Unit 1 Lecture 1: Intro to Modern Data Mining STAT 4710/5710

August 29, 2023

What is data mining?

Computer-assisted extraction of actionable information from data.

Example: Clinical Decision Support

A patient comes into the emergency room with stroke symptoms. Based on her CT scan, is the stroke ischemic or hemorrhagic?

Image source: Sutton et al. 2020 (npj Digit. Med.)

What questions can data answer?

Field	Example task
Healthcare	Clinical decision support
Business	Market segmentation
Finance	Stock market prediction
Technology	AI chatbot (e.g. ChatGPT)
Science	Protein folding
Politics	Election forecasting

Data mining has revolutionized each of these fields.

	Field	Example task
	Healthcare	Clinical decision support
/	Business	Market segmentation
	Finance	Stock market prediction
	Technology	Machine translation
	Science	Protein folding
	Politics	Election forecasting

	Field	Example task
	Healthcare	Clinical decision support
/	Business	Market segmentation
	Finance	Stock market prediction
	Technology	Machine translation
	Science	Protein folding
	Politics	Election forecasting

Two kinds of data mining problems

Data mining problems come in two kinds:

- Supervised learning: Learn the relationship between one variable of special interest (*response*) and the others (*features*).
- Unsupervised learning: Find patterns among observations (e.g. clusters) based on all variables.

Field	Key question
Healthcare	Clinical decision support
Business	Market segmentation
Finance	Stock market prediction
Technology	AI chatbot (e.g. ChatGPT)
Science	Protein folding
Politics	Election forecasting

Two kinds of data mining problems

Data mining problems come in two kinds:

- Supervised learning: Learn the relationship between one variable of special interest (*response*) and the others (*features*).
- Unsupervised learning: Find patterns among observations (e.g. clusters) based on all variables.

In this class we will focus on supervised learning.

Field	Key question
Healthcare	Clinical decision support
Business	Market segmentation
Finance	Stock market prediction
Technology	AI chatbot (e.g. ChatGPT)
Science	Protein folding
Politics	Election forecasting

Types of response variables

- Continuous: Response takes real values (regression problem).
- Categorical: Response takes discrete values, e.g. binary (classification problem).
- Structured: Response is an "object" (e.g. a sentence or an image).

Field	Key question
Healthcare	Clinical decision support
Business	Market segmentation
Finance	Stock market prediction
Technology	AI chatbot (e.g. ChatGPT)
Science	Protein folding
Politics	Election forecasting

Types of response variables

- Continuous: Response takes real values (regression problem).
- Categorical: Response takes discrete values, e.g. binary (classification problem).
- Structured: Response is an "object" (e.g. a sentence or an image).

Field	Key question
Healthcare	Clinical decision support
Business	Market segmentation
Finance	Stock market prediction
Technology	AI chatbot (e.g. ChatGPT)
Science	Protein folding
Politics	Election forecasting

The type of response dictates the statistical learning methodology.

Supervised learning notation

- Observations are indexed by *i*.
- Features are indexed by *j*.
- Feature j denoted by X_j (in abstract); *i*th observation of feature j is X_{ij} .
- Features collectively referred to as $X = (X_1, ..., X_p).$
- All features for observation *i* are denoted $X_i = (X_{i1}, ..., X_{ip})$.
- Response denoted by Y (in abstract); *i*th observation of response is Y_i .

Supervised learning

- **Data:** We are given training observations (X_i, Y_i) for i = 1, ..., n.
- Learning: We "learn from" the training data to estimate a function \hat{f} that inputs X and outputs a guess for Y, i.e. $\hat{Y} = \hat{f}(X)$.
- **Goal:** Given separate set of *N* test observations $(X_i^{\text{test}}, Y_i^{\text{test}})$, want to guess responses based on features as accurately as possible, i.e. $Y_i^{\text{test}} \approx \hat{f}(X_i^{\text{test}})$.

How to measure success? Evaluation metric depends on response type. For continuous responses, typically use the mean-squared error (MSE):

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=1}^{N} (Y_i^{\mathsf{test}} - \hat{f}(X_i^{\mathsf{test}}))^2.$$

Two objectives of supervised learning

- Goal 1: Prediction. You want to predict an unknown outcome (e.g. in the future, or hard to measure) based on a set of features available to you.
- Goal 2: Insight. You want insight into the true relationship between a set of features and a response.

These are related, but distinct goals.

Consider: trying to earn money by predicting tomorrow's stock price versus trying to learn what variables impact stock price.

In a given application, it is good to know which of these two goals is most important.

Field	Key question
Healthcare	Clinical decision support
Business	Market segmentation
Finance	Stock market prediction
Technology	AI chatbot (e.g. ChatGPT)
Science	Protein folding
Politics	Election forecasting

On insight

Consider a continuous response Y, which is related to features X via

$$Y = f(X) + \epsilon$$
, where $\mathbb{E}[\epsilon] = 0$ and $Var[\epsilon] = \sigma^2$.

Insight into relationship between Y and $X \iff$ learning about f.

MSE is connected to how well \hat{f} approximates f:

$$\mathbb{E}[\mathsf{MSE}] = \mathbb{E}[(Y^{\mathsf{test}} - \hat{f}(X^{\mathsf{test}}))^2] = \mathbb{E}[(f(X^{\mathsf{test}}) - \hat{f}(X^{\mathsf{test}}))^2] + \sigma^2$$

Therefore, best predictions \iff closest approximation to f.

On insight (continued)

The estimate \hat{f} is only a noisy approximation to f, so the insights based on \hat{f} about f may or may not be reliable.

How do we quantify the uncertainty in \hat{f} ? How do we give precise probabilistic guarantees about f based on limited data?

This is the domain of statistical inference (e.g. STAT 4310), and is beyond the scope of this course.

On insight (continued)

The estimate \hat{f} is only a noisy approximation to f, so the insights based on \hat{f} about f may or may not be reliable.

How do we quantify the uncertainty in \hat{f} ? How do we give precise probabilistic guarantees about f based on limited data?

This is the domain of statistical inference (e.g. STAT 4310), and is beyond the scope of this course.

In STAT 4710/5710, we will still examine the learned function \hat{f} for insights, but we must take these with a grain of salt.

Modeling is just one part of data mining; several other skills are needed.

Program

Image source: R for Data Science

Modeling is just one part of data mining; several other skills are needed.

Program

Image source: R for Data Science

Modeling is just one part of data mining; several other skills are needed.

Program

Image source: R for Data Science

Modeling is just one part of data mining; several other skills are needed.

Program

Image source: R for Data Science

Modeling is just one part of data mining; several other skills are needed.

Course Outline

Modeling is just one part of data mining; several other skills are needed.

Course Outline

Unit 1: R for data mining

Modeling is just one part of data mining; several other skills are needed.

Course Outline

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Modeling is just one part of data mining; several other skills are needed.

Course Outline

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Looking ahead

Unit 1: R for data mining

Unit 2: Prediction fundamentals

Unit 3: Regression-based methods

Unit 4: Tree-based methods

Unit 5: Deep learning

Lecture 1: Intro to modern data mining

Lecture 2: Data visualization

Lecture 3: Data transformation

Lecture 4: Data wrangling

Lecture 5: Unit review and quiz in class