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Rolling into Unit 2

/Unit 1: R for data mining
Unit 2: Prediction fundamentals
Unit 3: Regression-based methods
Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Model complexity

Lecture 2: Bias-variance trade-off
Lecture 3: Cross-validation
Lecture 4: Classification

Lecture 5: Unit review and quiz in class




Lecture outline

Model complexity:
How flexibly a predictive model can fit its training data.
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Lecture outline

Model complexity:
How flexibly a predictive model can fit its training data.

1. Case study: Fitting curves to scatter plots

2. Definition of model complexity

3. How model complexity impacts
predictive performance




Example: Fit trend of iIncome based on age

What does the trend look like?
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Intercept-only model (no trend)

income = [, + €
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Linear model (linear trend)

income = f, + [, - age + €
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Polynomial model (quadratic trend)

income = ff, + f; -age + , - age2 + €
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Polynomial model (cubic trend)

income = [, + f; - age + [, - age? + f; - age3 + €
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20th degree polynomial model

income = f§,+ - age + J, - age? + -+« + P,y - age20 + €
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Piece-wise polynomial (piece-wise constant)

income =f, - l(age € l,)+ -+ f,- l(age € L)) + ¢
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Piece-wise polynomial (piece-wise constant)

income =f, - l(age € l,)+ -+ f,- l(age € L)) + ¢
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Piece-wise polynomial (piece-wise linear)

income = (f,; + f;a0e) - 1(age € I}) + -+ + (Ppq + P14a0e) - 1(age € ;) + €
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Piece-wise polynomial (piece-wise quadratic)
income = (fy; + f;1age + p,jage?) - l(age € [)) + -+ (...) - l(age € ) + €
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Spline (piece-wise linear)
income = (fy; + f,age) - 1(age € I}) + -+ + (fyy + P1420e) - 1(age € 1)) + €
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Spline (piece-wise linear)
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Spline (piece-wise linear)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €
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Basis function value

Spline (piece-wise linear)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €
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income = [, + f,

Spline (piece-wise cubic)
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Natural cubic spline (with 5 total knots)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €
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Natural cubic spline (with 5 total knots)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €
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Natural cubic spline (with 5 total knots)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €

The preferred way to fit smooth curves to data.
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Natural cubic spline (with 8 total knots)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €

The preferred way to fit smooth curves to data.
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Natural cubic spline (with 20 total knots)

income = f, + f, - g(age) + -+ + [, - g, ,(age) + €

The preferred way to fit smooth curves to data.
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Y= Po+Br- 1)+ o+ By gy () Fe.
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All of these models are linear regression models of the form
y=py+ P gx)+ -+ ﬁp_l : gp_l(x) + €.

Given training data (x, y;), ..., (x,, ¥,), they are fit using least squares:
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Fitting linear regression models via least squares

All of these models are linear regression models of the form
y=py+ P gx)+ -+ ﬁp_l : gp_l(x) + €.

Given training data (x, y;), ..., (x,, y,), they are fit using least squares:

Ve

(ﬁoa cees ﬂp—l) = arg min 2 Vi—=Po+ P &1(x) + -+ + ﬁp—l ' 8p_1(xi)))2
Pos--Ppt =1

-

VaN

.e. (B, .- P p—1) is the coefficient vector minimizing the the squared distance
between the training responses y; and their predictions.
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The model complexity of least squares

The model fitting process involves a search over p parameters:

Bor s By 2 0= B+ By 1) + -+ + By - 8y )
Pos---Pp-1 /J i=1
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The model complexity of least squares

The model fitting process involves a search over p parameters:

Bos s Bpr) —Z (i = (Bo+ 1 - 1) + -+ + B,y - gy 1 ()
Bos-- 5P

-1/ =1

The complexity of least squares for the model

y=P0+p -+ -+, 8,1(x)+e



The model complexity of least squares

The model fitting process involves a search over p parameters:
n

PaN \ . . 2

(ﬂ()a coey ﬂp—l) arg min 2 (yz _ (180 +ﬂ1 ) gl(xi) + e ﬁp—l ) gp—l(xi))) .
ﬁ()""’ﬂp—l i=1

