
Data Wrangling

September 7, 2023

1 Introduction
Unlike diamonds, data from the real world are not already built into an R package and are rarely are as clean.
This lecture is about data wrangling, the art of getting your data into R in a useful form for visualization
and modeling. These notes draw on Chapters 6, 8, 18-20, and 21 from R4DS.

Figure 1: Image source: R4DS Chapter 9.

We will cover:

• Data import using readr (getting the data into R)
• Tidy data (the most convenient data format to work with in R)
• Data tidying using tidyr (getting our data into a format amenable to analysis)

Let’s load the tidyverse:
library(tidyverse)

2 Data import (R4DS Chapter 11)
Data come in several different formats, e.g. comma-separated values (csv), tab-separated values (tsv), or
Excel files. To read files in csv or tsv formats, use read_csvand read_tsv, respectively. These are both part
of the readr package, which is part of the tidyverse. These functions are very similar to each other. To
read Excel files, use the read_excel function from the readxl package.
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Let’s see how read_csv works. The simplest way of calling it is to specify just one argument (the location of
the file you’d like to read):
heights = read_csv(file = "heights.csv")

## Rows: 1192 Columns: 6
## -- Column specification --------------------------------------------------------
## Delimiter: ","
## chr (2): sex, race
## dbl (4): earn, height, ed, age
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
heights

## # A tibble: 1,192 x 6
## earn height sex ed age race
## <dbl> <dbl> <chr> <dbl> <dbl> <chr>
## 1 50000 74.4 male 16 45 white
## 2 60000 65.5 female 16 58 white
## 3 30000 63.6 female 16 29 white
## 4 50000 63.1 female 16 91 other
## 5 51000 63.4 female 17 39 white
## 6 9000 64.4 female 15 26 white
## 7 29000 61.7 female 12 49 white
## 8 32000 72.7 male 17 46 white
## 9 2000 72.0 male 15 21 hispanic
## 10 27000 72.2 male 12 26 white
## # i 1,182 more rows

Note that read_csv has automatically inferred the types of each column. It also made the assumption that
the first line of the file are the column names. Sometimes, this is not the case. If column names are absent,
you should specify the col_names argument either as FALSE or as a character vector of column names.
Sometimes the files you’d like to read contain headers, i.e. one or more lines of metadata before the actual
data starts. In this case, you can either skip a fixed number of lines (e.g. the first three) via skip = 3 or
skip any lines starting with a certain character (e.g. #) via comment = "#". It’s a good idea to first open the
data file before deciding how to import it.

Exercise: Import heights2.csv.

3 Tidy data (R4DS Chapter 12)
“Happy families are all alike; every unhappy family is unhappy in its own way.” – Leo Tolstoy

“Tidy datasets are all alike, but every messy dataset is messy in its own way.” – Hadley Wickham

In this section, you will learn a consistent way to organise your data in R, an organisation called tidy data.
Getting your data into this format requires some upfront work, but that work pays off in the long term. Once
you have tidy data and the tidy tools provided by packages in the tidyverse, you will spend much less time
munging data from one representation to another, allowing you to spend more time on the analytic questions
at hand.

There are multiple ways to represent the same data:
table1

## # A tibble: 6 x 4
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## country year cases population
## <chr> <dbl> <dbl> <dbl>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table2

## # A tibble: 12 x 4
## country year type count
## <chr> <dbl> <chr> <dbl>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
table3

## # A tibble: 6 x 3
## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
table4a

## # A tibble: 3 x 3
## country `1999` `2000`
## <chr> <dbl> <dbl>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
table4b

## # A tibble: 3 x 3
## country `1999` `2000`
## <chr> <dbl> <dbl>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583

These are all representations of the same underlying data, but they are not equally easy to use. One dataset,
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the tidy dataset (table1), will be much easier to work with inside the tidyverse.

There are three interrelated rules which make a dataset tidy:

1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.

The figure below shows the rules visually.

All the packages in the tidyverse are designed to work with tidy data. The tidyr package is designed to
get non-tidy data into tidy format.

Exercise: Using prose, describe how the variables and observations are organised in each of the sample tables.

