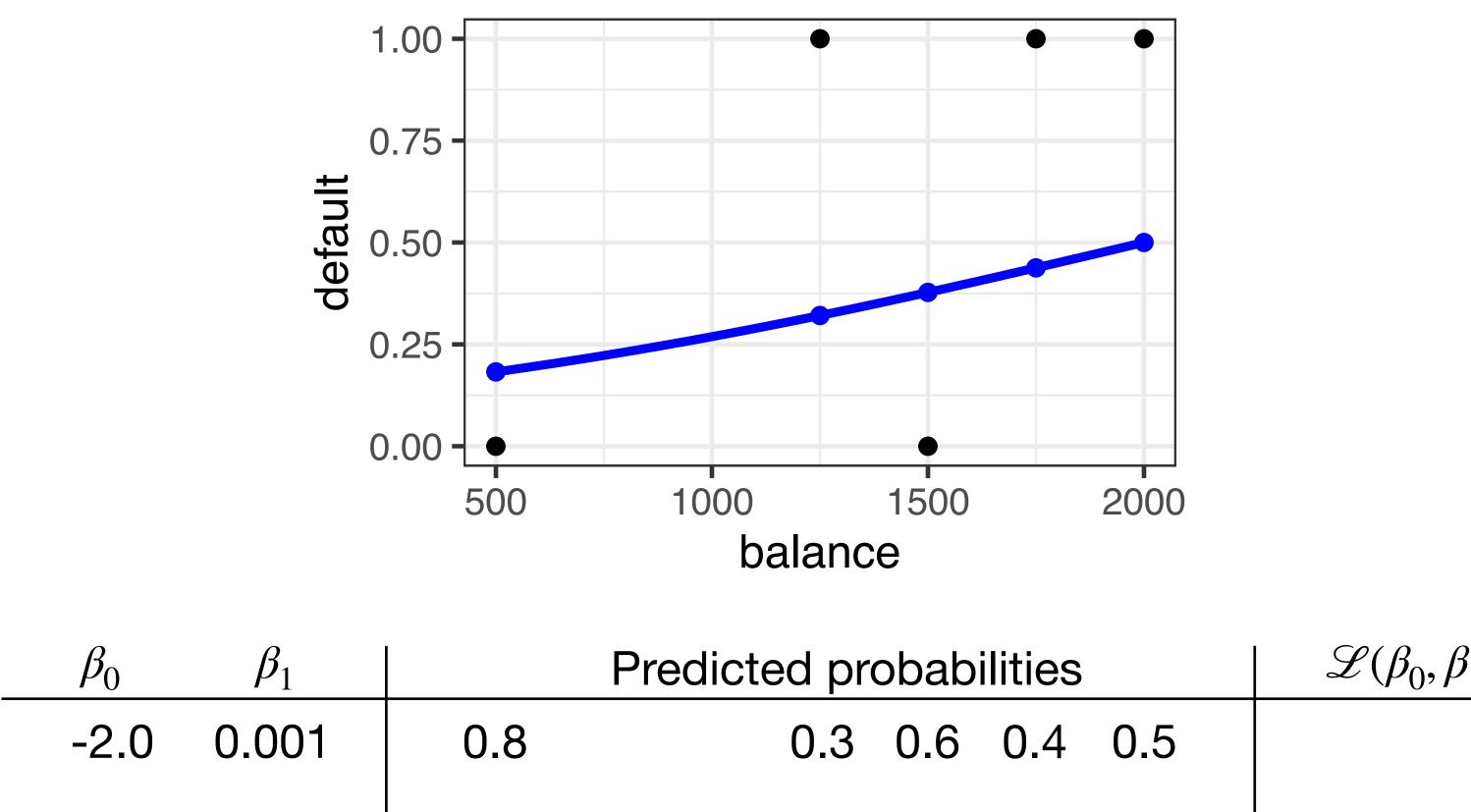
Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

Predicted probabilities

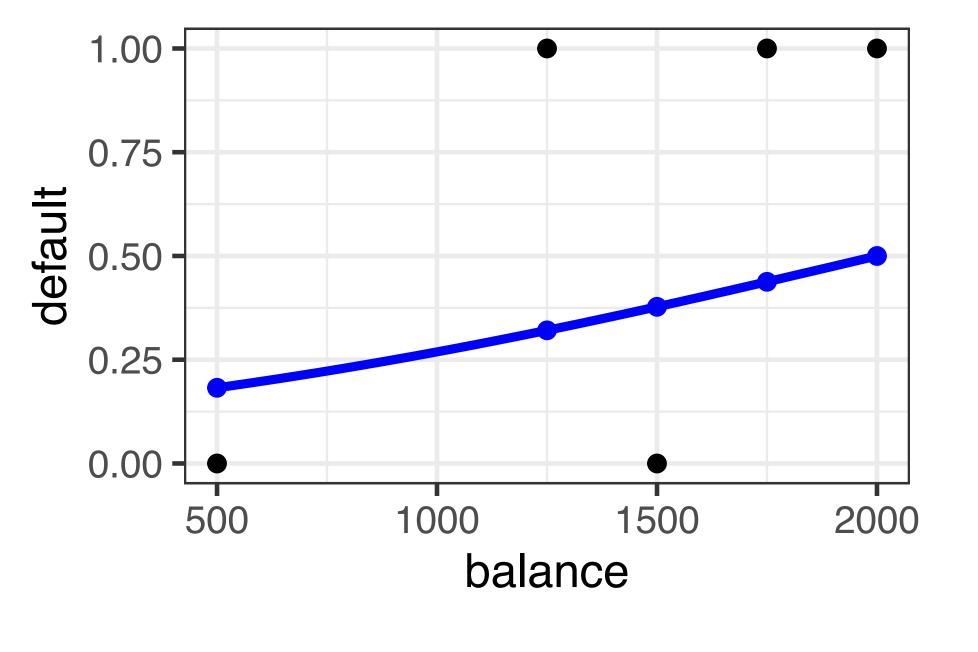
0.3 0.6 0.4 0.5

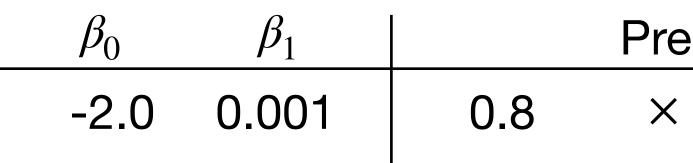
probability of observing the data under the corresponding model:





probability of observing the data under the corresponding model:

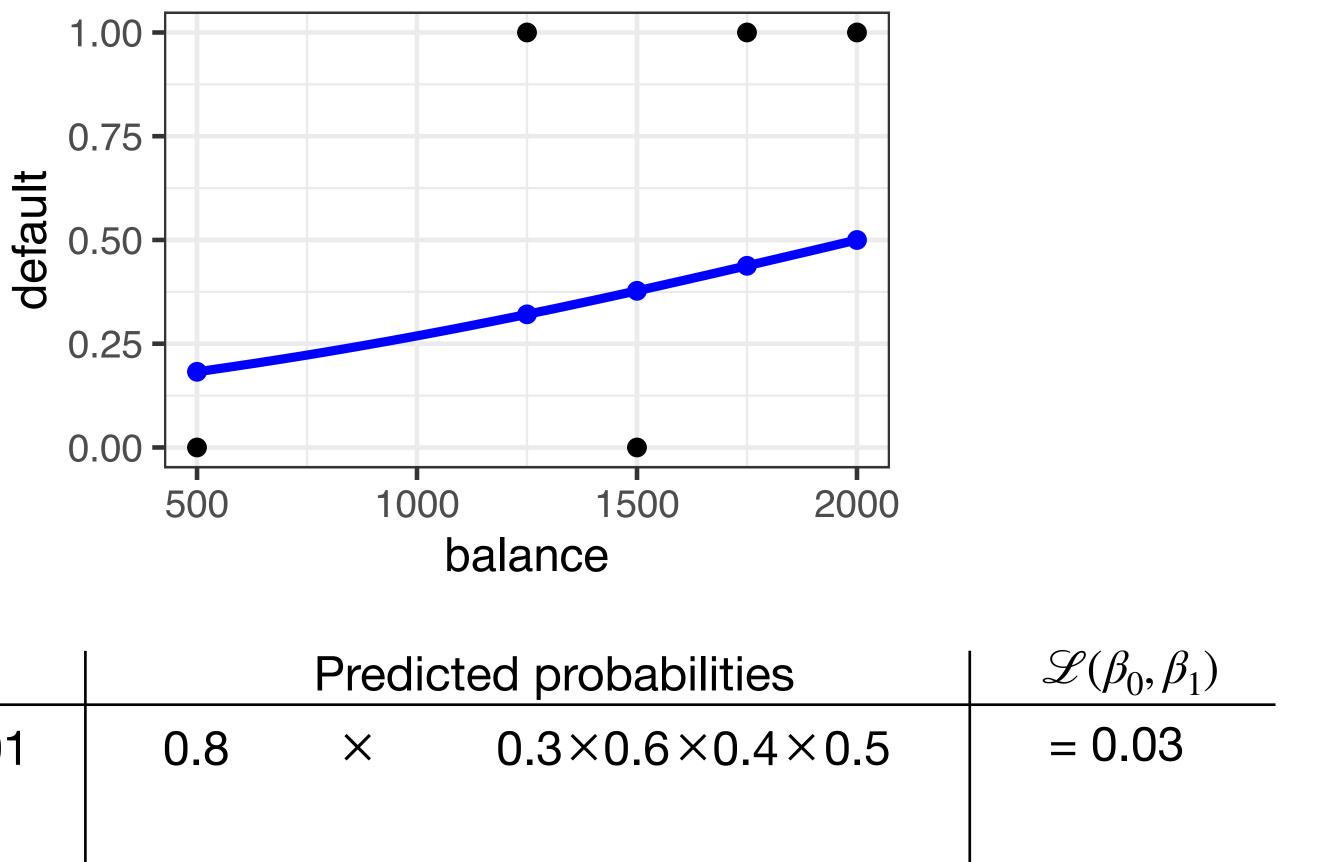


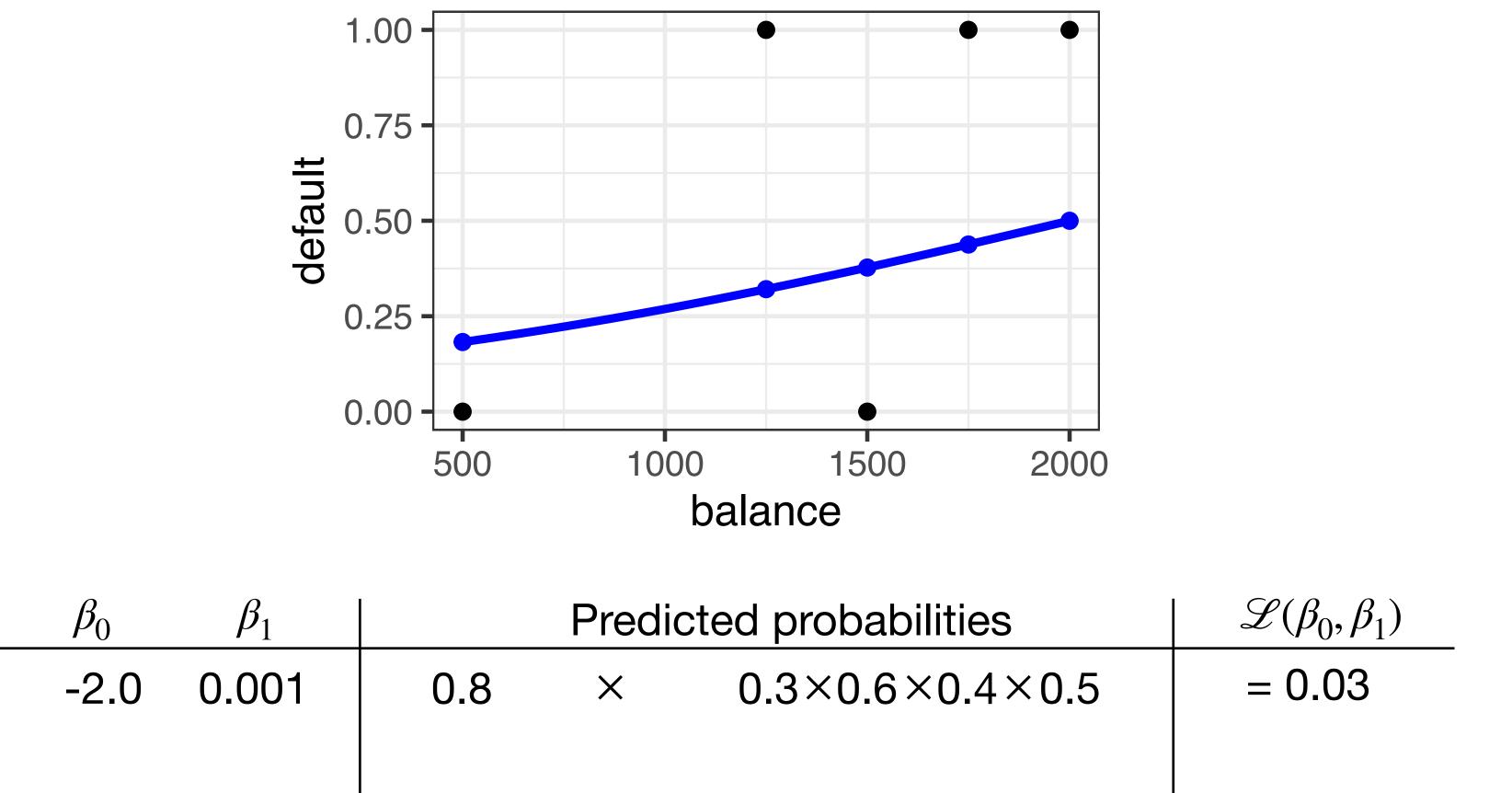


Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

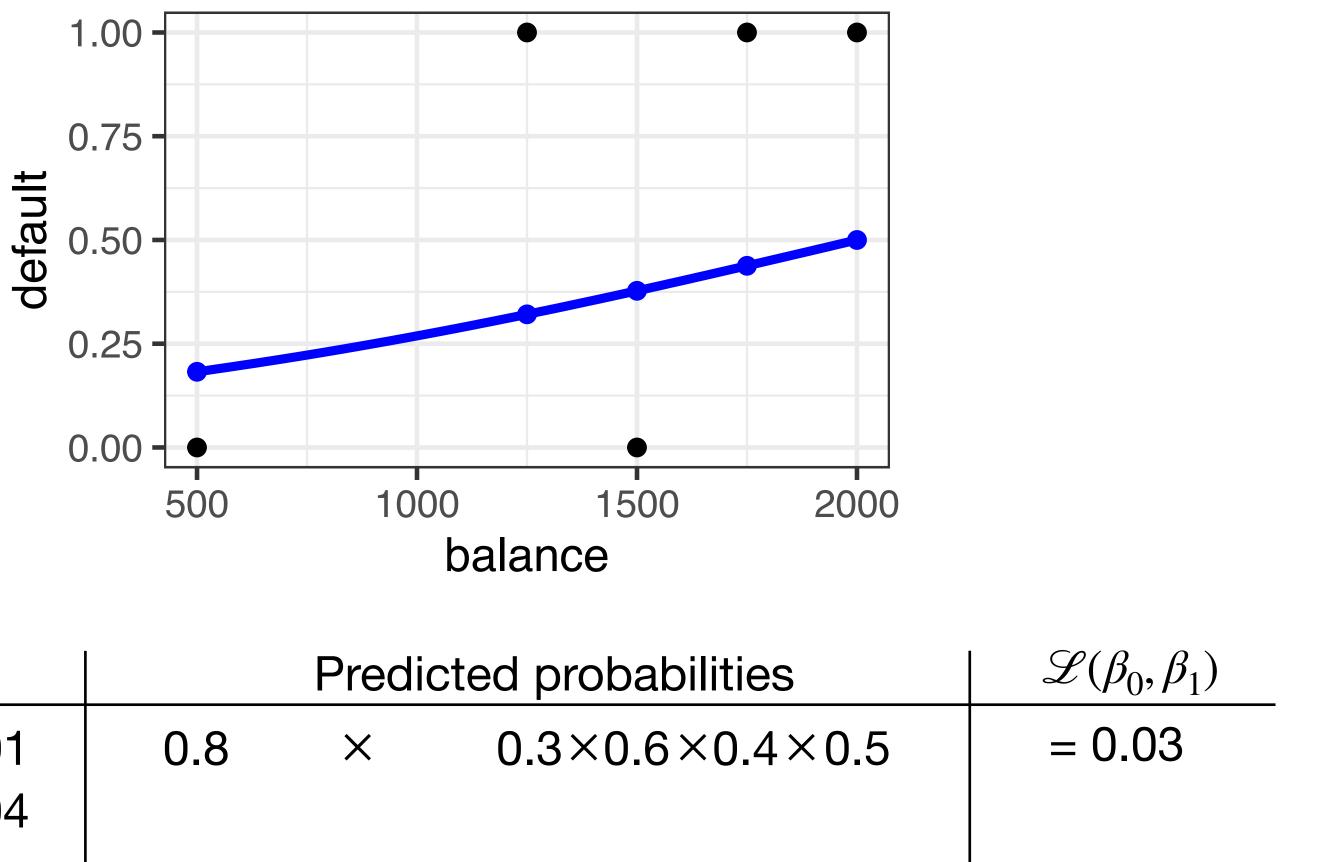
 $\mathscr{L}(\beta_0,\beta_1)$ Predicted probabilities $0.3 \times 0.6 \times 0.4 \times 0.5$

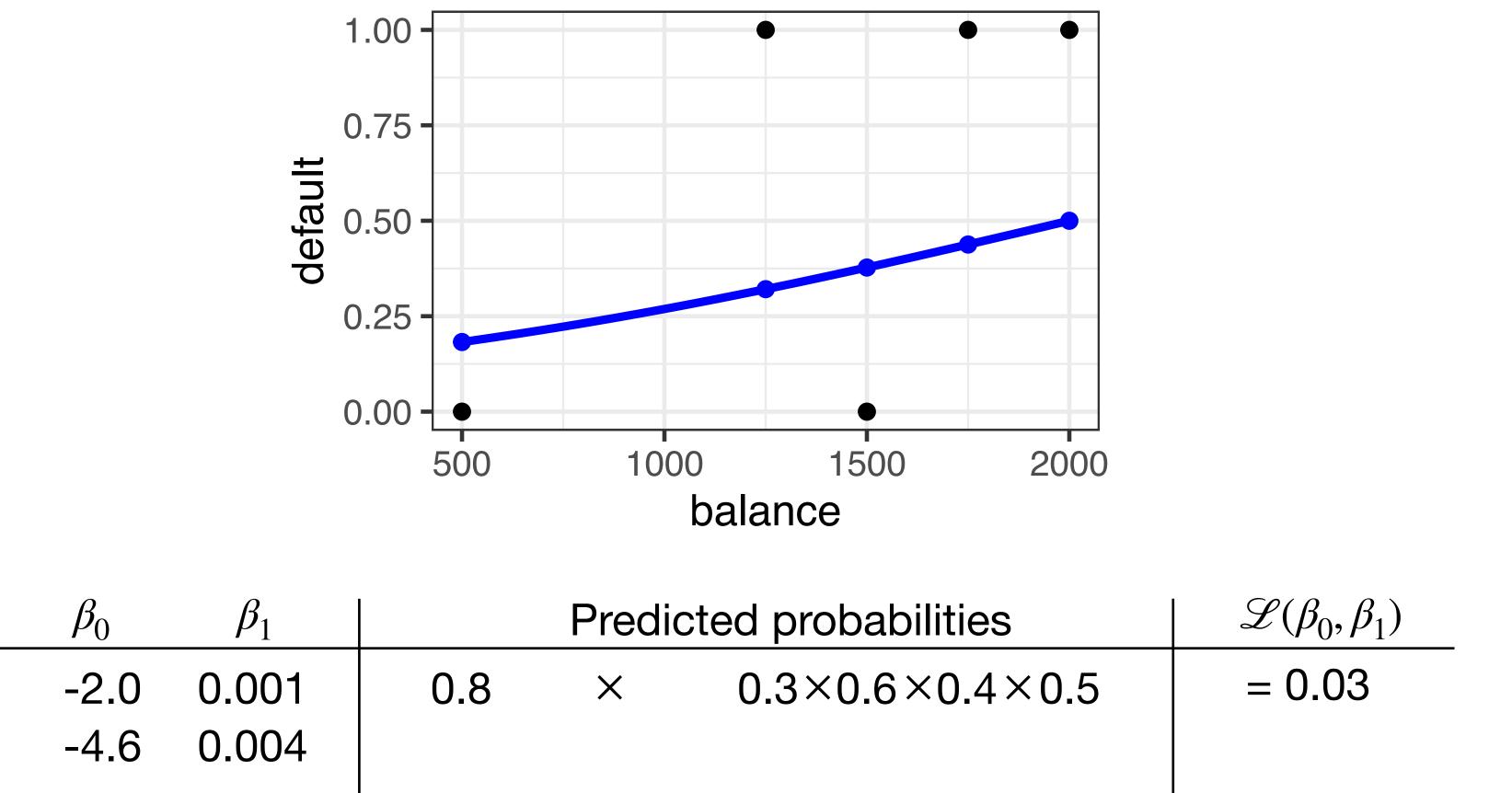
probability of observing the data under the corresponding model:



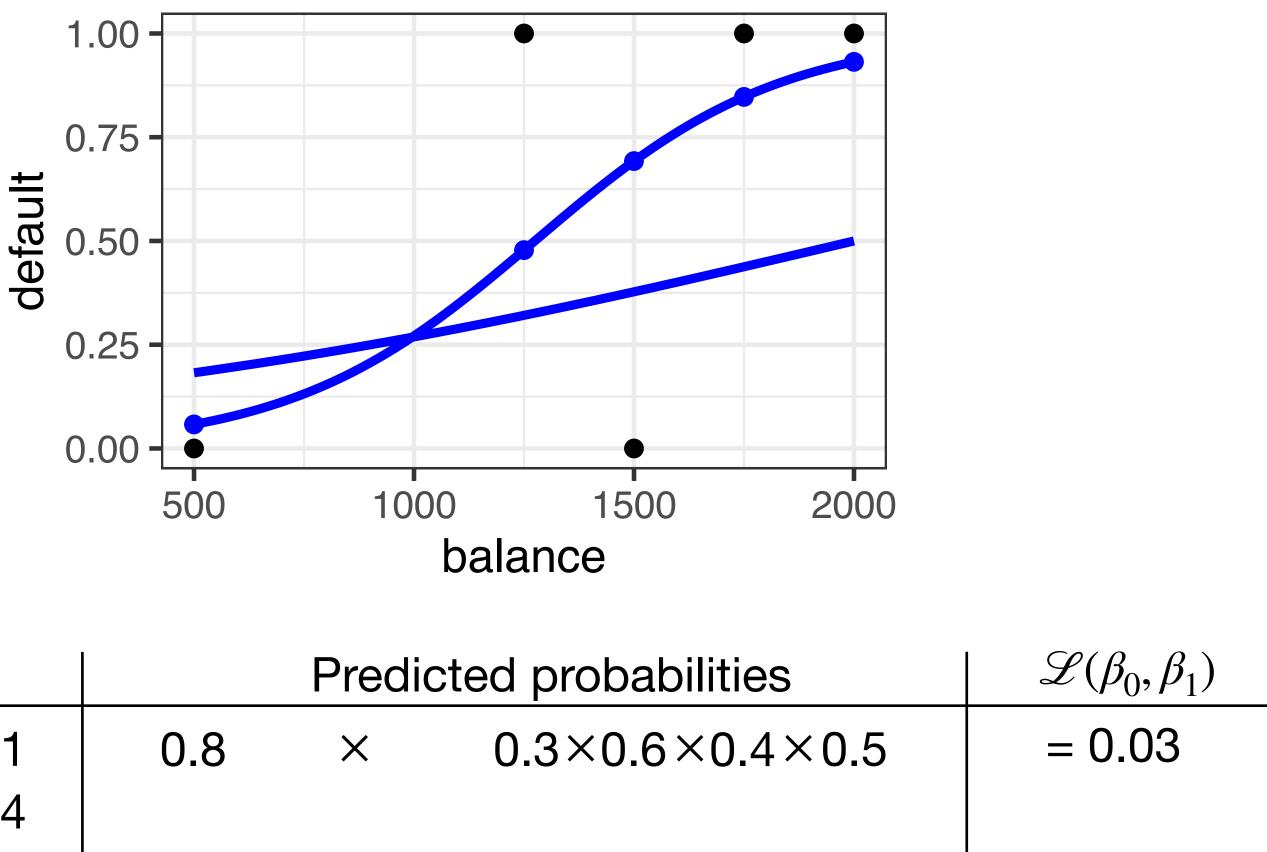


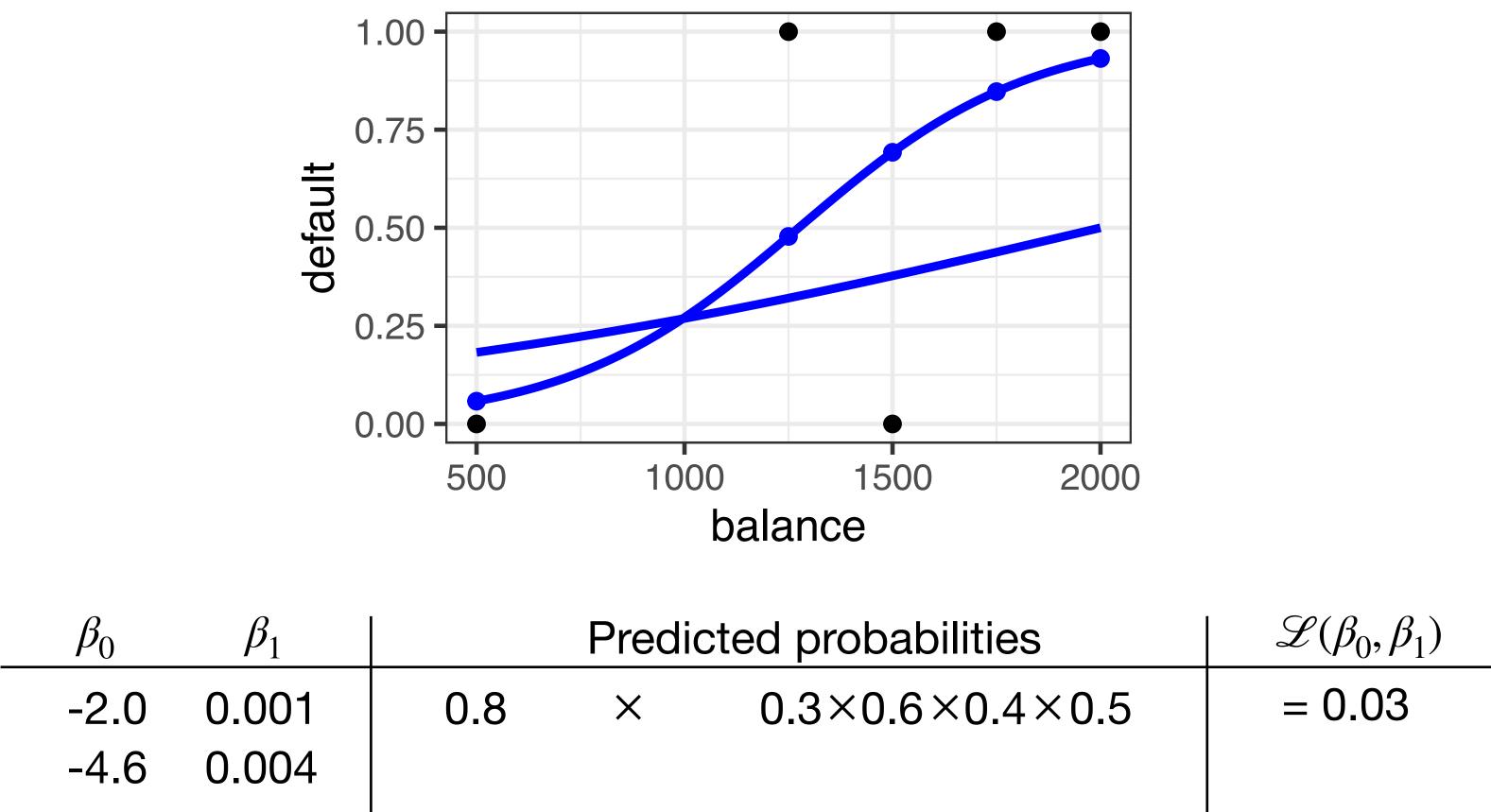
probability of observing the data under the corresponding model:



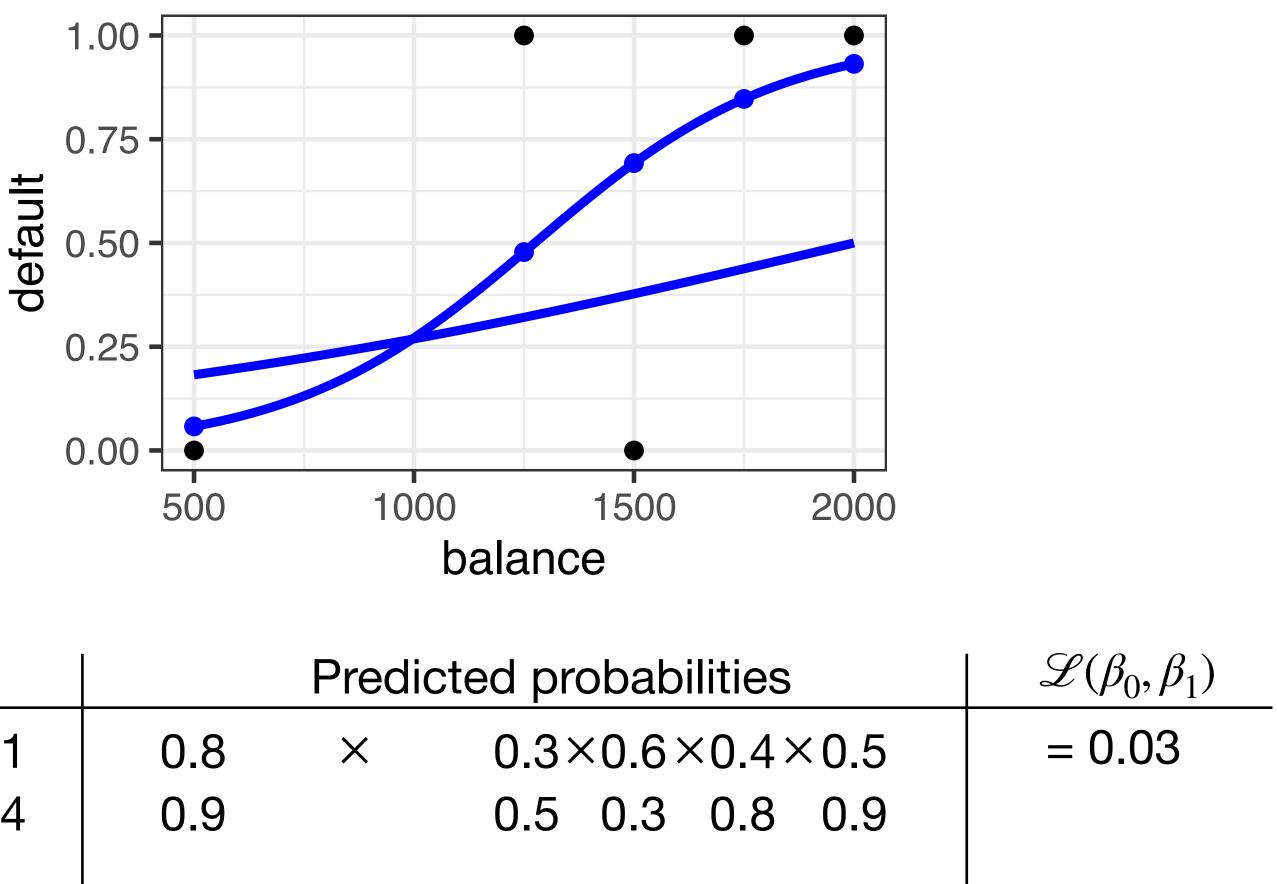


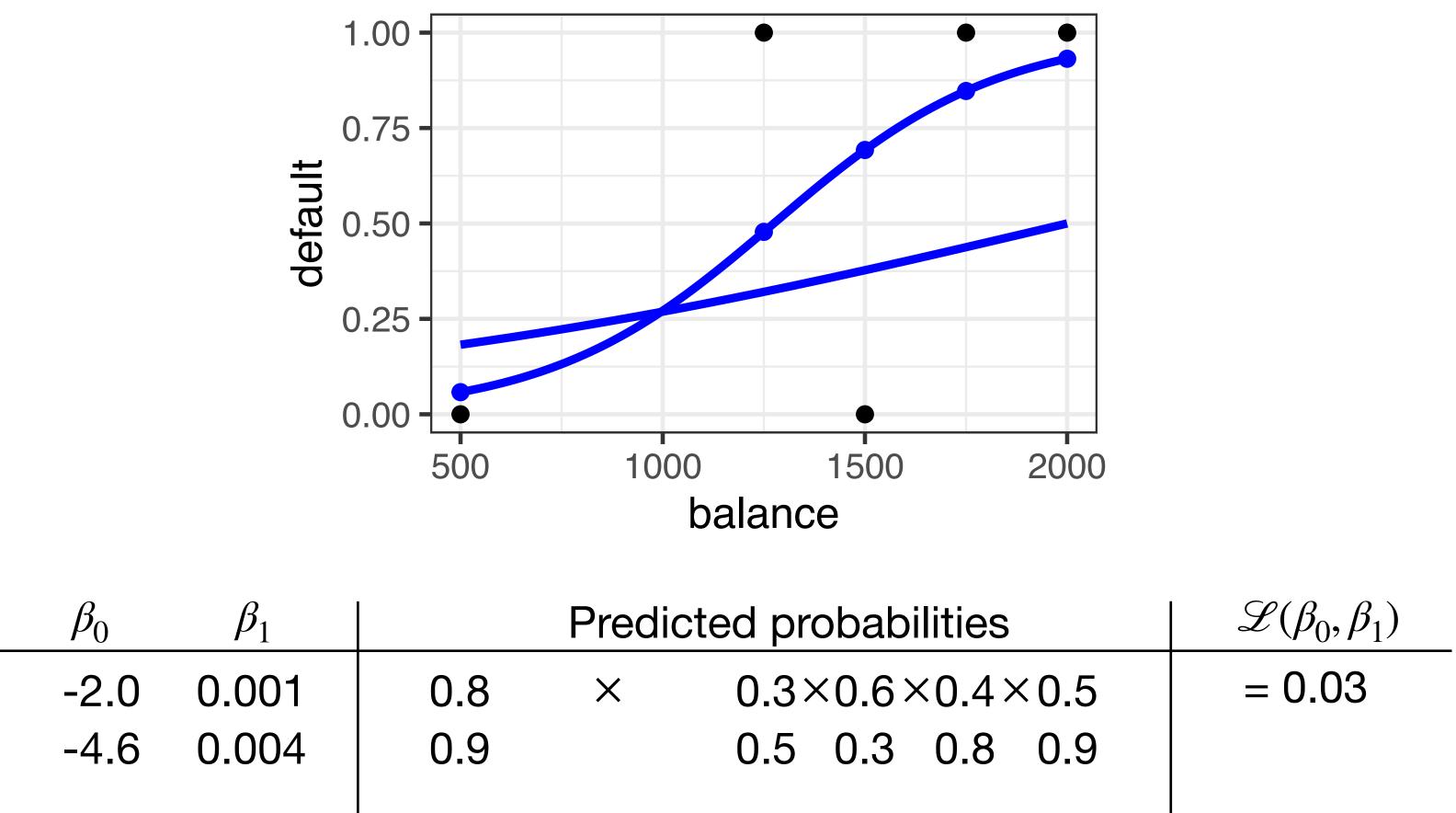
probability of observing the data under the corresponding model:



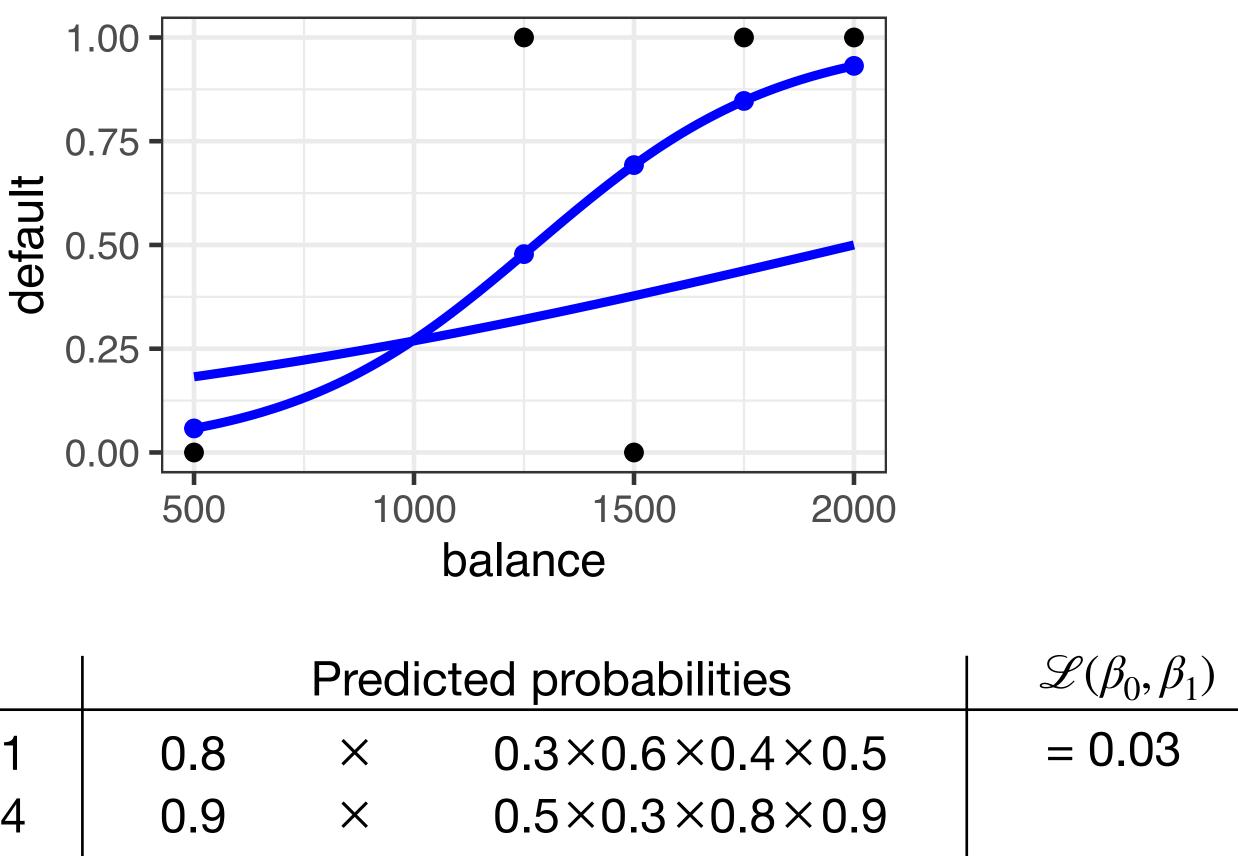


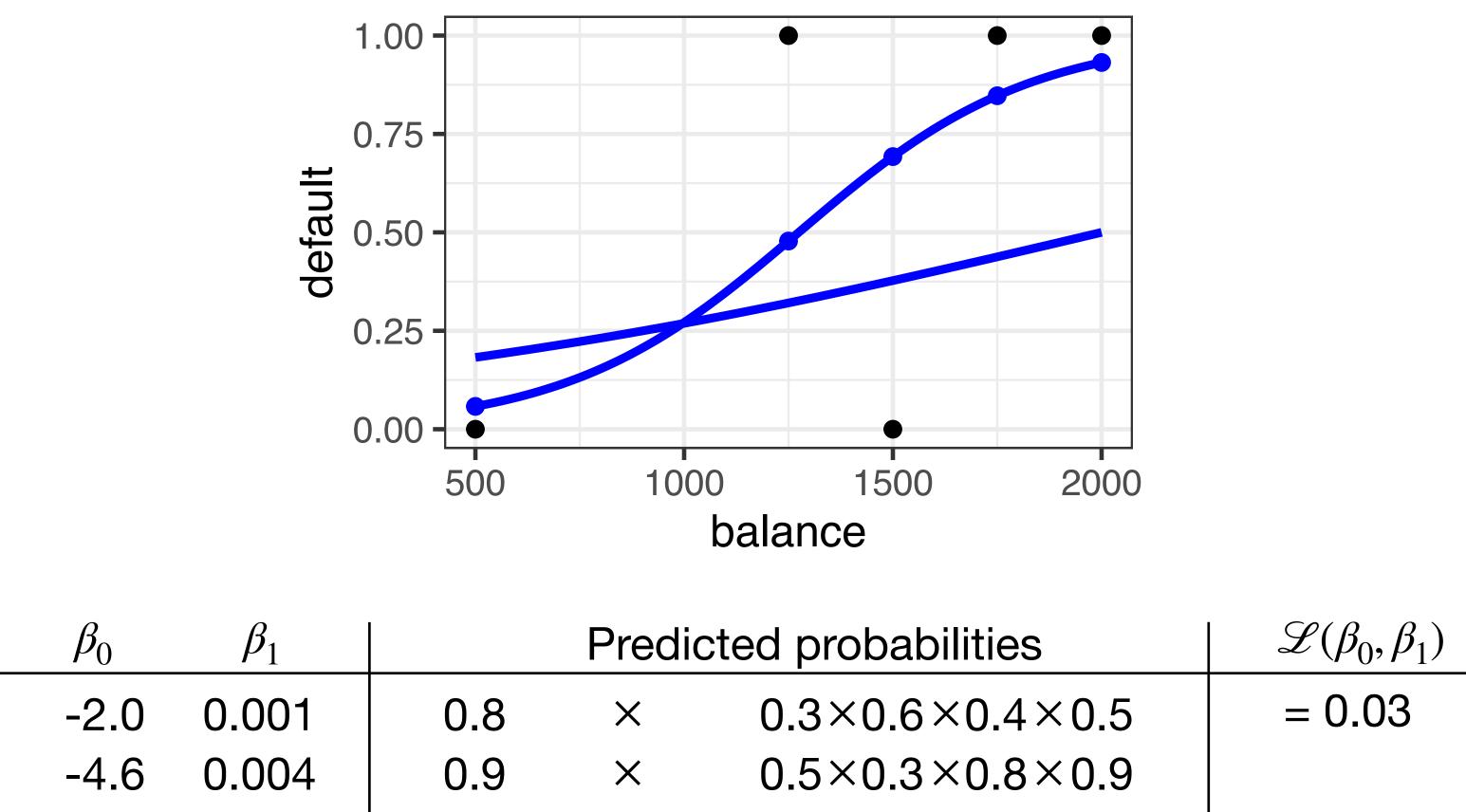
probability of observing the data under the corresponding model:



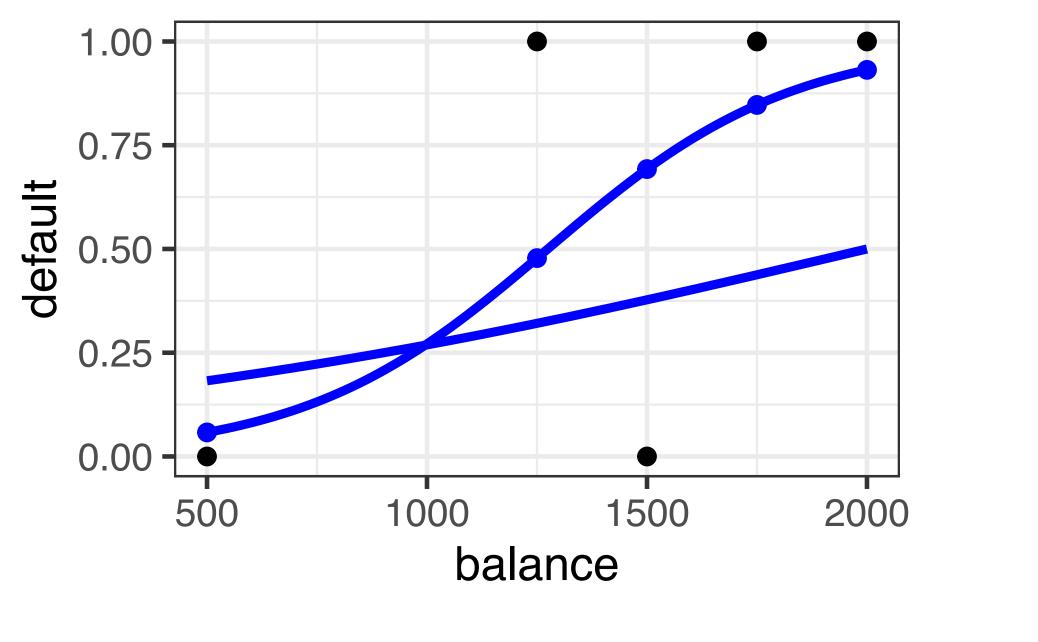


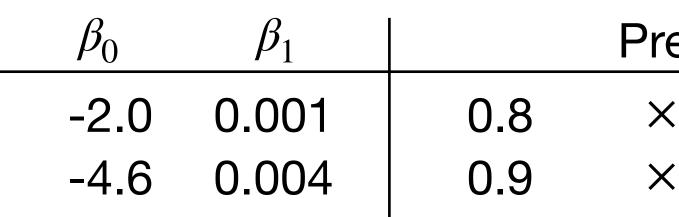
probability of observing the data under the corresponding model:





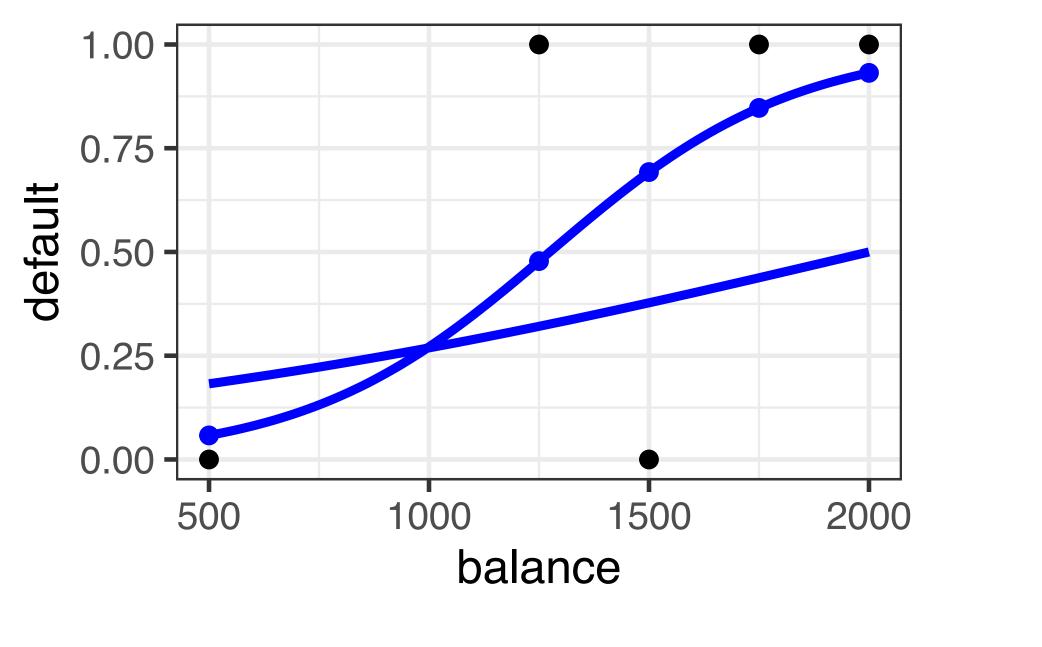
probability of observing the data under the corresponding model:

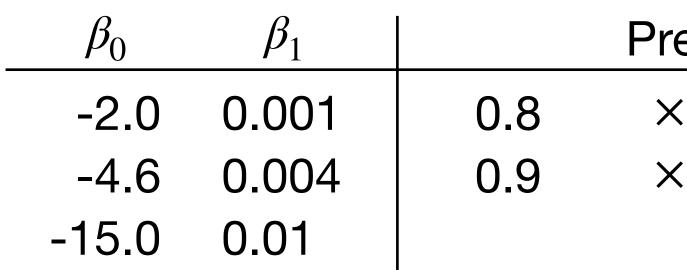




edi	cted probabilities	$ \mathcal{L}(\beta_0,\beta_1) $
<	0.3×0.6×0.4×0.5	= 0.03
<	$0.5 \times 0.3 \times 0.8 \times 0.9$	= 0.1

