Classification STAT 4710

September 26, 2023

Where we are

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

- Unit 4: Tree-based methods
- Unit 5: Deep learning

Lecture 1: Model complexity

Lecture 2: Bias-variance trade-off

Lecture 3: Cross-validation

Lecture 4: Classification

Lecture 5: Unit review and quiz in class

Recall: Clinical decision support

A patient comes into the emergency room with stroke symptoms. Based on her CT scan, is the stroke ischemic or hemorrhagic?

Image source: Sutton et al. 2020 (npj Digit. Med.)

Recall: Clinical decision support

A patient comes into the emergency room with stroke symptoms. Based on her CT scan, is the stroke ischemic or hemorrhagic?

This is a binary classification problem: $Y \in \{0,1\}$.

test misclassification error

Image source: Sutton et al. 2020 (npj Digit. Med.)

Given features $X = (X_1, ..., X_p)$, the goal is to guess a response $\hat{Y} = \hat{f}(X)$ that is close to the true response, i.e. $\hat{Y} \approx Y$. Measure of success is usually the

or
$$= \frac{1}{N} \sum_{i=1}^{N} I(Y_i^{\text{test}} \neq \hat{f}(X_i^{\text{test}})).$$

Suppose that the true relationship between Y and X is

- $\mathbb{P}[Y = 1 | X] = p(X)$, for some function p.

Suppose that the true relationship between Y and X is

 $\mathbb{P}[Y=1 | X] = p(X)$, for some function p.

Then, the optimal classifier (called the Bayes classifier) is

$$\hat{f}^{\mathsf{Bayes}}(X) = \begin{cases} \end{cases}$$

- 1, if $p(X) \ge 0.5$; $\int 0$ if p(X) < 0.5.

Suppose that the true relationship between Y and X is

 $\mathbb{P}[Y=1 | X] = p(X)$, for some function p.

Then, the optimal classifier (called the Bayes classifier) is

$$\hat{f}^{\mathsf{Bayes}}(X) = \begin{cases} \end{cases}$$

$$\hat{f}(X) = \begin{cases} 1, \\ 0 \end{cases}$$

- 1, if $p(X) \ge 0.5$;
- $0 \quad \text{if } p(X) < 0.5.$
- Classifiers usually build an approximation $\hat{p}(X) \approx \mathbb{P}[Y = 1 | X]$, and define
 - if $\widehat{p}(X) \ge 0.5$;
 - if $\hat{p}(X) < 0.5$.

 X_2

Simulated binary classification data. Bayes classifier in purple.

KNN illustration: Classify a test point based on majority vote among 3 nearest neighbors.

Simulated binary classification data. Bayes classifier in purple.

E.g., color = stroke type, (X_1, X_2) = CT image.

KNN illustration: Classify a test point based on majority vote among 3 nearest neighbors.

$$\sum_{i \in \mathcal{N}_K} I(Y_i^{\text{train}} = 1).$$

Simulated binary classification data. Bayes classifier in purple.

E.g., color = stroke type, (X_1, X_2) = CT image.

KNN: K=10

Model complexity and misclassification error

KNN: K=100

Same Goldilocks principle as in regression case:

- Too little complexity: Can't capture the true trend in the data.

KNN: K=1

• Too much complexity: Too sensitive to noise in the training data (overfitting).

Mathematically: Applies only to continuous response variables and MSE.

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

For the estimate $\widehat{p}(X)$

For classifying $\hat{Y} = I(p(X) \ge 0.5)$

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

For the estimate $\widehat{p}(X)$

• Bias: $\mathbb{E}[\hat{p}(X)] - p(X)$

For classifying $\widehat{Y} = I(p(X) \ge 0.5)$

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

For the estimate $\widehat{p}(X)$

- Bias: $\mathbb{E}[\hat{p}(X)] p(X)$
- Variance: Var[$\hat{p}(X)$]

For classifying $\widehat{Y} = I(p(X) \ge 0.5)$

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

For the estimate $\widehat{p}(X)$

- Bias: $\mathbb{E}[\hat{p}(X)] p(X)$ —
- Variance: Var[$\hat{p}(X)$]

- For classifying $\widehat{Y} = I(p(X) \ge 0.5)$
- Bias: Predict wrong class on average, to the extent \hat{p} on wrong side of 0.5

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

For the estimate $\widehat{p}(X)$

- Bias: $\mathbb{E}[\hat{p}(X)] p(X)$
- Variance: Var[$\hat{p}(X)$]

- For classifying $\widehat{Y} = I(p(X) \ge 0.5)$
- Bias: Predict wrong class on average, to the extent \hat{p} on wrong side of 0.5
- Variance: Prediction varies with training set, to the extent \hat{p} fluctuates above or below 0.5

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.