4 Pivoting
Once you get a non-tidy dataset, the first step is to figure out what the variables and observations are. Then,
you want to get the variables into columns and get observations into rows.

• If one variable is spread across multiple columns, you’ll need to pivot_longer.
• If one observation is scattered across multiple rows, you’ll need to pivot_wider.

4.1 Longer
A common problem is a dataset where some of the column names are not names of variables, but values of a
variable. Take table4a: the column names 1999 and 2000 represent values of the year variable, the values in
the 1999 and 2000 columns represent values of the cases variable, and each row represents two observations,
not one.
table4a

## # A tibble: 3 x 3
## country `1999` `2000`
## <chr> <dbl> <dbl>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766

To tidy a dataset like this, we need to pivot the offending columns into a new pair of variables. To describe
that operation we need three parameters:

• cols: The set of columns whose names are values, not variables. In this example, those are the columns
1999 and 2000.

• names_to: The name of the variable to move the column names to. Here it is year.
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• values_to: The name of the variable to move the column values to. Here it’s cases.

Together those parameters generate the call to pivot_longer():
table4a |>

pivot_longer(cols = c(`1999`, `2000`), names_to = "year", values_to = "cases")

## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <dbl>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Brazil 1999 37737
## 4 Brazil 2000 80488
## 5 China 1999 212258
## 6 China 2000 213766

Note that 1999 and 2000 are non-syntactic names (because they don’t start with a letter) so we have to
surround them in backticks.

In the final result, the pivoted columns are dropped, and we get new year and cases columns. Otherwise, the
relationships between the original variables are preserved. Visually, this is shown in the figure below.

Exercise: Use pivot_longer() to tidy table4b in a similar fashion. What is the difference between the code
used to tidy table4a and table4b?

To combine the tidied versions of table4a and table4b into a single tibble, we need to use left_join()
from the dplyr package. See Section 5 below.

4.2 Wider
pivot_wider() is the opposite of pivot_longer(). You use it when an observation is scattered across
multiple rows. For example, take table2: an observation is a country in a year, but each observation is
spread across two rows.
table2

## # A tibble: 12 x 4
## country year type count
## <chr> <dbl> <chr> <dbl>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
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## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583

To tidy this up, we first analyse the representation in similar way to pivot_longer(). This time, however,
we only need two parameters:

• The column to take variable names from. Here, it’s type.
• The column to take values from. Here it’s count.

Once we’ve figured that out, we can use pivot_wider().
table2 |>

pivot_wider(names_from = type, values_from = count)

## # A tibble: 6 x 4
## country year cases population
## <chr> <dbl> <dbl> <dbl>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

Exercises:

1. Why does this code fail?
table4a |>

pivot_longer(cols = c(1999, 2000), names_to = "year", values_to = "cases")
# Error: Can't subset columns that don't exist.
# Locations 1999 and 2000 don't exist.
# There are only 3 columns.
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2. Tidy the simple tibble below. Do you need to make it wider or longer? What are the variables?
tribble(

~pregnant, ~male, ~female,
"yes", NA, 10,
"no", 20, 12

)

## # A tibble: 2 x 3
## pregnant male female
## <chr> <dbl> <dbl>
## 1 yes NA 10
## 2 no 20 12

5 Joining
It’s rare that a data analysis involves only a single table of data. Typically you have many tables of data,
and you must combine them to answer the questions that you’re interested in. Collectively, multiple tables of
data are called relational data because it is the relations, not just the individual datasets, that are important.

