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Where we are

\/Unit 1: Intro to modern data mining
\/ Unit 2: Tuning predictive models Today’s lecture:

‘/ Unit 3: Regression-based methods * Deep learning bonus material:
Transformers beyond NLP.

\/ Unit 4: Tree-based methods |
* Looking back at STAT 4710

v/ Unit 5: Deep learning + Looking beyond STAT 4710
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Transformers beyond NLP

* Jransformers are being adapted to other
domains, such as vision.

* Positionally-encoded image pieces are
passed into an attention layer.

* Analogously to language-modeling,
vision transformers can be pre-trained
by predicting masked image patches.

 Multi-modal models are being trained,
with text and images together.

* Transformers are also behind AlphaFold,
breakthrough protein-folding model.

Amino acid chain
folds into precise
3D shape

Protein one
functions as

an enzyme

‘The game has changed. Al triumphs at solving protein
structures
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Lingering question: What is the best prediction method?



Theme: Regression and classification



Theme: Regression and classification

Prediction methods vary based on the response type:
* Regression: continuous responses

» (Classification: discrete responses (binary or multi-class)



Theme: Regression and classification

Prediction methods vary based on the response type:
* Regression: continuous responses
» (Classification: discrete responses (binary or multi-class)

Most methods have versions for regression and classification, e.qg. linear
regression and logistic regression.



Theme: Regression and classification

Prediction methods vary based on the response type:
* Regression: continuous responses
» (Classification: discrete responses (binary or multi-class)

Most methods have versions for regression and classification, e.qg. linear
regression and logistic regression.

Classification methods are indirect in the sense that they predict probabilities of
each class. They are also a little more fussy; need to make sure probabilities are
between 0 and 1, class imbalance, misclassification error versus Gini index,...



Theme: Regression and classification

Prediction methods vary based on the response type:
* Regression: continuous responses
» (Classification: discrete responses (binary or multi-class)

Most methods have versions for regression and classification, e.qg. linear
regression and logistic regression.

Classification methods are indirect in the sense that they predict probabilities of
each class. They are also a little more fussy; need to make sure probabilities are
between 0 and 1, class imbalance, misclassification error versus Gini index,...

Many of the same intuitions apply for regression and classification.
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Define class of predictive models fﬁ(X) indexed by some parameter vector /.

Find member of this class that best fits the training data, as measured by the loss
function L of predictions given true responses, possibly regularized:

\

1
f = arg min — 2 L(Y;, f5(X})) + A - penalty()).

g i
Convex (optimization is easy) . Not convex (optimization is hard)
* Linear and logistic regression .« Tree-based methods
* Linear and logistic regression -« Neural networks

with ridge or lasso penalties
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Theme: Model complexity

One of the key characteristics of a predictive model is its
complexity: how flexibly does it fit the training data?

How is model complexity defined”? Depends on model:
 Number of parameters in linear or logistic regression |
* Depth of a decision tree
 Number of neighbors used in K-nearest-neighbors
How is model complexity controlled (regularization)?
* EXxplicit regularization via penalization (lasso, ridge)

* Implicit regularization, e.g. sub-sampling features
during random forest model training
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Consider sampling many different training sets.
* Bias: How far off are predictions on average?

e Variance: How much do the predictions wobble around?

High Bias

Higher model complexity leads to less bias but more variance.

https://www.listendata.com/2017/02/bias-variance-tradeoff.html

Prediction error = Bias2+Variance.

0 _
N

| e MSE
: Bias
Var

2.0

0.5

0.0

2 5 10 20

Flexibility



Theme: Bias-variance trade-off

Consider sampling many different training sets.
* Bias: How far off are predictions on average?

e Variance: How much do the predictions wobble around?

High Bias

Higher model complexity leads to less bias but more variance.

Prediction error = Bias2+Variance.

| e MSE
: Bias

Overfitting: complex models’ sensitivity to noise in the training data S Var
(high variance) — low training error but high test error. f

Flexibility



Theme: Bias-variance trade-off

Consider sampling many different training sets.
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e Variance: How much do the predictions wobble around?

High Bias

Higher model complexity leads to less bias but more variance.
Prediction error = Bias2+Variance.

Overfitting: complex models’ sensitivity to noise in the training data
(high variance) — low training error but high test error.
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Theme: Bias-variance trade-off

Consider sampling many different training sets.
* Bias: How far off are predictions on average?

e Variance: How much do the predictions wobble around?

High Bias

Higher model complexity leads to less bias but more variance.
Prediction error = Bias2+Variance.

Overfitting: complex models’ sensitivity to noise in the training data
(high variance) — low training error but high test error.

Variance increases as noise variance increases, model flexibility
Increases, training sample size decreases.

Lower noise or larger sample size means you can afford more
complex model (think of deep learning).

MSE
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Var
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Model assessment

* Predictive models are assessed based on test data that is separate from
the data used to train these models.

» Different criteria are used to quantify the accuracy of predictions, like
RMSE, misclassification error, F-score, and confusion matrix.