For the estimate $\widehat{p}(X)$

- Bias: $\mathbb{E}[\hat{p}(X)] p(X)$
- Variance: Var[$\hat{p}(X)$]

- For classifying $\hat{Y} = I(p(X) \ge 0.5)$
- Bias: Predict wrong class on average, to the extent \hat{p} on wrong side of 0.5
- Variance: Prediction varies with training set, to the extent \hat{p} fluctuates above or below 0.5
 - Irreducible error (AKA Bayes error): Error incurred by Bayes classifier because $0 < \mathbb{P}[Y = 1 | X] < 1.$

Cross-validation based on misclassification error (otherwise same as before)

Cross-validation based on misclassification error (otherwise same as before)

Cross-validation based on misclassification error (otherwise same as before)

"So classification is not too hard!"

class imbalance

less frequent than the other. For example:

- Credit card transaction classification: normal versus fraudulent
- COVID testing: negative versus positive

In many real-world classification problems, one class (say Y = 1) is significantly

less frequent than the other. For example:

- Credit card transaction classification: normal versus fraudulent
- COVID testing: negative versus positive

misclassification error is not the right metric.

In many real-world classification problems, one class (say Y = 1) is significantly

Often in these cases, the costs of misclassification are also asymmetric, i.e. the

less frequent than the other. For example:

- Credit card transaction classification: normal versus fraudulent
- COVID testing: negative versus positive

misclassification error is not the right metric.

In many real-world classification problems, one class (say Y = 1) is significantly

- Often in these cases, the costs of misclassification are also asymmetric, i.e. the
- Let's say 1% of credit card transactions are fraudulent. Then, the classifier that always predicts "not fraudulent" will have a misclassification error of only 1%.

less frequent than the other. For example:

- Credit card transaction classification: normal versus fraudulent
- COVID testing: negative versus positive

misclassification error is not the right metric.

that ignore the minority class.

In many real-world classification problems, one class (say Y = 1) is significantly

- Often in these cases, the costs of misclassification are also asymmetric, i.e. the
- Let's say 1% of credit card transactions are fraudulent. Then, the classifier that always predicts "not fraudulent" will have a misclassification error of only 1%.
- Cross-validation based on misclassification error leads to overly simple models

Binary classification terminology

Positive: Y = 1(e.g. COVID positive)

Negative: Y = 0(e.g. COVID negative)

Binary classification terminology

Positive: Y = 1(e.g. COVID positive)

Predicted Positive

Negative: Y = 0(e.g. COVID negative)

Predicted Negative

	Actually Positive	Actually Negative
d	True Positive (TP) (E.g. Sick person testing positive)	False Positive (FP) (E.g. Healthy person testing positive)
d	False negative (FN) (E.g. Sick person testing negative)	True Negative (TN) (E.g. Healthy person testing negative)

Thinking about misclassification costs

Thinking about misclassification costs

The cost of a false negative might be much greater than a false positive:
The cost of a false negative might be much greater than a false positive:

- Undetected fraudulent credit card transaction (false negative) \rightarrow drained bank account. Cost: $C_{FN} =$ \$10,000.

The cost of a false negative might be much greater than a false positive:

- Undetected fraudulent credit card transaction (false negative) \rightarrow drained bank account. Cost: $C_{FN} =$ \$10,000.
- False alarm of fraud (false positive) \rightarrow annoying text message and/or replaced credit card. Cost: $C_{FP} =$ \$10.

The cost of a false negative might be much greater than a false positive:

- Undetected fraudulent credit card transaction (false negative) \rightarrow drained bank account. Cost: $C_{FN} =$ \$10,000.
- False alarm of fraud (false positive) \rightarrow annoying text message and/or replaced credit card. Cost: $C_{FP} =$ \$10.

Weighted misclassification error:

$$\frac{1}{N}\sum_{i=1}^{N} w_i \cdot I(\widehat{Y}_i^{\text{test}} \neq Y_i^{\text{test}}),$$

where
$$w_i = \begin{cases} C_{\text{FP}} & \text{if } Y_i^{\text{test}} = 0 \\ C_{\text{FN}} & \text{if } Y_i^{\text{test}} = 1 \end{cases}$$

The cost of a false negative might be much greater than a false positive:

- Undetected fraudulent credit card transaction (false negative) \rightarrow drained bank account. Cost: $C_{FN} =$ \$10,000.
- False alarm of fraud (false positive) \rightarrow annoying text message and/or replaced credit card. Cost: $C_{FP} =$ \$10.

Weighted misclassification error:

$$\frac{1}{N}\sum_{i=1}^{N} w_i \cdot I(\hat{Y}_i^{\text{test}} \neq Y_i^{\text{test}}),$$

where
$$w_i = \begin{cases} C_{\text{FP}} & \text{if } Y_i^{\text{test}} = 0 \\ C_{\text{FN}} & \text{if } Y_i^{\text{test}} = 1 \end{cases}$$

 w_i are called observation weights; increase penalty for misclassifying positives.