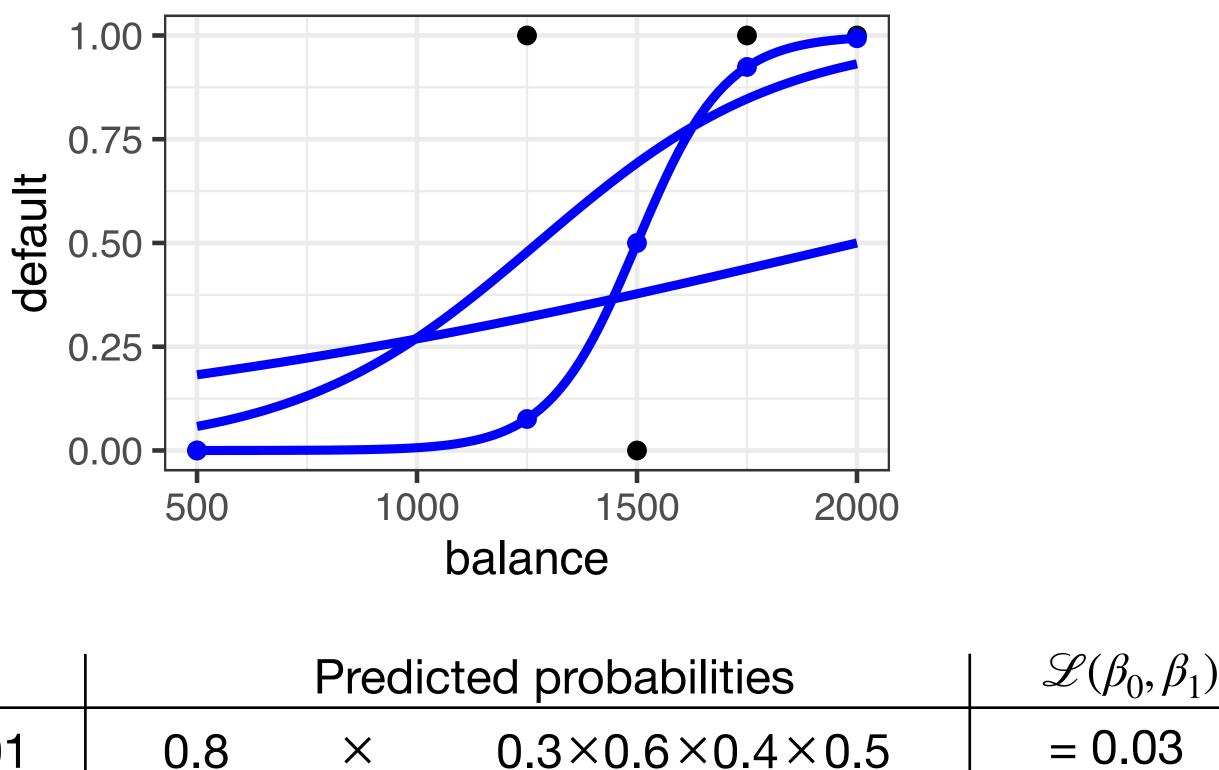
probability of observing the data under the corresponding model:



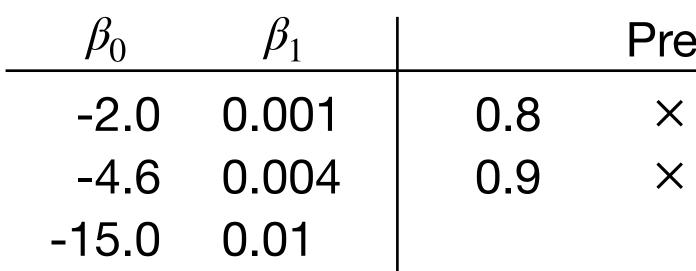


edi	cted probabilities	$ \mathcal{L}(\beta_0,\beta_1) $
<	0.3×0.6×0.4×0.5	= 0.03
<	$0.5 \times 0.3 \times 0.8 \times 0.9$	= 0.1

probability of observing the data under the corresponding model:



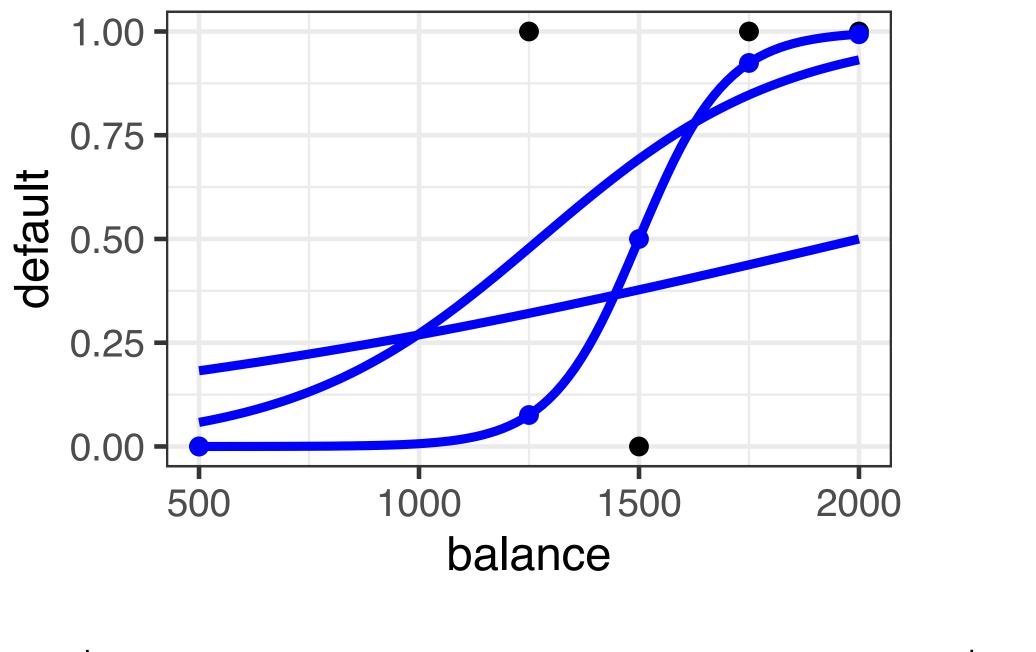
 $0.5 \times 0.3 \times 0.8 \times 0.9$



Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

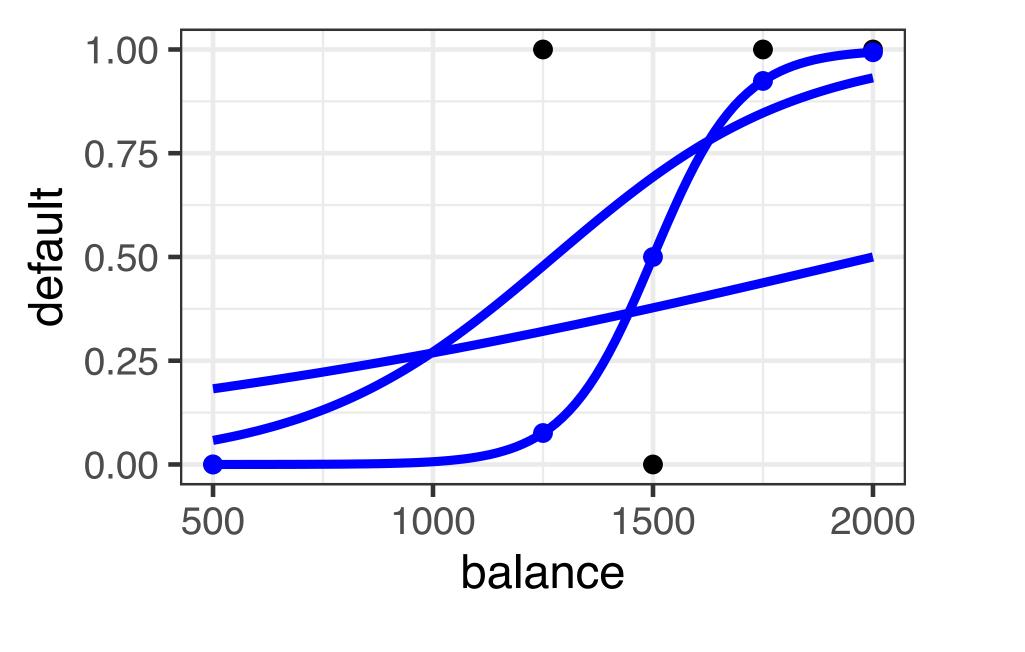
= 0.1

probability of observing the data under the corresponding model:



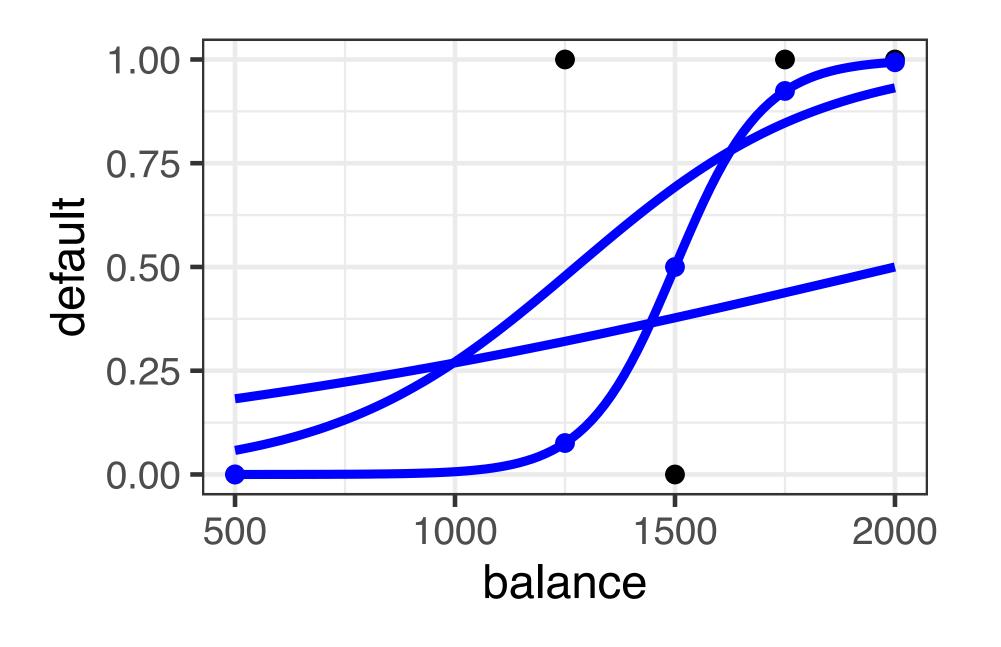
β_0	β_1		Predi	cted probabilities	$\mathscr{L}(\beta_0,\beta_1)$
-2.0	0.001	0.8	×	0.3×0.6×0.4×0.5	= 0.03
-4.6	0.004	0.9	×	$0.5 \times 0.3 \times 0.8 \times 0.9$	= 0.1
-15.0	0.01	1.0		0.1 0.5 0.9 1.0	

probability of observing the data under the corresponding model:



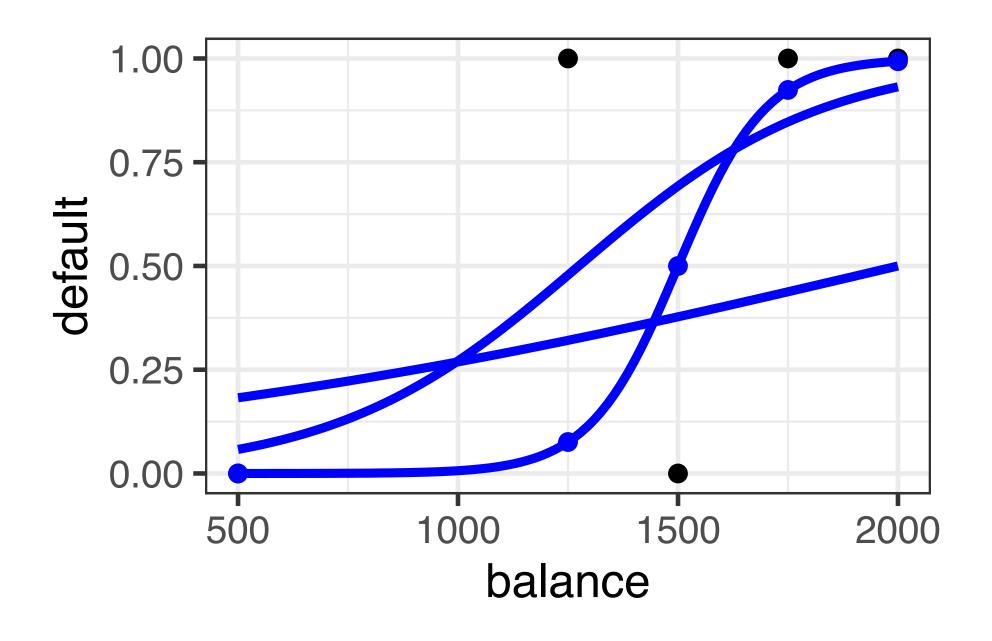
β_0	β_1	Predicted probabilities			$\mathscr{L}(\beta_0,\beta_1)$
-2.0	0.001	0.8	X	0.3×0.6×0.4×0.5	= 0.03
-4.6	0.004	0.9	×	0.5×0.3×0.8×0.9	= 0.1
-15.0	0.01	1.0	X	$0.1 \times 0.5 \times 0.9 \times 1.0$	

probability of observing the data under the corresponding model:



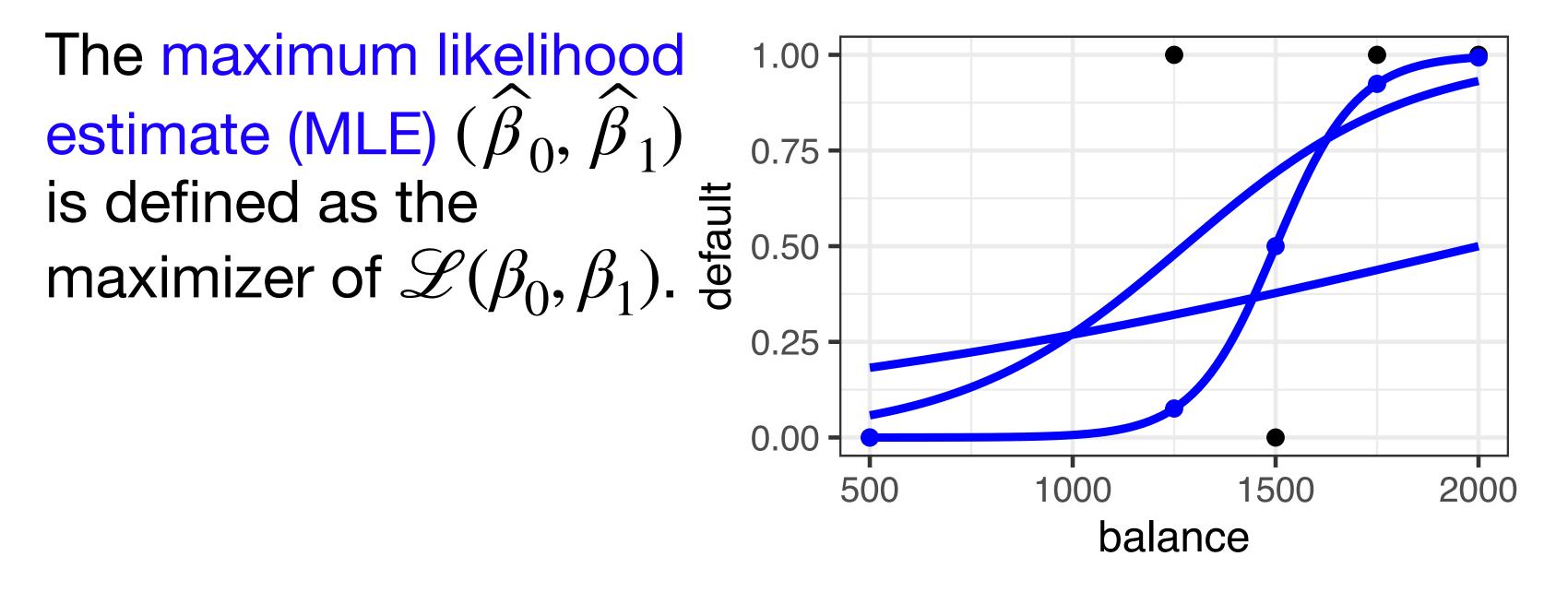
β_0	eta_1	Predicted probabilities			$ \mathcal{L}(\beta_0,\beta_1) $
-2.0	0.001	0.8	X	0.3×0.6×0.4×0.5	= 0.03
-4.6	0.004	0.9	X	$0.5 \times 0.3 \times 0.8 \times 0.9$	= 0.1
-15.0	0.01	1.0	X	$0.1 \times 0.5 \times 0.9 \times 1.0$	= 0.05

probability of observing the data under the corresponding model:



β_0	β_1	Predict	ed probabilities	$\mathscr{L}(\beta_0,\beta_1)$	
-2.0 0.0	001 0.8	×	0.3×0.6×0.4×0.5	= 0.03	Mathemati
-4.6 0.0	004 0.9	×	$0.5 \times 0.3 \times 0.8 \times 0.9$	= 0.1	expression logistic likelh
-15.0 0.0	01 1.0	X	$0.1 \times 0.5 \times 0.9 \times 1.0$	= 0.05	

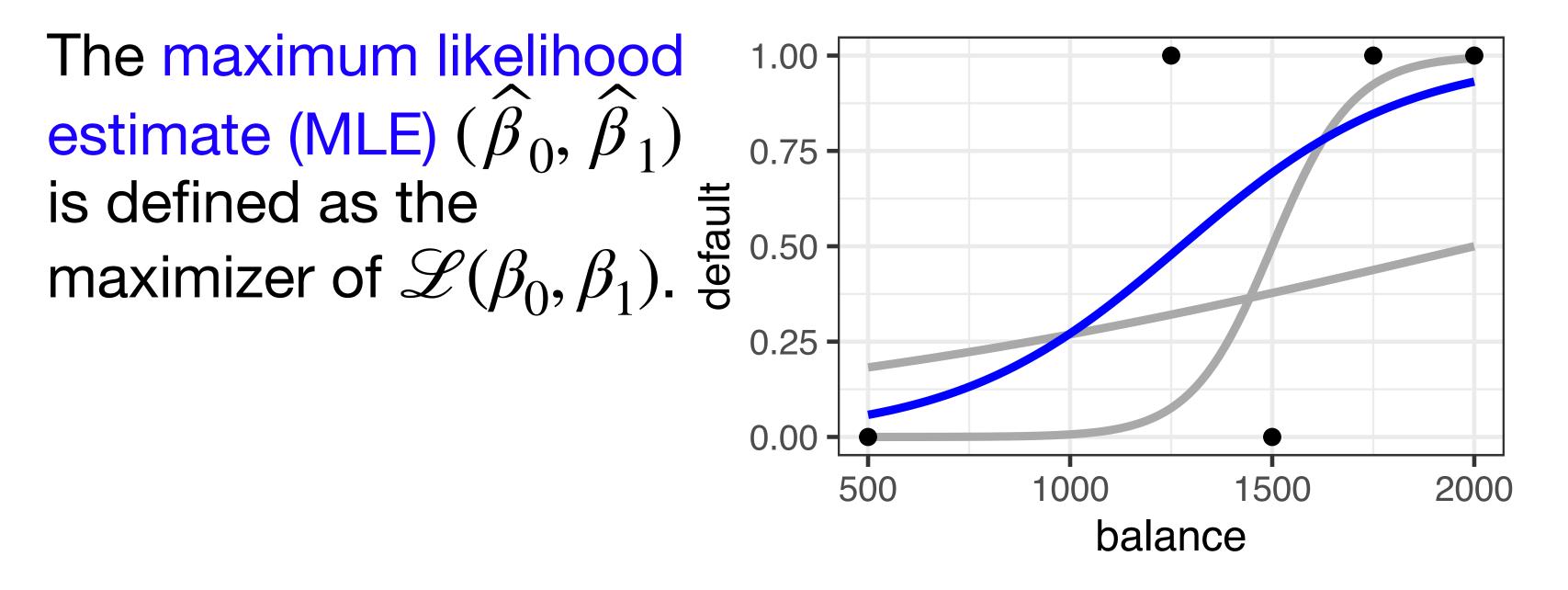
probability of observing the data under the corresponding model:



eta_0	eta_1		Predi	cted probabilities	$ \mathscr{L}(\beta_0,\beta_1) $	
-2.0	0.001	0.8	×	0.3×0.6×0.4×0.5	= 0.03	Mathemati
-4.6	0.004	0.9	×	0.5×0.3×0.8×0.9	= 0.1	expression
-15.0	0.01	1.0	X	$0.1 \times 0.5 \times 0.9 \times 1.0$	= 0.05	logistic likelh

Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

probability of observing the data under the corresponding model:

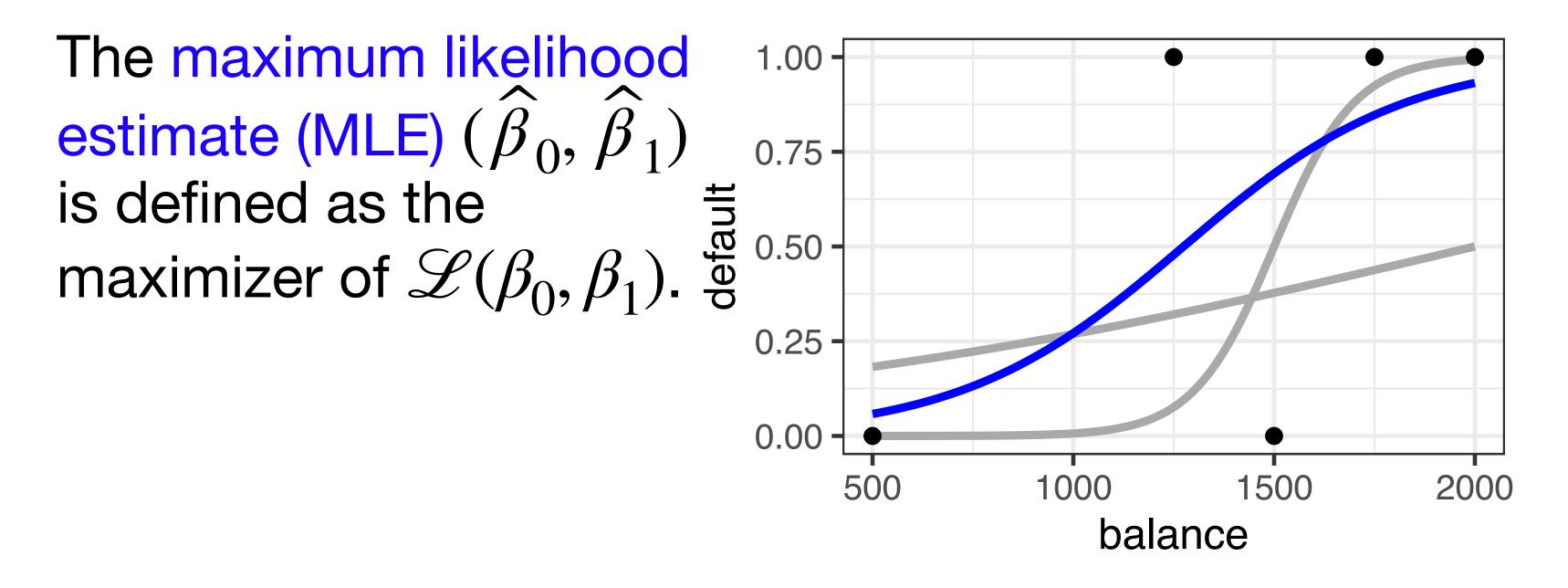


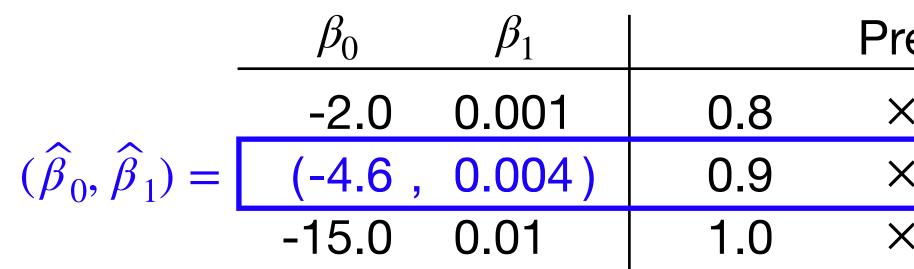
β_0	eta_1		Predi	cted probabilities	$ \mathscr{L}(\beta_0,\beta_1) $	
-2.0	0.001	0.8	X	0.3×0.6×0.4×0.5	= 0.03	Μ
-4.6	0.004	0.9	×	0.5×0.3×0.8×0.9	= 0.1	ex logi
-15.0	0.01	1.0	×	0.1×0.5×0.9×1.0	= 0.05	logi

Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

Mathematical xpression for gistic likelhood

probability of observing the data under the corresponding model:





Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

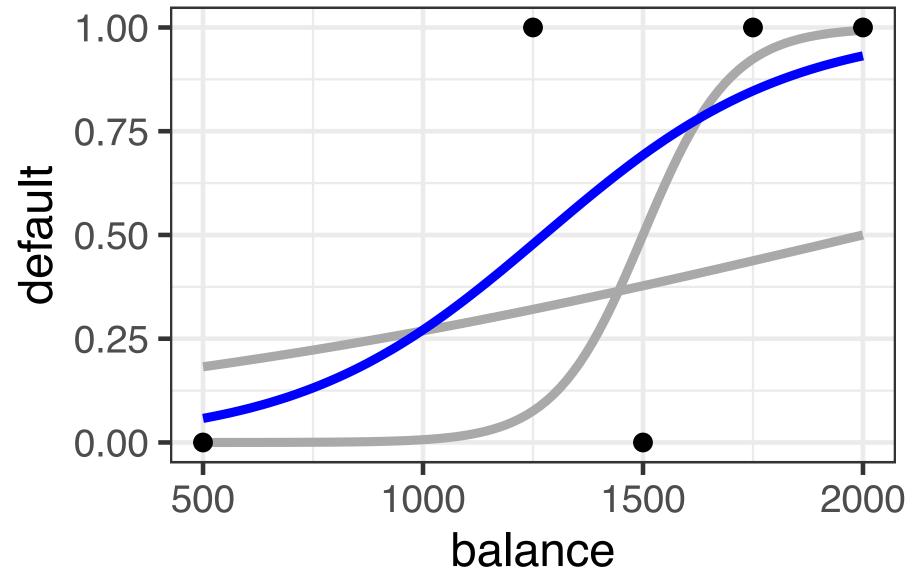
redi	cted probabilities	$\mathscr{L}(\beta_0,\beta_1)$	
X	0.3×0.6×0.4×0.5	= 0.03	N
X	0.5×0.3×0.8×0.9	= 0.1	e> log
Х	0.1×0.5×0.9×1.0	= 0.05	log

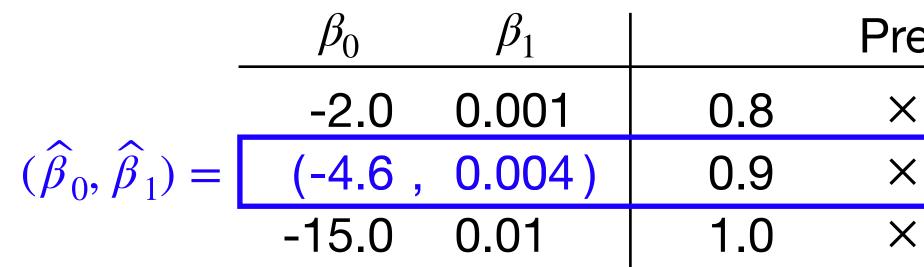
Mathematical xpression for gistic likelhood

probability of observing the data under the corresponding model:

The maximum likelihood estimate (MLE) $(\hat{\beta}_0, \hat{\beta}_1)$ is defined as the maximizer of $\mathscr{L}(\beta_0, \beta_1)$.

It cannot be written in closed form; it is found via iterative algorithm.





Given candidate parameters (β_0, β_1) , we define the likelihood $\mathscr{L}(\beta_0, \beta_1)$ as the

redi	cted probabilities	$\mathscr{L}(\beta_0,\beta_1)$	
X	0.3×0.6×0.4×0.5	= 0.03	N
X	0.5×0.3×0.8×0.9	= 0.1	e> log
Х	0.1×0.5×0.9×1.0	= 0.05	log

Mathematical xpression for gistic likelhood

Multiple logistic regression

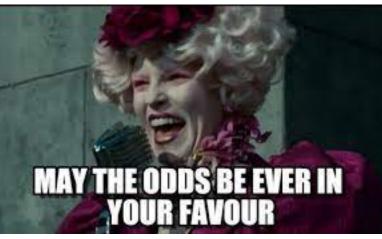
- Like with linear regression, can include multiple features, e.g.
 - $\mathbb{P}[default | student, balance, income]$
 - = logistic($\beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income})$
- The logistic regression likelihood, as well as the maximum likelihood estimates $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3)$ are defined analogously.

For given (student, balance, income), suppose $\mathbb{P}[\text{default}] = 1/4$.

Interpreting logistic regression coefficients $\mathbb{P}[\text{default}] = \text{logistic}(\beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income})$ For given (student, balance, income), suppose $\mathbb{P}[\text{default}] = 1/4$. $\sum_{i=1}^{\text{For given (student, balance, income),}} \sup_{i=1/4.} \sum_{j=1/4}^{\text{For given (student, balance, income),}} \sum_{j=1/4}^{\text{For giv$

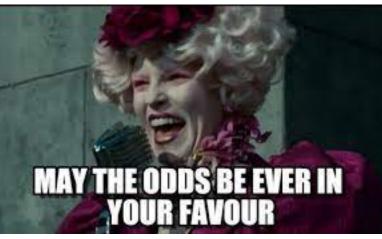
For given (student, balance, income), $\sup_{\text{suppose } \mathbb{P}[\text{default}] = 1/4.$ $\log \frac{\mathbb{P}[\text{default}]}{1 - \mathbb{P}[\text{default}]} = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income}$ $\log_{1} - \mathbb{P}[\text{default}] = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income}$

$$\begin{split} & \underset{\text{suppose } \mathbb{P}[\text{default}] = 1/4.}{\text{For given (student, balance, income),}} \\ & \underset{\text{suppose } \mathbb{P}[\text{default}] = 1/4.}{\text{I} - \mathbb{P}[\text{default}]} = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income} \\ & \underset{\text{log-odds (the score from before)}}{\text{log-odds (the score from before)}} \end{split}$$



For given (student, balance, income), suppose $\mathbb{P}[default] = 1/4$.

$\begin{array}{c} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$



For given (student, balance, income), suppose $\mathbb{P}[default] = 1/4$.

For given (student, balance, income), $suppose \mathbb{P}[default] = 1/4.$ $\log \frac{\mathbb{P}[default]}{1 - \mathbb{P}[default]} = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income}$ $\int \text{Then, odds} = 1:3 = 1/3 \text{ and } \log\text{-odds} = \log(1/3) \approx -1.$

For given (student, balance, income), suppose $\mathbb{P}[default] = 1/4$.

Increasing balance by 500 while controlling for the other features tends to (additively) increase the log-odds of default by $500 \cdot \beta_2$.

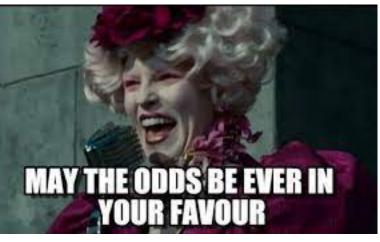
For given (student, balance, income), $\sup_{\text{suppose } \mathbb{P}[\text{default}] = 1/4.$ $\log \frac{\mathbb{P}[\text{default}]}{1 - \mathbb{P}[\text{default}]} = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income}$ $\log \frac{1}{1 - \mathbb{P}[\text{default}]} = \beta_0 + \beta_1 \cdot \text{student} + \beta_2 \cdot \text{balance} + \beta_3 \cdot \text{income}$ $\int_{\text{log-odds (the score from before)}}^{\text{Then, odds} = 1:3 = 1/3} \operatorname{and } \log \text{-odds} = \log(1/3) \approx -1.$

For given (student, balance, income), suppose $\mathbb{P}[default] = 1/4$.

Increasing balance by 500 while controlling for the other features tends to (additively) increase the log-odds of default by $500 \cdot \beta_2$.

If $\beta_2 = 1/250$, then increasing balance by \$500 Increases log-odds by 2; new log-odds is -1 + 2 = 1.

$\begin{array}{c} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$



For given (student, balance, income), suppose $\mathbb{P}[default] = 1/4$.

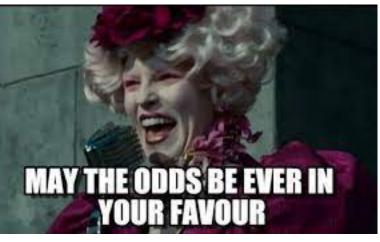
Increasing balance by 500 while controlling for the other features

tends to (additively) increase the log-odds of default by $500 \cdot \beta_2$.

If $\beta_2 = 1/250$, then increasing balance by \$500 Increases log-odds by 2; new log-odds is -1 + 2 =1.

Increasing balance by 500 while controlling for the other features tends to (multiplicatively) increase the odds of default by $e^{500\cdot\beta_2}$.

$\begin{array}{c} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$



For given (student, balance, income), suppose $\mathbb{P}[default] = 1/4$.

Increasing balance by 500 while controlling for the other features

tends to (additively) increase the log-odds of default by $500 \cdot \beta_2$.

If $\beta_2 = 1/250$, then increasing balance by \$500 Increases log-odds by 2; new log-odds is -1 + 2 =1.

Increasing balance by 500 while controlling for the other features tends to (multiplicatively) increase the odds of default by $e^{500\cdot eta_2}$.

New odds are $e^1 \approx 2.7 = 2.7 : 1$, so new prob is 2.7/3.7 \approx 0.7. Odds went from e^{-1} (1/3) to e^{1} (2.7), increase by factor of $e^{2} \approx 7.5$.



Classification via logistic regression default = $\begin{cases} \text{Yes,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} \ge 0.5; \\ \text{No,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} < 0.5. \end{cases}$

 $\widehat{\mathbb{P}}$ [default] > 0.5 $\iff \widehat{\beta}_0 + \widehat{\beta}_1 \cdot \text{student} + \widehat{\beta}_2 \cdot \text{balance} + \widehat{\beta}_3 \cdot \text{income} > 0$

Classification via logistic regression

default = $\begin{cases} \text{Yes,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} \ge 0.5; \\ \text{No,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} < 0.5. \end{cases}$

 $\widehat{\mathbb{P}}$ [default] > 0.5 $\iff \widehat{\beta}_0 + \widehat{\beta}_1 \cdot \text{student} + \widehat{\beta}_2 \cdot \text{balance} + \widehat{\beta}_3 \cdot \text{income} > 0$

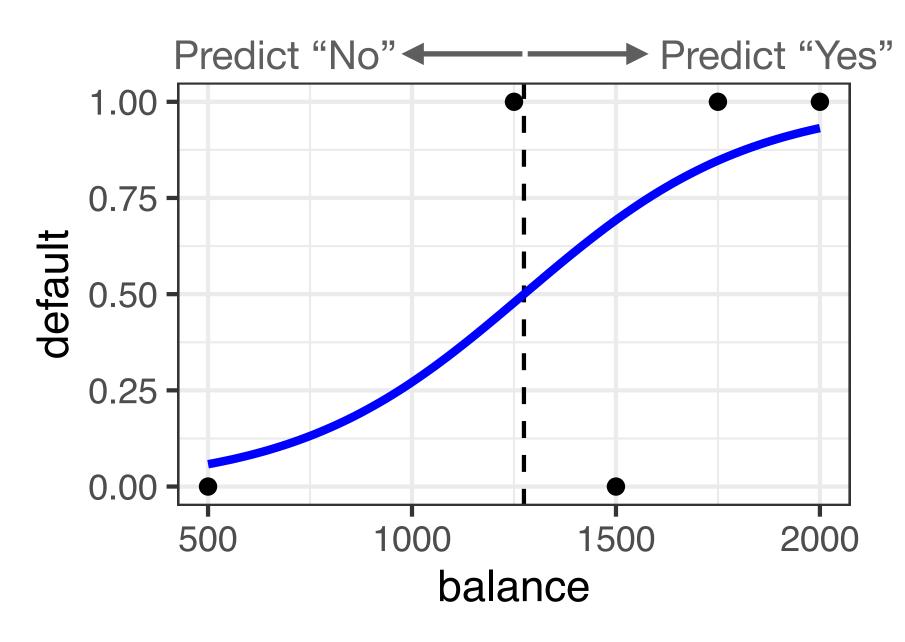
Logistic regression has a linear decision boundary.

Classification via logistic regression

default = $\begin{cases} \text{Yes,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} \ge 0.5; \\ \text{No,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} < 0.5. \end{cases}$

 $\widehat{\mathbb{P}}$ [default] > 0.5 $\iff \widehat{\beta}_0 + \widehat{\beta}_1 \cdot \text{student} + \widehat{\beta}_2 \cdot \text{balance} + \widehat{\beta}_3 \cdot \text{income} > 0$

Logistic regression has a linear decision boundary.