 Model assessment can be subtle for classification problems.

Model selection
* Main tool: Cross-validation, which mimics the train-test split using folds.

* Other schemes for model assessment: validation set approach and out-of-
bag error, the latter for random forests.

 One-standard-error rule reflects preference for simpler models.
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Theme: Interpretability of predictive models

We want to understand how our predictive model is arriving at its conclusions.

Decision Linear, logistic . Random Neural
Lasso . ; Boosting
trees regression forests networks
More interpretable Less interpretable
Can understand the model : Try to understand model by summarizing,

by directly inspecting it. e.qg. feature importance scores.
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Theme: R programming tools

Tools:

e tidyverse Is a nice way to import, clean, transform, and visualize data.
R is well suited for data science; lots of packages available to analyze data.
« R Markdown Is a nice way to integrate text, code, and output.
 RStudio Cloud gives a ready-to-go R programming environment.

Lessons learned:
 Programming takes patience, attention to detail, and lots of Googling.
 Each R package and each software tool has its own quirks and limitations.

* With practice, these programming and software tools can be very powerful.



Theme: Working with data



Theme: Working with data

* Though increasingly abundant, data are still a precious resource, more of
which gives better predictions.



Theme: Working with data

* Though increasingly abundant, data are still a precious resource, more of
which gives better predictions.

* Especially in the real world, data are messy and require cleaning.



Theme: Working with data

* Though increasingly abundant, data are still a precious resource, more of
which gives better predictions.

* Especially in the real world, data are messy and require cleaning.

 Exploratory data analysis and visualization can reveal a lot about a dataset.



Theme: Working with data

* Though increasingly abundant, data are still a precious resource, more of
which gives better predictions.

* Especially in the real world, data are messy and require cleaning.
 Exploratory data analysis and visualization can reveal a lot about a dataset.

 The most successful analyses couple statistical intuition and data intuition.



Theme: Working with data

* Though increasingly abundant, data are still a precious resource, more of
which gives better predictions.

* Especially in the real world, data are messy and require cleaning.
 Exploratory data analysis and visualization can reveal a lot about a dataset.
 The most successful analyses couple statistical intuition and data intuition.

» Ultimate goal of data science is to create knowledge and/or make decisions;
we must make conclusions relevant to the underlying real-world problem.
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A lingering question: What is the best method?

There is no best method. Different methods will work better in different situations.

Each prediction method “has in mind” an
underlying model class, e.g. linear models for
linear regression versus piece-wise constant
models for trees.

If true feature-response relationship matches
model class our method “has in mind,” will
take fewer parameters (less variance) to fit
underlying trend (less bias).

Moral of the story: It’'s good to know several
prediction methods. Seek out the ones whose
underlying model class you think matches the
true feature-response relationship.

Right model class ! Wrong model class
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What comes next?

 Where are data mining, machine learning, and Al going in the future?
 How do | learn more about data mining, machine learning, and Al?
 What other topics are relevant to data science beyond predictive modeling?

 What jobs out there value the skills | learned in STAT 47107 How do | get
those jobs?

« How do | prepare for the impact of Al on data science?
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Where are data mining, ML, and Al heading?

 Businesses increasingly data driven; data mining and ML will continue
becoming increasingly common in marketing, finance, e-commerce, etc.

 Regression and tree-based methods will continue to be used for general-
purpose data mining; deep learning for images and natural language.

» Datasets are becoming increasingly bigger, so more emphasis will be placed
on large-scale/cloud computation and parallelization.

* As deep learning matures, more emphasis will be placed on understanding
and interpretation, making it more safe, robust, and fair, developing theory.

* |In the short term, Al will automate routine tasks, and serve as an increasingly
capable assistant. In the medium-to-longer term, hard to predict!
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Theory

Probability

(STAT4300, ESE3010)
Linear algebra
(MATH2400, MATH3120)

Calculus
(MATH1140, MATH1150)

Mathy machine learning
(C1S5200,ESE5450)
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Learning more about data mining, ML, and Al

Computation Theory Artificial intelligence
* Python programming * Probability
(C1S1920, STAT4770) (STAT4300, ESE3010)

* Linear algebra
(MATH2400, MATH3120)
e Calculus
(MATH1140, MATH1150)

Basic

Advanced

* Large-scale computing  Mathy machine learning  Artificial intelligence
(NETS2120,CIS5450) (C1S5200,ESE5450) (CIS 5210)
* Databases * Optimization * Deep learning
(C1S4500, OID 3150) (STAT 4810, CIS5150, (C1S5220)
ESE5040, ESE6050)  Computer vision
(C1S6800)
* NLP

(CIS5300)
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Not every problem in the world can be solved by machine learning!

Statistical inference versus prediction: understanding the world is different from
predicting it. E.g., science is driven by understanding rather than prediction.

Causal inference: Cause and effect is the ultimate question in science and policy.
Decision makers (e.g. the FDA) need to estimate the effects of different policies.

Quantifying uncertainty: If a neural network predicts there is no pedestrian ahead
with probability 0.99, what does this mean? Can we make a statistical guarantee?