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\widehat{p}(X^{\text{test}}) = \frac{\sum_{i \in \mathcal{N}_{K}} w_{i} \cdot I(Y_{i}^{\text{train}} = 1)}{\sum_{i \in \mathcal{N}_{K}} w_{i}}$

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\widehat{p}(X^{\text{test}}) = \frac{\sum_{i \in \mathcal{N}_K} w_i \cdot I(Y_i^{\text{train}} = 1)}{\sum_{i \in \mathcal{N}_K} w_i}$

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\hat{p}(X^{\text{test}}) =$

^w blue	^w yellow	$\hat{p}(X_{test})$	Predicted class
1	1	1/3	Blue

$$\begin{cases} C_{\text{FP}} & \text{if } Y_i^{\text{train}} = 0\\ C_{\text{FN}} & \text{if } Y_i^{\text{train}} = 1\\ \sum_{i \in \mathcal{N}_K} w_i \cdot I(Y_i^{\text{train}} = 1)\\ \hline \sum_{i \in \mathcal{N}_K} w_i \end{cases}$$

Upweight positive (rare) training cases so that the classifier predicts positive more often.

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\widehat{p}(X^{\text{test}}) =$

^w blue	^w yellow	$\hat{p}(X_{test})$	Predicted class
1	1	1/3	Blue
1	2	1/2	Yellow

$$\begin{cases} C_{\text{FP}} & \text{if } Y_i^{\text{train}} = 0\\ C_{\text{FN}} & \text{if } Y_i^{\text{train}} = 1\\ \sum_{i \in \mathcal{N}_K} w_i \cdot I(Y_i^{\text{train}} = 1)\\ & \sum_{i \in \mathcal{N}_K} w_i \end{cases}$$

Upweight positive (rare) training cases so that the classifier predicts positive more often.

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\hat{n}(X^{\text{test}})$

^w blue	^w yellow	$\hat{p}(X_{test})$	Predicted class	
1	1	1/3	Blue	
1	2	1/2	Yellow	(As though two yellows in cire

$$\begin{cases} C_{\text{FP}} & \text{if } Y_i^{\text{train}} = 0 \\ C_{\text{FN}} & \text{if } Y_i^{\text{train}} = 1 \end{cases} \\ \sum_{i \in \mathcal{N}_K} w_i \cdot I(Y_i^{\text{train}} = 1) \\ \sum_{i \in \mathcal{N}_K} w_i \end{cases}$$

Upweight positive (rare) training cases so that the classifier predicts positive more often.

cle)

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\hat{n}(X^{\text{test}})$

	Predicted class	$\hat{p}(X_{test})$	^w yellow	^w blue
	Blue	1/3	1	1
(As though two yellows in cir	Yellow	1/2	2	1
	Yellow	3/5	3	1

$$\begin{cases} C_{\mathsf{FP}} & \text{if } Y_i^{\mathsf{train}} = 0 \\ C_{\mathsf{FN}} & \text{if } Y_i^{\mathsf{train}} = 1 \end{cases} \\ \sum_{i \in \mathcal{N}_K} w_i \cdot I(Y_i^{\mathsf{train}} = 1) \\ \sum_{i \in \mathcal{N}_K} w_i \end{cases}$$

Upweight positive (rare) training cases so that the classifier predicts positive more often.

cle)

Many machine learning algorithms accommodate observation weights, i.e. seek to optimize the weighted misclassification error.

For example, consider weighted K-nearest neighbors:

Positive (rare) training points Negative (common) training points

 $\widehat{p}(X^{\text{test}})$ =

	Predicted class	$\hat{p}(X_{test})$	^w yellow	^w blue
	Blue	1/3	1	1
(As though two yellows in cir	Yellow	1/2	2	1
(As though three yellows in c	Yellow	3/5	3	1

$$\begin{cases} C_{\text{FP}} & \text{if } Y_i^{\text{train}} = 0 \\ C_{\text{FN}} & \text{if } Y_i^{\text{train}} = 1 \end{cases} \\ \sum_{i \in \mathcal{N}_K} w_i \cdot I(Y_i^{\text{train}} = 1) \\ \sum_{i \in \mathcal{N}_K} w_i \end{cases}$$

Upweight positive (rare) training cases so that the classifier predicts positive more often.

Cross-validation with imbalanced classes

Cross-validation with imbalanced classes

Split the data into folds after stratifying by the response class.

Cross-validation with imbalanced classes

- Split the data into folds after stratifying by the response class.
- Use weighted misclassification error when assessing models on in-fold data.

