
Splines, model complexity, and prediction error

September 14, 2023

library(tidyverse)
library(splines)

Fitting, plotting, and predicting with splines
Let’s first see how some of the plots from the lecture slides were generated. These plots are based on the
Wage data from the ISLR2 package, a subset of which is given in income.csv.
income <- read_csv("income_data.csv")
income

## # A tibble: 2,920 x 3
## age income year
## <dbl> <dbl> <dbl>
## 1 18 75.0 2006
## 2 24 70.5 2004
## 3 45 131. 2003
## 4 43 155. 2003
## 5 50 75.0 2005
## 6 54 127. 2008
## 7 44 170. 2009
## 8 30 112. 2008
## 9 41 119. 2006
## 10 52 129. 2004
## # i 2,910 more rows

Fitting linear regression models
Let’s focus on the data from 2007:
income_2007 <- income |>
filter(year == 2007) |>
select(-year)

income_2007

## # A tibble: 376 x 2
## age income
## <dbl> <dbl>
## 1 45 117.
## 2 34 81.3
## 3 56 129.
## 4 40 161.
## 5 27 110.
## 6 57 177.
## 7 42 85.4
## 8 41 88.0
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## 9 38 129.
## 10 51 94.1
## # i 366 more rows

We fit linear models using the lm() function (built into base R). We specify a formula object as well as the
dataset to use. For example:
lm(income ~ age, data = income_2007)

##
## Call:
## lm(formula = income ~ age, data = income_2007)
##
## Coefficients:
## (Intercept) age
## 83.4995 0.5765

Note that, by default, the intercept is included in addition to the predictors listed in the formula object. If
we want the intercept-only model, we can use the special notation 1:
lm(income ~ 1, data = income_2007)

##
## Call:
## lm(formula = income ~ 1, data = income_2007)
##
## Coefficients:
## (Intercept)
## 108.2

If we want a model without intercept, we can write
lm(income ~ age - 1, data = income_2007)

##
## Call:
## lm(formula = income ~ age - 1, data = income_2007)
##
## Coefficients:
## age
## 2.396

Polynomial and spline models are linear models as well, so they can be computed via lm(). We just need the
special functions poly() (built into base R) and ns() (in the splines package). For polynomials, we just
need to specify the degree:
lm(income ~ poly(age, degree = 2), data = income_2007)

##
## Call:
## lm(formula = income ~ poly(age, degree = 2), data = income_2007)
##
## Coefficients:
## (Intercept) poly(age, degree = 2)1 poly(age, degree = 2)2
## 108.2 127.7 -151.0

For natural splines, we just need to specify the degrees of freedom (the number and location of knots are
chosen automatically):
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lm(income ~ ns(age, df = 5), data = income_2007)

##
## Call:
## lm(formula = income ~ ns(age, df = 5), data = income_2007)
##
## Coefficients:
## (Intercept) ns(age, df = 5)1 ns(age, df = 5)2 ns(age, df = 5)3
## 65.348 69.939 29.958 59.448
## ns(age, df = 5)4 ns(age, df = 5)5
## 67.113 -8.112

Careful! Note that df = 5 excludes the intercept. So there are a total of 6 degrees of freedom in this fit.

Plotting
Let’s first plot the data:
income_2007 |>

ggplot(aes(x = age, y = income)) +
geom_point()
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Ok, so how do we plot those fitted curves? We can use another geom called geom_smooth(). The relevant
arguments are

• method (we will usually use lm)
• formula (specifying the linear regression formula)
• se (whether to draw error bars; we will usually use FALSE).

Let’s take some examples. Here is a linear model fit:
income_2007 |>

ggplot(aes(x = age, y = income)) +
geom_point() +
geom_smooth(

method = "lm",
formula = "y ~ x", # NOTE: use y and x instead of income and age!
se = FALSE

)
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Here is a polynomial fit:
income_2007 |>

ggplot(aes(x = age, y = income)) +
geom_point() +
geom_smooth(

method = "lm",
formula = "y ~ poly(x,2)", # NOTE: use y and x instead of income and age!
se = FALSE

)
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Here is a natural cubic spline fit:
income_2007 |>

ggplot(aes(x = age, y = income)) +
geom_point() +
geom_smooth(

method = "lm",
formula = "y ~ ns(x, df = 5)", # NOTE: use y and x instead of income and age!
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se = FALSE
)
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Prediction
In order to make predictions for a test dataset (e.g. the data from the year 2008), we need to first save the fit
object, and then use the predict() function:
income_2008 <- income |>
filter(year == 2008) |>
select(-year)

spline_fit <- lm(income ~ ns(age, df = 5), data = income_2007)
predicted_incomes_2008 <- predict(spline_fit, newdata = income_2008)
head(predicted_incomes_2008)