The complexity of least squares for the model

y=P0+p -+ -+, 8,1(x)+e

is quantified by its degrees of freedom (df), the number of free parameters ,B]



The model complexity of least squares

The model fitting process involves a search over p parameters:

Y = Bo+ By g1(6) + -+ By - g1 (X))

i=1

(IBO"" ﬂp 1)

arg min
Bos--By—1

The complexity of least squares for the model
y=po+b -8+ +p, 1 -8,1(x)+e€
is quantified by its degrees of freedom (df), the number of free parameters ,B]

For example, the model above has p degrees of freedom.
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The complexity of polynomial and spline fits

 Polynomials of degree p have p + 1
degrees of freedom.
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have K degrees of freedom.*
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The complexity of polynomial and spline fits

 Polynomials of degree p have p + 1 500 -
degrees of freedom. | .

« Natural cubic splines with K total knots
have K degrees of freedom.*
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The complexity of polynomial and spline fits

 Polynomials of degree p have p + 1 200 -
degrees of freedom.

 Natural cubic splines with K total knots 150 - SRR

have K degrees of freedom.*

Income

 Model complexity has an important effect
on predictive performance:

e Too flexible — 1
too sensitive to noise in training data - ; ;

* Not flexible enough — Age
can’t capture the underlying trend

— 2 knots — 8 knots — 20 knots

*Caution: Sometimes the intercept is excluded from the spline definition, so a spline with
K total knots is sometimes considered to have df = K — 1.
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Prediction performance

Construct predictive model f based on training data (X’{rain, Y ’{rain), e (X;tlrain, Y;Elrain)_

The root mean squared training error is
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Training RMSE = \/ — Z (ytrain _ fixtrainyy2,
n =1

Will deploy f on test data XJ{eSt, ...,X}\,eSt to guess Y :gest = f(X}eSt) for each i. Each X}eSt
comes with a response Y}eSt, unknown to the predictive model.



Prediction performance

Construct predictive model f based on training data (X’{rain, Y ’{rain), e (X;tlrain, Y}'grain)_

The root mean squared training error is

1 <& R .
Training RMSE = \/ — Z (ytrain _ fixtrainyy2,
n -

Will deploy f on test data XteSt co X}\,eSt to guess Y :gest = f(X}eSt) for each i. Each X}eSt
comes with a response Y test , unknown to the predictive model.

Ytest

Prediction quality is quantified by test error: extent to which Y; test e.g.

1 R 1 & ~
Test RMSE =  |— Z (Yf[est . f(Xfcest))z . Z (Y;[est . Y}est)z_

\Ni=1 | | \Ni=1




Model complexity impacts prediction performance
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Model complexity impacts prediction performance

Model complexity: how closely the model f
fits the training data:

Y;[rain _ f(X;crain) + ¢,
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Model complexity impacts prediction performance

Model complexity: how closely the modelf df = 2
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Model complexity impacts prediction performance

Model complexity: how closely the model f df = 2
fits the training data: oo i
§ 4 Lokt i
train _ train o £ R
Yl _ f (Xl ) + €l 2o 40 : 60
= Age
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Model complexity impacts prediction performance

Model complexity: how closely the model f df = 2
fits the training data: oo i
Ytrain — f(Xtrain) + €. 1 = 1:2 ¥ .' Sy
l o I 3 2o 40 60
= Age
During training, f picks up on patterns in U . df=4
both f (the signal) and ¢, (the noise). 5 g =
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Training error of f decreases as we increase &*
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Model complexity impacts prediction performance

Model complexity: how closely the modelf

fits the training data:

Y;[rain _ f(X;crain) + ¢,

31+

During training, fpicks up on patterns in

30 -

both f (the signal) and ¢, (the noise).

Root mean squared error

Training error of f decreases as we increase &* pe
model complexity, but test error will be high S

if model complexity is too low or too high. 200-
Training error is an underestimate of the test 2] T
error, especially as the model complexity : ; ; : ;

Degrees of freedom Age

increases (overfitting). Not flexible Too flexible

enough Error type train —o— test Year 2007 (train) + 2008 (test)