Recall the tidy versions of table4a and table4b:
tidy4a <- table4a |>

pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
tidy4b <- table4b |>

pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")

tidy4a

## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <dbl>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Brazil 1999 37737
## 4 Brazil 2000 80488
## 5 China 1999 212258
## 6 China 2000 213766
tidy4b

## # A tibble: 6 x 3
## country year population
## <chr> <chr> <dbl>
## 1 Afghanistan 1999 19987071
## 2 Afghanistan 2000 20595360
## 3 Brazil 1999 172006362
## 4 Brazil 2000 174504898
## 5 China 1999 1272915272
## 6 China 2000 1280428583

Joining two tables requires one or more key columns that are shared between the two tables. In this case,
the key columns are country and year. There are several kinds of joins (see R4DS Chapter 13), but the
most common is the left join (left_join() in dplyr). Given two tables x and y, left_join(x,y) tries to
join y into x, keeping all rows in x (even if for some rows in x the key does not match any rows in y):

Let’s apply left_join() to tidy4a and tidy4b:
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Figure 2: Left join (figure adapted from R4DS Ch. 13)

left_join(x = tidy4a, y = tidy4b, by = c("country", "year"))

## # A tibble: 6 x 4
## country year cases population
## <chr> <chr> <dbl> <dbl>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

Exercise: Consider the two tibbles below. What is the key column? Without writing any code, can you
predict how many rows and columns left_join(x,y) and left_join(y,x) will have?
x <- tribble(

~state, ~population,
"PA", 12.8,
"TX", 28.6,
"NY", 19.5

)
y <- tribble(

~state, ~capital,
"TX", "Austin",
"CA", "Sacramento",
"NY", "New York City",
"MI", "Lansing"

)

6 Separating
So far you’ve learned how to tidy table2 and table4, but not table3. table3 has a different problem: we
have one column (rate) that contains two variables (cases and population). To fix this problem, we’ll need
the separate() function.

separate() pulls apart one column into multiple columns, by splitting wherever a separator character
appears. Take table3:
table3

## # A tibble: 6 x 3
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## country year rate
## <chr> <dbl> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583

The rate column contains both cases and population variables, and we need to split it into two variables.
separate() takes the name of the column to separate, and the names of the columns to separate into, as
shown below.
table3 |>

separate(rate, into = c("cases", "population"))

## # A tibble: 6 x 4
## country year cases population
## <chr> <dbl> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

By default, separate() will split values wherever it sees a non-alphanumeric character (i.e. a character that
isn’t a number or letter). For example, in the code above, separate() split the values of rate at the forward
slash characters. If you wish to use a specific character to separate a column, you can pass the character to
the sep argument of separate(). For example, we could rewrite the code above as:
table3 |>

separate(rate, into = c("cases", "population"), sep = "/")

## # A tibble: 6 x 4
## country year cases population
## <chr> <dbl> <chr> <chr>
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## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

Look carefully at the column types: you’ll notice that cases and population are character columns. This is
the default behaviour in separate(): it leaves the type of the column as is. Here, however, it’s not very
useful as those really are numbers. We can ask separate() to try and convert to better types using convert
= TRUE:
table3 |>

separate(rate, into = c("cases", "population"), convert = TRUE)

## # A tibble: 6 x 4
## country year cases population
## <chr> <dbl> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583

You can also pass a vector of integers to sep. separate() will interpret the integers as positions to split at.
Positive values start at 1 on the far-left of the strings; negative value start at -1 on the far-right of the strings.
When using integers to separate strings, the length of sep should be one less than the number of names in
into.

You can use this arrangement to separate the last two digits of each year. This make this data less tidy, but
is useful in other cases.
table3 |>

separate(year, into = c("century", "year"), sep = 2)

## # A tibble: 6 x 4
## country century year rate
## <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583

7 Missing values
Missing values, marked with NA, are often present in real datasets. Consider the following simple dataset:
stocks <- tibble(

year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
qtr = c( 1, 2, 3, 4, 2, 3, 4),
return = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66)

)
stocks
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## # A tibble: 7 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2016 2 0.92
## 6 2016 3 0.17
## 7 2016 4 2.66

The NA means that the return for the fourth quarter of 2015 is missing. Changing the representation of a
dataset can create more missing values. For example, let’s pivot wider:
stocks |>

pivot_wider(names_from = year, values_from = return)

## # A tibble: 4 x 3
## qtr `2015` `2016`
## <dbl> <dbl> <dbl>
## 1 1 1.88 NA
## 2 2 0.59 0.92
## 3 3 0.35 0.17
## 4 4 NA 2.66

We see now that the return for the first quarter of 2016, which does not appear in the original dataset
(implicitly missing), becomes an NA (explicitly missing).