## 1 2 3 4 5 6
## 117.17964 99.72272 119.32551 110.16106 113.49437 91.36378
length(predicted_incomes_2008)

## [1] 377

Let’s take a look at how well the predictions match the true incomes for 2008:
income_2008 |>

mutate(predicted_income = predicted_incomes_2008) |>
ggplot(aes(x = income, y = predicted_income)) +
geom_point() +
geom_abline(slope = 1, colour = "red", linetype = "dashed") +
coord_fixed()
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To quantify how far the predictions are from the truth, we can compute the root mean squared test error:
actual_incomes_2008 <- income_2008$income
sqrt(mean((actual_incomes_2008 - predicted_incomes_2008)ˆ2))

## [1] 31.6266

By contrast, let’s take a look at the RMS training error:
actual_incomes_2007 <- income_2007$income
fitted_incomes_2007 <- spline_fit$fitted.values
sqrt(mean((fitted_incomes_2007 - actual_incomes_2007)ˆ2))

## [1] 27.51901

Now, let’s calculate the training and test errors for df = 1,2,3,4,5:
num_df_values <- 5
df_values <- 1:num_df_values
train_errors <- numeric(num_df_values)
test_errors <- numeric(num_df_values)
for (i in 1:length(df_values)) {

df <- df_values[i]
lm_fit <- lm(income ~ ns(age, df = df), data = income_2007)
fitted_incomes_2007 <- lm_fit$fitted.values
predicted_incomes_2008 <- predict(lm_fit, newdata = income_2008)
actual_incomes_2007 <- income_2007 |> pull(income)
actual_incomes_2008 <- income_2008 |> pull(income)
train_errors[i] <- sqrt(mean((fitted_incomes_2007 - actual_incomes_2007)ˆ2))
test_errors[i] <- sqrt(mean((predicted_incomes_2008 - actual_incomes_2008)ˆ2))

}

Let’s take a look at these errors:
train_errors

## [1] 29.56470 28.62369 28.25417 28.13682 27.51901
test_errors

## [1] 31.58897 30.49050 30.48212 30.64534 31.62660

Now let’s plot them:
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tibble(
df = df_values + 1,
error_test = test_errors,
error_train = train_errors

) |>
pivot_longer(-df,

names_to = "Error type",
names_prefix = "error_",
values_to = "error"

) |>
mutate(`Error type` = factor(`Error type`, levels = c("train", "test"))) |>
ggplot(aes(x = df, y = error, colour = `Error type`)) +
geom_point() +
geom_line() +
labs(

x = "Degrees of freedom",
y = "Root mean squared error"

) +
theme(legend.position = "bottom")
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Exercise: Exploring model complexity in a simulation
In the income data, we don’t know what the “true” trend is. It may be illuminating, therefore, to replace this
data with simulated data (i.e. data we generate ourselves). Suppose that Y = f(X) + ε, and let us assume f
take the following form:
f <- function(x) {

0.2 * xˆ11 * (10 * (1 - x))ˆ6 + 10 * (10 * x)ˆ3 * (1 - x)ˆ10
}

It’s hard to understand what this function is but we can plot it:
ggplot() +

stat_function(fun = f, colour = "red")
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Now, let’s create 500 training data points (X,Y ) as follows. First, we generate 500 equally spaced values of x
between 0 and 1.
num_observations <- 500
x <- seq(from = 0, to = 1, length.out = num_observations)

Then we generate the response vector y based on the formula above:
y <- f(x) + rnorm(n = num_observations, mean = 0, sd = 2)

Finally, we put x and y into a tibble called data_train:
data_train <- tibble(x = x, y = y)
data_train

## # A tibble: 500 x 2
## x y
## <dbl> <dbl>
## 1 0 -1.63
## 2 0.00200 -0.342
## 3 0.00401 0.762
## 4 0.00601 -0.872
## 5 0.00802 0.890
## 6 0.0100 1.87
## 7 0.0120 -1.88
## 8 0.0140 -2.57
## 9 0.0160 -0.393
## 10 0.0180 -1.76
## # i 490 more rows

1. Create a scatter plot of these data, overlaying the function f in red.

2. Take a look at what natural spline fits look like for this data, using different degrees of freedom. Plot
natural spline fits with degrees of freedom (excluding intercept) equal to 2,10,25,50 (use separate plots
for each value of df). For each of these plots, superimpose the true trend as a red line. Comment on
what happens as you increase the degrees of freedom. Which of these four values seems to fit the scatter
plot best?

3. Create a test data set (named data_test) with 500 additional points from the same distribution and
compute the root mean square test error for each of the four spline fits above. Does the degrees of
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freedom that gives the closest fit to the underlying trend also lead to the lowest test error?
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