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Where we are

Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods


Unit 5: Deep learning

Lecture 1: Model complexity


Lecture 2: Bias-variance trade-off


Lecture 3: Cross-validation


Lecture 4: Classification


Lecture 5: Unit review and quiz in class
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Recall: Clinical decision support

Image source: Sutton et al. 2020 (npj Digit. Med.)

A patient comes into the emergency 
room with stroke symptoms. Based 
on her CT scan, is the stroke 
ischemic or hemorrhagic?

This is a binary classification problem: .


Given features , the goal is to guess a response  that is close to the 
true response, i.e. . Measure of success is usually the


.

Y ∈ {0,1}

X = (X1, …, Xp) ̂Y = ̂f(X)
̂Y ≈ Y

test misclassification error =
1
N

N

∑
i=1

I(Ytest
i ≠ ̂f(Xtest

i ))
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Suppose that the true relationship between  and  isY X

,    for some function .ℙ[Y = 1 |X] = p(X) p

Then, the optimal classifier (called the Bayes classifier) is

.̂fBayes(X) = {1, if p(X) ≥ 0.5;
0 if p(X) < 0.5.

Classifiers usually build an approximation , and definêp (X) ≈ ℙ[Y = 1 |X]

 .̂f(X) = {1, if  ̂p (X) ≥ 0.5;
0 if  ̂p (X) < 0.5.
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Example: K-nearest neighbors

Simulated binary classification data.

Bayes classifier in purple. 


E.g., color = stroke type,  = CT image.(X1, X2)

KNN illustration: Classify a test point based on 
majority vote among 3 nearest neighbors.

Applying KNN with K = 10 to simulated data.

̂p (Xtest) =
1
K ∑

i∈𝒩K

I(Ytrain
i = 1) .

𝒩K(Xtest)



Model complexity and misclassification error

Same Goldilocks principle as in regression case:


• Too little complexity: Can’t capture the true trend in the data.


• Too much complexity: Too sensitive to noise in the training data (overfitting).
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Bias-variance tradeoff

For the estimate ̂p (X)

• Bias: 𝔼[ ̂p (X)] − p(X)

• Variance: Var[ ̂p (X)]

For classifying ̂Y = I(p(X) ≥ 0.5)

• Bias: Predict wrong class on average, to the 
extent  on wrong side of 0.5̂p

• Variance: Prediction varies with training set, 
to the extent  fluctuates above or below 0.5 ̂p

• Irreducible error (AKA Bayes error): Error 
incurred by Bayes classifier because 

.0 < ℙ[Y = 1 |X] < 1

Mathematically: Applies only to continuous response variables and MSE.

Intuitively: Applies to any prediction problem, including classification.
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*What is df for KNN? See HW2.

*
misclassification errors,


rather than mean-squared errors
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Class imbalance
In many real-world classification problems, one class (say ) is significantly 
less frequent than the other. For example:

Y = 1

• Credit card transaction classification: normal versus fraudulent

• COVID testing: negative versus positive

Often in these cases, the costs of misclassification are also asymmetric, i.e. the 
misclassification error is not the right metric.

Let’s say 1% of credit card transactions are fraudulent. Then, the classifier that 
always predicts “not fraudulent” will have a misclassification error of only 1%. 

Cross-validation based on misclassification error leads to overly simple models 
that ignore the minority class.
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Y = 1
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 are called observation weights; increase penalty for misclassifying positives.wi
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Cross-validation with imbalanced classes

• Split the data into folds after stratifying by the response class.

• Use weighted misclassification error when assessing models on in-fold data.
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Given  and , best single number of summarize classification 
performance is the weighted misclassification error on the test set.

CFN CFP

Another way of assessing classification performance—without quantifying   
costs—is the confusion matrix and associated metrics (e.g. precision and recall).
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Confusion matrix Metrics based on confusion matrix

One number summarizing performance of the classifier.
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Summary
• Classification problem is similar in some ways to regression; different in others.

• Classification done by estimating , thresholding at 0.5 (e.g. KNN).ℙ[Y = 1 |X]

• The bias-variance tradeoff carries over intuitively, but not mathematically.

• The misclassification error not a good metric for problems when different 
misclassifications have different costs; often the case with imbalanced classes.

• Differential misclassification costs can be remedied by building observations 
weights into training.

• Performance metrics for classifiers include the weighted misclassification error 
and confusion matrix based metrics like precision and recall.