Usually it’s a good idea to treat missing values with care, e.g. by thinking about why those values might be
missing in the first place. The simplest approach to dealing with missing values in a dataset is to remove all
rows containing any missing values. This can be done via na.omit(). For example:
stocks |>

na.omit()

## # A tibble: 6 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2016 2 0.92
## 5 2016 3 0.17
## 6 2016 4 2.66

8 Renaming columns
Sometimes, the column names of your data are messy. You can rename a column using rename() from the
dplyr package. For example:
stocks |>

rename(quarter = qtr) # rename(new name = old name)

## # A tibble: 7 x 3
## year quarter return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88

11



## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2016 2 0.92
## 6 2016 3 0.17
## 7 2016 4 2.66

9 References:
• Data import cheat sheet
• tidyr cheat sheet
• R4DS Chapters 6, 8, 18-20

10 Exercise
Let’s pull together everything you’ve learned to tackle a realistic data tidying problem. The who dataset
contains tuberculosis (TB) cases broken down by year, country, age, gender, and diagnosis method. The data
comes from the 2014 World Health Organization Global Tuberculosis Report.
who <- readRDS("who.rds")
who

## # A tibble: 7,240 x 60
## country iso2 iso3 year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Afghani~ AF AFG 1980 NA NA NA NA
## 2 Afghani~ AF AFG 1981 NA NA NA NA
## 3 Afghani~ AF AFG 1982 NA NA NA NA
## 4 Afghani~ AF AFG 1983 NA NA NA NA
## 5 Afghani~ AF AFG 1984 NA NA NA NA
## 6 Afghani~ AF AFG 1985 NA NA NA NA
## 7 Afghani~ AF AFG 1986 NA NA NA NA
## 8 Afghani~ AF AFG 1987 NA NA NA NA
## 9 Afghani~ AF AFG 1988 NA NA NA NA
## 10 Afghani~ AF AFG 1989 NA NA NA NA
## # i 7,230 more rows
## # i 52 more variables: new_sp_m4554 <dbl>, new_sp_m5564 <dbl>,
## # new_sp_m65 <dbl>, new_sp_f014 <dbl>, new_sp_f1524 <dbl>,
## # new_sp_f2534 <dbl>, new_sp_f3544 <dbl>, new_sp_f4554 <dbl>,
## # new_sp_f5564 <dbl>, new_sp_f65 <dbl>, new_sn_m014 <dbl>,
## # new_sn_m1524 <dbl>, new_sn_m2534 <dbl>, new_sn_m3544 <dbl>,
## # new_sn_m4554 <dbl>, new_sn_m5564 <dbl>, new_sn_m65 <dbl>, ...

The columns country, iso2, and iso3 are the name of each country, and two- and three-letter abbreviations.
The year column indicates in which the TB cases were counted. The remaining columns contain the number
of TB cases for a given type of TB, for a given sex and age of the patient. The names of these columns are
coded as follows:

1. The first three letters of each column denote whether the column contains new or old cases of TB. In
this dataset, each column contains new cases.

2. The next two letters describe the type of TB:

• rel stands for cases of relapse
• ep stands for cases of extrapulmonary TB

12

https://github.com/rstudio/cheatsheets/blob/master/data-import.pdf
https://github.com/rstudio/cheatsheets/blob/master/tidyr.pdf
https://r4ds.hadley.nz/


• sn stands for cases of pulmonary TB that could not be diagnosed by a pulmonary smear (smear
negative)

• sp stands for cases of pulmonary TB that could be diagnosed by a pulmonary smear (smear positive)

3. The sixth letter gives the sex of TB patients. The dataset groups cases by males (m) and females (f).

4. The remaining numbers gives the age group. The dataset groups cases into seven age groups:

• 014 = 0 – 14 years old
• 1524 = 15 – 24 years old
• 2534 = 25 – 34 years old
• 3544 = 35 – 44 years old
• 4554 = 45 – 54 years old
• 5564 = 55 – 64 years old
• 65 = 65 or older

The task is to tidy who. [Hint: You may want to first pivot the data into a longer format.]
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