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Rolling into Unit 2

Unit 1: R for data mining


Unit 2: Prediction fundamentals


Unit 3: Regression-based methods


Unit 4: Tree-based methods


Unit 5: Deep learning

Lecture 1: Model complexity


Lecture 2: Bias-variance trade-off


Lecture 3: Cross-validation


Lecture 4: Classification


Lecture 5: Unit review and quiz in class



Lecture outline
Model complexity: 

How flexibly a predictive model can fit its training data.
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Lecture outline
Model complexity: 

How flexibly a predictive model can fit its training data.
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3. How model complexity impacts      
predictive performance



Example: Fit trend of income based on age
What does the trend look like?
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Intercept-only model (no trend)
income = β0 + ϵ
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Linear model (linear trend)
income = β0 + β1 ⋅ age + ϵ
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Polynomial model (quadratic trend)
income = β0 + β1 ⋅ age + β2 ⋅ age2 + ϵ
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Polynomial model (cubic trend)
income = β0 + β1 ⋅ age + β2 ⋅ age2 + β3 ⋅ age3 + ϵ
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20th degree polynomial model
income = β0 + β1 ⋅ age + β2 ⋅ age2 + ⋯ + β20 ⋅ age20 + ϵ
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Piece-wise polynomial (piece-wise constant)
income = β1 ⋅ 1(age ∈ I1) + ⋯ + β4 ⋅ 1(age ∈ I4) + ϵ

I1 I2 I3 I4
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Piece-wise polynomial (piece-wise constant)
income = β1 ⋅ 1(age ∈ I1) + ⋯ + β4 ⋅ 1(age ∈ I4) + ϵ

I1 I2 I3 I4

Boundary knots

Internal knots
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Piece-wise polynomial (piece-wise linear)
income = (β01 + β11age) ⋅ 1(age ∈ I1) + ⋯ + (β04 + β14age) ⋅ 1(age ∈ I4) + ϵ

I1 I2 I3 I4
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Piece-wise polynomial (piece-wise quadratic)
income = (β01 + β11age + β21age2) ⋅ 1(age ∈ I1) + ⋯ + ( . . . ) ⋅ 1(age ∈ I4) + ϵ

I1 I2 I3 I4
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Spline (piece-wise linear)
income = (β01 + β11age) ⋅ 1(age ∈ I1) + ⋯ + (β04 + β14age) ⋅ 1(age ∈ I4) + ϵ
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Spline (piece-wise linear)
income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ
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income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ
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Spline (piece-wise cubic)

I1 I2 I3 I4

income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ
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income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ
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income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ

Tails off linearly



50

100

150

200

20 40 60
Age

In
co

m
e

(th
ou

sa
nd

s 
of

 $
)

Natural cubic spline (with 5 total knots)
income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ

Tails off linearly

The preferred way to fit smooth curves to data.
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Natural cubic spline (with 8 total knots)
income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ
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The preferred way to fit smooth curves to data.
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Natural cubic spline (with 20 total knots)
income = β0 + β1 ⋅ g1(age) + ⋯ + βp−1 ⋅ gp−1(age) + ϵ
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The preferred way to fit smooth curves to data.



Fitting linear regression models via least squares



Fitting linear regression models via least squares
All of these models are linear regression models of the form

.y = β0 + β1 ⋅ g1(x) + ⋯ + βp−1 ⋅ gp−1(x) + ϵ



Fitting linear regression models via least squares
All of these models are linear regression models of the form

.y = β0 + β1 ⋅ g1(x) + ⋯ + βp−1 ⋅ gp−1(x) + ϵ

Given training data , they are fit using least squares:(x1, y1), …, (xn, yn)

,( ̂β 0, …, ̂β p−1) ≡ arg min
β0,…,βp−1

n

∑
i=1

(yi − (β0 + β1 ⋅ g1(xi) + ⋯ + βp−1 ⋅ gp−1(xi)))2



Fitting linear regression models via least squares
All of these models are linear regression models of the form

.y = β0 + β1 ⋅ g1(x) + ⋯ + βp−1 ⋅ gp−1(x) + ϵ

Given training data , they are fit using least squares:(x1, y1), …, (xn, yn)

,( ̂β 0, …, ̂β p−1) ≡ arg min
β0,…,βp−1

n

∑
i=1

(yi − (β0 + β1 ⋅ g1(xi) + ⋯ + βp−1 ⋅ gp−1(xi)))2

i.e.  is the coefficient vector minimizing the the squared distance 
between the training responses  and their predictions.