Robustness and safety: Will the self-driving car recognize a pedestrian if she is
holding an umbrella? In what sense can we ensure the robustness of an algorithm?

Fairness: In what sense can a prediction rule be considered fair? How can we
assure that our predictive rules live up to this standard?



glassdoor 50 Best Jobs in America for 2022

Data science jobs

Job Title Median Base Salary Job Satisfaction Job Openings
#1  Enterprise Architect $144,997 4.1/5 14,021
#2  Full Stack Engineer $101,794 4.3/5 11,252

W harvard Data Scientist: The Sexiest

Review Job of the 21st Century

Meet the people who can coax treasure out of messy, unstructured
data. by Thomas H. Davenport and D.J. Patil

#3  Data Scientist $120,000

From the Magazine (October 2012)

#4  Devops Engineer $120,095 4.2/5 8,548

#5  Strategy Manager $140,000 4.2/5 6,977

What does a Data Scientist do?

Data scientists utilize their analytical, statistical, and programming skills to collect, analyze, and interpret large data sets. They
then use this information to develop data-driven solutions to difficult business challenges. Data scientists commonly have a
bachelor's degree in statistics, math, computer science, or economics. Data scientists have a wide range of technical...

Read More
Average Years of Experience Common Skill Sets
0-1 e 8% () Machine Learning () Statistics
2-4 O 50 % &) Python () Natural Language
5-7 @ 6% Processing
8+ e 6% () Hadoop SPARK ) Algorithms
({/) SQL '@' Programming

Languages



How to get a data science job?

* | earn the skills through classes
Or on your own.

* Build your skills through data
sclence projects.

» Share your work by posting code
on Github and making a portfolio
of your projects.

 Apply to internships to gain data
science experience.



How to get a data science job?

* | earn the skills through classes
Or on your own.

* Build your skills through data
sclence projects.

e Share your work by posting code
on Github and making a portfolio
of your projects.

 Apply to internships to gain data
science experience.

PORTFOLIO

A glimpse of the projects I've been working on
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How to prepare for the impact of Al?

* | earn about the latest Al technologies and capabilities, e.g. code interpreter
and retrieval-augmented generation.
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and retrieval-augmented generation.

John Backus
@backus

b

The code interpreter feature on ChatGPT is the most
mind blowing thing I've seen yet.

All | did was upload a CSV of SF crime data and ask it
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SNE By 8 DN . [
W T ey Y
Smanemal Crime Tramdn -
S R
B
Podce Dmtrat Araywn .
Aut = mat

...............

adet

a g ST Cabegory it The Sat
P
¢ Crime Catagiry Tounde
— o Ve e Teve 1 e
| I il
4 "( 4 & *
4 g (
**
Category Trends
POT the brencs of S0
e fy any changes o

nm
)5 00
¥ e Y ¢ ¥
o o " .y e
HE =
— e .
—_— Y Loson
5 § e
- cax
'
§ e P
:
o 5 o " A P
> r > . &
4 T e Pee T. Crim
Let's
2 Moty Crivee Tern =
Lty cronte 3 wid
7 weeh on "Burglary” 2

0
20 $howirg e Grtsadion of comes by hewt of By ey 254 oe

“w d

.
;N
*

TGN Tppes
v i g,
" “woen Gl Crimes
'y « F &
& 57
;,‘
L 4

=

B
R -
- ¥

)

F 4

>

Oy

e orim cetogories (e g, burglary drug offerses) over Sime

The can hatp Cert) tha moat o
W Dl Soernain of aguec Fac (Hime (et
1y 7% CRaNGen O pamer ng |1 Dhege
A # P . v

w o s

#

je orime ¢
LTS I these typos of crimes. For this asamgle, wo'l 1oou

05 OF Pl

3:05PM - Apr 29, 2023 - 1.4M Views



How to prepare for the impact of Al?
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How to prepare for the impact of Al?

* Play around with GUI-based Al tools such as ChatGPT to better understand
their strengths and weaknesses, and how prompts affect quality of outputs.
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How to prepare for the impact of Al?

* Play around with GUI-based Al tools such as ChatGPT to better understand
their strengths and weaknesses, and how prompts affect quality of outputs.

ChatGPT 4 ~

reate Configur
‘ GPT Builder

How can | help you today? Hi! I'l help you build a new GPT. You
can say something like, "make a

creative who helps generate visuals
for new products” or "make a
software engineer who helps format

my code."

What would you like to make?

@ Message GPT Builder...
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How to prepare for the impact of Al?

* Build on top of existing Al tools:

* Build a chatbot based on retrieval-augmented generation.
(Build an Al TA by equipping LLM with course notes.)

* Fine-tune an existing large language model.
(Build sentiment classifier by fine-tuning an LLM on Rotten Tomatoes data.)

* Build an application on top of an existing large language model.

(E.g. Build a simple app for language learning that simulates conversations in
different languages, provides grammar corrections, and offers cultural insights.)

See OpenAl developer platform, Hugging Face, and LangChain.