Evaluating classification errors on a test set

Evaluating classification errors on a test set

Given C_{FN} and C_{FP} , best single number of summarize classification performance is the weighted misclassification error on the test set.

Evaluating classification errors on a test set

Given C_{FN} and C_{FP} , best single number of summarize classification performance is the weighted misclassification error on the test set.

Another way of assessing classification performance—without quantifying

- costs—is the confusion matrix and associated metrics (e.g. precision and recall).

Confusion matrix

	Actually Positive	Actually N
Predicted Positive	10 True Positives (TP) (E.g. Sick person testing positive)	20 False Pos (E.g. Health) testing po
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Nega (E.g. Healthy testing ne

legative

sitives (FP) y person ositive)

atives (TN) y person egative)

Confusion matrix

	Actually Positive	Actually N
Predicted Positive	10 True Positives (TP) (E.g. Sick person testing positive)	20 False Pos (E.g. Health) testing po
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Nega (E.g. Healthy testing ne

Metrics based on confusion matrix

legative

sitives (FP) y person ositive)

atives (TN) y person egative)

Confusion matrix

	Actually Positive	Actually N
Predicted Positive	10 True Positives (TP) (E.g. Sick person testing positive)	20 False Pos (E.g. Healthy testing po
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Nega (E.g. Healthy testing ne

Confusion matrix

	Actually Positive	Actually N
Predicted Positive	10 True Positives (TP) (E.g. Sick person testing positive)	20 False Pos (E.g. Healthy testing po
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Nega (E.g. Healthy testing ne

What fraction of predicted positives are actually positive?

Confusion matrix

	Actually Positive	Actually Negative	TP = 1	0
Predicted	10 True Positives (TP)	20 False Positives (FP)	$\frac{\text{Precision}}{\text{TP} + \text{FP}} = \frac{1}{3}$	0
Positive	testing positive)	testing positive)	$\begin{array}{rcl} FR = \frac{TP}{TP + FN} = \frac{1}{5} \end{array}$	$\frac{0}{0}$
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Negatives (TN) (E.g. Healthy person testing negative)		U

Confusion matrix

	Actually Positive	Actually Negative	Dracicion -	TP	10
Predicted	10 True Positives (TP) (E.a. Sick person	20 False Positives (FP)	Precision =	TP + FP	30
Positive	testing positive)	testing positive)	Recall =		$=\frac{10}{50}$
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Negatives (TN) (E.g. Healthy person testing negative)			30

What fraction of actual positives are predicted positive?

Confusion matrix

	Actually Positive	Actually N
Predicted Positive	10 True Positives (TP) (E.g. Sick person testing positive)	20 False Pos (E.g. Health testing po
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Nega (E.g. Health) testing ne

Confusion matrix

	Actually Positive	Actually N
Predicted Positive	10 True Positives (TP) (E.g. Sick person testing positive)	20 False Pos (E.g. Health testing po
Predicted Negative	40 False negatives (FN) (E.g. Sick person testing negative)	30 True Nega (E.g. Healthy testing ne

One number summarizing performance of the classifier.

• Classification problem is similar in some ways to regression; different in others.

• Classification problem is similar in some ways to regression; different in others. • Classification done by estimating $\mathbb{P}[Y = 1 | X]$, thresholding at 0.5 (e.g. KNN).

- Classification problem is similar in some ways to regression; different in others. • Classification done by estimating $\mathbb{P}[Y = 1 | X]$, thresholding at 0.5 (e.g. KNN).
- The bias-variance tradeoff carries over intuitively, but not mathematically.

- Classification problem is similar in some ways to regression; different in others.
- Classification done by estimating $\mathbb{P}[Y = 1 | X]$, thresholding at 0.5 (e.g. KNN).
- The bias-variance tradeoff carries over intuitively, but not mathematically.
- The misclassification error not a good metric for problems when different misclassifications have different costs; often the case with imbalanced classes.

- Classification problem is similar in some ways to regression; different in others.
- Classification done by estimating $\mathbb{P}[Y = 1 | X]$, thresholding at 0.5 (e.g. KNN).
- The bias-variance tradeoff carries over intuitively, but not mathematically.
- The misclassification error not a good metric for problems when different misclassifications have different costs; often the case with imbalanced classes.
- Differential misclassification costs can be remedied by building observations weights into training.

Summary

- Classification problem is similar in some ways to regression; different in others.
- Classification done by estimating $\mathbb{P}[Y = 1 | X]$, thresholding at 0.5 (e.g. KNN).
- The bias-variance tradeoff carries over intuitively, but not mathematically.
- The misclassification error not a good metric for problems when different misclassifications have different costs; often the case with imbalanced classes.
- Differential misclassification costs can be remedied by building observations weights into training.
- Performance metrics for classifiers include the weighted misclassification error and confusion matrix based metrics like precision and recall.