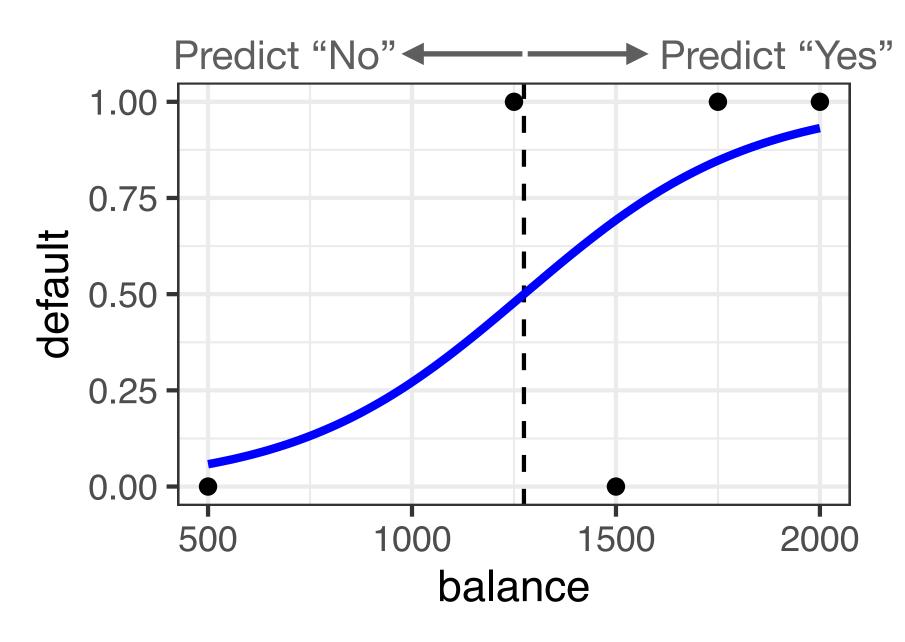


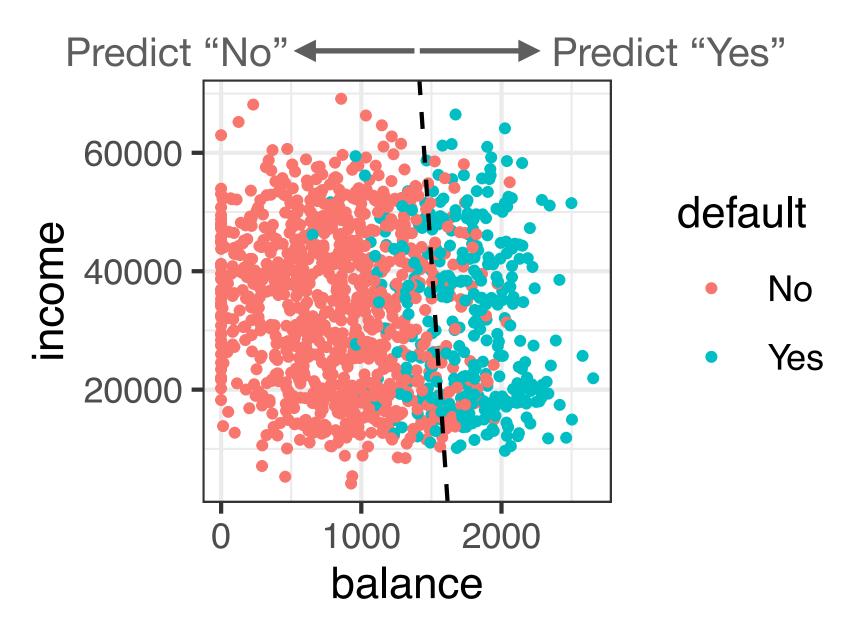
Classification via logistic regression

default = $\begin{cases} \text{Yes,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} \ge 0.5; \\ \text{No,} & \text{if } \widehat{\mathbb{P}} \text{ [default]} < 0.5. \end{cases}$

 $\widehat{\mathbb{P}}$ [default] > 0.5 $\iff \widehat{\beta}_0 + \widehat{\beta}_1 \cdot \text{student} + \widehat{\beta}_2 \cdot \text{balance} + \widehat{\beta}_3 \cdot \text{income} > 0$

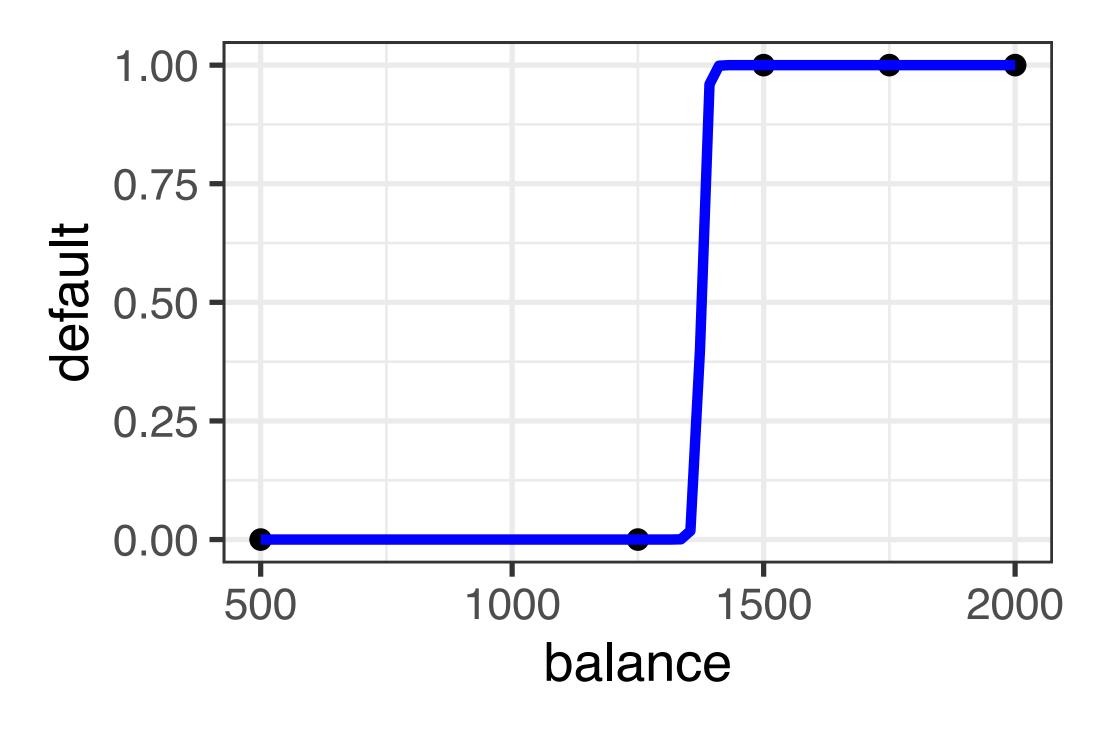
Logistic regression has a linear decision boundary.





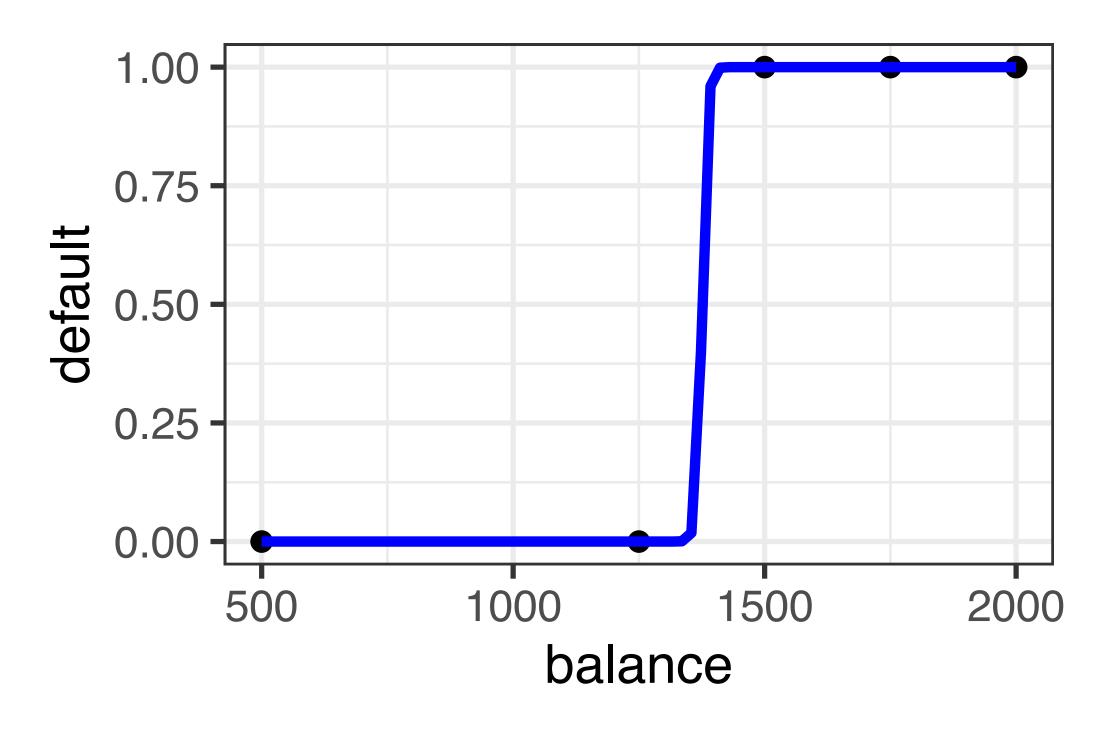
Caution: Separable data

When the two classes of response variable can be perfectly separated in feature space, logistic regression solution undefined, though perfect predictions possible.



Caution: Separable data

When the two classes of response variable can be perfectly separated in feature space, logistic regression solution undefined, though perfect predictions possible.



A similar phenomenon occurs in linear regression under perfect multicollinearity: The coefficient estimates are undefined but good prediction still possible.

Response type	Continuous	Binary
---------------	------------	--------

Response type Continuous		Binary	
Most common predictive model	Linear regression	Logistic regression	

Response type Continuous		Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood

Response type Continuous		Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood
Estimating coefficients	Least squares (closed form)	Maximum likelihood (iterative)

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit Mean squared error		Likelihood
Estimating coefficients	Least squares (closed form)	Maximum likelihood (iterative)
Interpreting coefficients	Unit increase in $X_j ightarrow$ increase in mean of Y by β_j	Unit increase in $X_j \rightarrow$ increase in odds of Y by e^{β_j}

Response type	Continuous	Binary
Most common predictive model	Linear regression	Logistic regression
Measure of fit	Mean squared error	Likelihood
Estimating coefficients	Least squares (closed form)	Maximum likelihood (iterative)
Interpreting coefficients	Unit increase in $X_j ightarrow$ increase in mean of Y by β_j	Unit increase in $X_j \rightarrow$ increase in odds of Y by e^{β_j}

Quiz Practice

Mathematical expression for logistic likelihood

default	balance	P[default = 1]	P[observed]
1	\$1250	$\frac{e^{\beta_0 + \beta_1 \cdot 1250}}{1 + e^{\beta_0 + \beta_1 \cdot 1250}}$	$\frac{e^{\beta_0 + \beta_1 \cdot 1250}}{1 + e^{\beta_0 + \beta_1 \cdot 1250}}$
0	\$500	$\frac{e^{\beta_0 + \beta_1 \cdot 500}}{1 + e^{\beta_0 + \beta_1 \cdot 500}}$	$\frac{1}{1 + e^{\beta_0 + \beta_1 \cdot 500}}$
1	\$2000	$\frac{e^{\beta_0 + \beta_1 \cdot 2000}}{1 + e^{\beta_0 + \beta_1 \cdot 2000}}$	$e^{\beta_0 + \beta_1 \cdot 2000}$ 1 + $e^{\beta_0 + \beta_1 \cdot 2000}$
1	\$1750	$\frac{e^{\beta_0 + \beta_1 \cdot 1750}}{1 + e^{\beta_0 + \beta_1 \cdot 1750}}$	$\frac{e^{\beta_0 + \beta_1 \cdot 1750}}{1 + e^{\beta_0 + \beta_1 \cdot 1750}}$
0	\$1500	$\frac{e^{\beta_0 + \beta_1 \cdot 1500}}{1 + e^{\beta_0 + \beta_1 \cdot 1500}}$	$\frac{1}{1+e^{\beta_0+\beta_1\cdot 1500}}$

$$\mathscr{L}(\beta_0, \beta_1) = \frac{e^{\beta_0 + \beta_1 \cdot 1250}}{1 + e^{\beta_0 + \beta_1 \cdot 1250}} \times \frac{1}{1 + e^{\beta_0 + \beta_1 \cdot 500}} \times \frac{1}{1 + e^{\beta_0 + \beta_1 \cdot$$

Data