( ̂β 0, …, ̂β p−1)
yi



The model complexity of least squares



The model complexity of least squares
The model fitting process involves a search over  parameters:p

.( ̂β 0, …, ̂β p−1) ≡ arg min
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n

∑
i=1
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The model complexity of least squares
The model fitting process involves a search over  parameters:p

.( ̂β 0, …, ̂β p−1) ≡ arg min
β0,…,βp−1

n

∑
i=1

(yi − (β0 + β1 ⋅ g1(xi) + ⋯ + βp−1 ⋅ gp−1(xi)))2
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The model complexity of least squares
The model fitting process involves a search over  parameters:p

.( ̂β 0, …, ̂β p−1) ≡ arg min
β0,…,βp−1

n

∑
i=1

(yi − (β0 + β1 ⋅ g1(xi) + ⋯ + βp−1 ⋅ gp−1(xi)))2

The complexity of least squares for the model 

 y = β0 + β1 ⋅ g1(x) + ⋯ + βp−1 ⋅ gp−1(x) + ϵ

is quantified by its degrees of freedom (df), the number of free parameters . βj

For example, the model above has  degrees of freedom.p
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The complexity of polynomial and spline fits
• Polynomials of degree  have  

degrees of freedom.
p p + 1

• Natural cubic splines with  total knots 
have  degrees of freedom. 

K
K

• Model complexity has an important effect 
on predictive performance:
• Too flexible                                    

too sensitive to noise in training data
→

• Not flexible enough                     
can’t capture the underlying trend

→

*Caution: Sometimes the intercept is excluded from the spline definition, so a spline with 

 total knots is sometimes considered to have df = .K K − 1

*
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Prediction performance
Construct predictive model  based on training data .̂f (Xtrain

1 , Ytrain
1 ), …, (Xtrain

n , Ytrain
n )

The root mean squared training error is

Training RMSE . =
1
n

n

∑
i=1

(Ytrain
i − ̂f(Xtrain

i ))2

Will deploy  on test data  to guess  for each . Each  
comes with a response , unknown to the predictive model.

̂f Xtest
1 , …, Xtest

N
̂Y test
i = ̂f(Xtest

i ) i Xtest
i

Ytest
i

Prediction quality is quantified by test error: extent to which , e.g. Ytest
i ≈ ̂Y test

i

Test RMSE . =
1
N

N

∑
i=1

(Ytest
i − ̂f(Xtest

i ))2 =
1
N

N

∑
i=1

(Ytest
i − ̂Y test

i )2
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Model complexity impacts prediction performance

Model complexity: how closely the model  
fits the training data:

̂f

.Ytrain
i = f(Xtrain

i ) + ϵi

During training,  picks up on patterns in 
both  (the signal) and  (the noise).

̂f
f ϵi

Training error of  decreases as we increase 
model complexity, but test error will be high 
if model complexity is too low or too high.

̂f

Training error is an underestimate of the test 
error, especially as the model complexity 
increases (overfitting).

28

29

30

31

2 3 4 5 6
Degrees of freedom

R
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r

Error type train test

50

100

150

200

20 40 60
Age

In
co

m
e

df = 2

50

100

150

200

20 40 60
Age

In
co

m
e

df = 4

50

100

150

200

20 40 60
Age

In
co

m
e

Year 2007 (train) 2008 (test)

df = 6

Not flexible

enough Too flexible


